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QUICK REVIEW:

What characterizes Bayesian statistics, and how does it differ from
frequentistic statistics?
What is a posterior distribution, and how do you use it?
How do we �nd a posterior distribution?
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HOW DO YOU FIND THE POSTERIOR?

  

Left: Analytic solution (usually impossible).
Middle: Grid approximation (dif�cult when many parameters).
Right: Monte Carlo Methods; approximate the posterior by simulation
(comptationally demanding, but tractable).
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EXACT POSTERIOR BY ANALYSIS USUALLY IMPOSSIBLE

Analytic approaches to �nding exact expressions for the posterior can be
dif�cult (or impossible) because it requires computing the evidence.

For a �nite set of values of theta functions this requires �nding the value for
the sum:

For continuous functions this requires �nding the value for the integral:

For real problems, �nding the integral is usually impossible.

p(D) = ∑ p(D|θ)p(θ)

p(D) = ∫ p(D|θ)p(θ)dθ
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FINDING THE POSTERIOR: GRID APPROXIMATION

�. Divide parameter range into discrete points.
�. Find the posterior at each grid point by multiplying the likelihood and the

prior at that point.
�. Ensure that the posterior sums to 1 by dividing with the sum across all grid

points.

Posterior =
Likelihood × Prior

Evidence
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POSTERIOR BY GRID APPROXIMATION USUALLY IMPOSSIBLE

The prior is speci�ed on a dense grid of points spanning the range of 
values.

With one parameter with a �nite range, approximation by a grid can be a
useful procedure. But what if we have several parameters?

With six parameters, parameter space is six-dimensional, and involves the
joint distribution of all combinations of parameter values.
If we set up a grid on each parameter that has 1,000 values, then the six-
dimensional parameter space has  = 1,000,000,000,000,000,000
combinations that must be evaluated.

θ

1, 0006
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MARKOV CHAIN MONTE CARLO METHODS
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SEMINAR 3: TERMS YOU SHOULD BE ABLE TO EXPLAIN TO SOMEONE ELSE

MCMC methods
Random walks
Trace plots
Burn in / Thinning
Autocorrelation
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THE BIRTHDAY PROBLEM

How many kids does there have to be in a school class for it to be more likely
that two of them have the same birthday, than that none of them have the
same birthday?
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MONTE CARLO METHODS

Monte Carlo methods are computational algorithms that rely on repeated
random sampling to obtain numerical results.
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SAMPLES FROM THE UNKNOWN

Imagine the exact form of the posterior was unknown, but you were given these
values drawn from the posterior distribution:

13.86 10.55 7.74 11.60 9.98 13.54 11.57 10.68 6.76 4.05
9.21 9.77 4.32 14.52 7.20 11.23 11.76 12.09 13.54 11.63

How/what could you learn about the posterior?
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SOME BACKGROUND: COMPUTERS AND RANDOM NUMBERS

Many statistical/mathematical platforms can provide sequences of random
numbers drawn from different distributions.
Computers are deterministic systems, and can't generate numbers that are
truly random.
However, computers can generate sequences of in the correlation between
adjecent values are virtually zero, and thus appears to be random.
Such sequences can then be used to approximate more complex probability
distriubution through various algorithms.
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INTRO TO RANDOM NUMBERS IN R

set.seed(100)
X �� rnorm(200, mean=100, sd=15)

head(X, 10)

��  [1]  92.46711 101.97297  98.81624 113.30177 101.75457 104.77945  91.27314
��  [8] 110.71799  87.62111  94.60207

hist(X)

mean(X)

�� [1] 100.1054 13 / 56



Approach:

�. Generate candidate values using
a proposal distribution (blue).

�. Accept candidate with probability
equal to the probability of the
desired distribution at that
parameter value, reject
otherwise.

REJECTION SAMPLING

This is one approach to generate random values from more complex
distributions.
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REJECTION SAMPLOING CAN BE INEFFICIENT

Unless the proposal distribution is taylored to �t the desired distribution well,
rejection sampling can require you to discarding most values.

To get the valdig draws from the target distribution (red), I need to discard
all the blue values.
The rejection rate can be much higher in multivariate distriutions, leading
to a lot of
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MARKOV CHAIN MONTE CARLO (MCMC)

Markov Chain Monte Carlo (MCMC): approch that allows us to draw random
values from complex distributions (here the posterior).

We can approximate the shape of the posterior, and calculate statistics
(mean, median variance), without knowing the exact mathematical
expression for the distribution.
MCMC algorithms and powerful computer hardware now allow us to conduct
Bayesian data analysis that would be impossible 30 years ago.
The cost of MCMC methods is that analyses can take long, (hours, days), and
the procedure may fail to generate random numbers.

We need to run diagnostic tests to ensure that we have valid draws from the
posterior.
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RANDOM WALKS

A random walk describes a path that consists of a succession of random
steps on some mathematical (here parameter) space.
We can refer to the movement through parameter space as a chain.
The process will result in a sequence of (apparently) random values drawn
from the target distribution
Important classes are Metropolis algorithm, Gibbs sampler, Hamiltonian
MCMC

https://chi-feng.github.io/mcmc-demo/app.html

(kruschke, 2015)
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EXPLORING THE PARAMETER SPACE

Above: Two different widths for the proposal distribution.
Left: Too small jumps yield very similar values, and relatively little new
information. The effective sample size (ESS) of the chain is very small.

The left and right panels would eventually converge to an identical and
highly accurate approximation to the posterior distribution, but the left one
is a lot less ef�cient, i.e. the one on the right can approximate the
distribution well with much fewer draws.
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SOME MCMC ALGORITHMS ARE MORE EFFICIENT

 
Ideally we would like uncorrelated random draws from our target (posterior)
distribution.
However, sucessive steps are much more correlated in Metropolis than
Hamiltonian MCMC.
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IN SUMMARY; CHARACTERISTICS OF A GOOD MCMC APPROACH

1. The values in the chain must be representative of the posterior distribution.
Not unduly in�uenced by the arbitrary initial value of the chain.
Should fully explore the range of the posterior distribution without getting
stuck.

2. The chain should be of suf�cient size so that estimates are accurate and
stable

the estimates of the central tendency (such as median or mode), and the
limits of the 95% HDI, should not be much different if the MCMC analysis is
run again.

3. The chain should be generated ef�ciently, with as few steps as possible
Should not require vast amounts of time or computing power.
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Figures on the right illustrate healthy
process:

Traceplot (upper left) looks like a
hairy cattepillar.
Autocorrelation drops similarly
for all chains.
Posterior plot does not look too
weird, and similar for all chains.

DIAGNOSTIC PLOTS

The extent to which a MCMC chain has generated a valid set of random values
from the target (posterior) distribution can be evaluetd with diagnostic plots.
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Traceplot reveals that it takes a
few hundred steps for the three
chains to converge to the same
region of the parameter.

Should be excluded from the
sample because they are not
representative.

The preliminary steps, during
which the chain moves from its
unrepresentative initial value to
the modal region of the
posterior, is called the burn-in
period.

PROBLEMATIC DIAGNOSTIC PLOTS

The �gures on the right illustrate an unhealthy process:
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MORE EXAMPLE OF PROBLEMATIC PLOTS
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COMPARING PARALELL CHAINS (1)
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COMPARING PARALELL CHAINS (2)
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R-HAT (2)
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HOW MANY SAMPLES DO YOU NEED?

The larger the sample, the more stable and accurate (on average) will be the
estimates of the central tendency and HDI limits.

How many samples are necessary?
For aspects of the distribution that are strongly in�uenced by dense
regions, such as the median in unimodal distributions, the ESS can be
modest.
For aspects of the distribution that are strongly in�uenced by sparse
regions, such as the limits of the 95% HDI, the ESS needs to be large (10.000
recommended).

Thinning: In thinning, only every k’th step in the chain is stored. This reduces
autocorrelation. However, it is only really necessary if storing the full original
chain would take too much computer memory, or if subsequent processing of
the full original chain would take too much time.
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STAN

Stan is program that can provide you with random values drawn from a
complex (posterior) distribution.

Created by Andrew Gelman, and a 34 person development team.
Named after Stanislaw Ulam, pioneer of Monte Carlo methods

Stan uses hamiltonian Monte Carlo (HMC) for generating Monte Carlo steps.
For large data sets or complex models, Stan can provide solutions when
other software packages fail (bugs/Jags that use Gibbs sampling).
HMC uses a proposal distribution that changes depending on the current
position. HMC �gures out the direction in which the posterior distribution
increases, called its gradient, and warps the proposal distribution toward the
gradient.

Gibbs samplers use a symmetric proposal distribution, and can end up
proposing draws that will nearly all be rejected.
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SETTING UP STAN ON YOUR SYSTEM

On windows, Stan requires you to install Rtools
Windows: https://cran.r-project.org/bin/windows/Rtools/
The necessary software (c++ comiler) should be installed as default on
Mac/Linux.

In Rstudio, you must install and load the rstan package

install.packages("rstan")
library (rstan)

For a detailed description in how to set up Stan on your system:
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
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STAN MODEL STRUCTURE

data{ ... declarations ...

  } 

parameters{ ... declarations ...

  }

model{ ... declarations ... statements ...

  }
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STRUCTURE OF A STAN PROGRAM

Data block: where you declare the data types, their dimensions, any
restrictions (i.e. upper = or lower = , which act as checks for Stan), and their
names. Any names you give to your Stan program will also be the names
used in other blocks.
Parameters” block: This is where you indicate the parameters you want to
model, their dimensions, restrictions, and name. For a linear regression, we
will want to model the intercept, any slopes, and the standard deviation of
the errors around the regression line.
“Model” block: This is where you include any sampling statements,
including the “likelihood” (model) you are using. The model block is where
you indicate any prior distributions you want to include for your
parameters. If no prior is de�ned, Stan uses default priors with the
speci�cations uniform(-in�nity, +in�nity). You can restrict priors using upper
or lower when declaring the parameters (i.e. lower = 0> to make sure a
parameter is positive). You can �nd more information about prior
speci�cation here.

https://ourcodingclub.github.io/tutorials/stan-intro/
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BINOMIAL EXAMPLE
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REGRESSION EXAMPLE
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WHAT IS THE LIKELIHOOD IN A LINEAR REGRESSION MODEL?
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WHAT IS THE LIKELIHOOD IN A LINEAR REGRESSION MODEL?
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WHAT IS THE LIKELIHOOD IN A LINEAR REGRESSION MODEL?
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BIVARIATE REGRESSION IN STAN?
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PRIOR PREDICTIVE CHECKS

When you have several parameters in your model, it may be dif�cult to
foresee what the expected values based on their collective impact will be.
A prior predictive simulation means simulating predictions from a model,
using only the prior distribution.

This is very useful for understanding the implications of a prior.

Prior predictive checks have become increasingly popular in bayesian
analyses.
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REVIEWING THE BENEFITS OF A BAYESIAN APPROACH
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1. A UNIFIED APPROACH TO INFERENCE

Traditional statistical methods
makes it dif�cult to grasp the uni�ed nature of statistical methods.
lacks a single uni�ed method of building, re�ning and critiquing statistical
models.

(McElreath, 2020)
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2. AVOID NULL-HYPOTHESIS SIGNIFICANCE TESTING

Bayesian approach allows us to avoid «folk popperism» (falsify straw-man
hypotheses), and stargazing (searching for *’s in the output)

Instead of falsifying null models, compare meaningful models.
Through the Bayes factor, Bayesian inference has a formal framework for
comparing non-null models.
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3. NATURALLY INCORPORATE KNOWN INFORMATION INTO THE MODEL

Bayesian methods provides a principled way of combining new evidence
with prior beliefs, through the application of Bayes' rule.

Contrast this with frequentist inference, which relies only on the evidence as
a whole, with no reference to prior beliefs.

As a result, Bayesian methods will typically produce stronger inferences
from the same data.
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4. BAYESIAN STATISTICS CORRESPOND TO INTUITION

Frequentist formulation of p-values and con�dence intervals is rarely fully
understood correctly.

When told that H is rejected at the 5% level, this is almost universally
interpreted as saying that there is only a 5% chance that H is true.
Similarly, a frequentist con�dence interval is nearly always interpreted as a
Bayesian credible interval.

Bayesian interval estimates have a clearer and more direct interpretation
than classical con�dence intervals.

That is, we can directly conclude that a parameter falls in some interval with
some probability.

43 / 56



5. RICHER RESULTS THAN P-VALUES

Bayesian approach allows more detailed summaries concerning
parameters.

Not simply obtain maximum likelihood estimate and standard error.

In the posterior we have an entire distribution that can be summarized
using various measures (e.g., mean, median, mode, and interquartile range).
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6. FLEXIBILITY

Classical inferences may be valid under certain assumptions, but what if
assumptions don’t hold?

Mention the problem in the limitation section?

Typically, you have no way of dealing with a violation of an assumption, as
you don’t know how this will impact the sampling distribution.

Bayesian methods make it much easier to adjust your model to handle
such violations, or in other ways.
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7. RESULTS ARE VALID FOR ANY SAMPLE SIZE

No reliance on test statistics whose sampling distributions are only
asympotically known.

E.g. in classical statistics, the sampling distribution in t-test is approximately
t-distributed if not, as sample grows.

In Bayesian statistics, results hold for any sample size (even n=2).
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8. OTHER BENEFITS

Validity of the results does not depend on sampling approach.
Sample sizes and stopping rules do not need to be de�ned in advance.

Bayesian approaches handles multiple testing better, and do not require
correction for multiple testing.
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ARE BAYESIAN METHODS SUBJECTIVE?

Some claim that the use of a prior injects too much subjectivity.
Strange priors are easily identi�ed, and non-informative / weakly
informative can be used.
Priors are quickly overwhelmed by likelihood.
Other kinds of p-hacking are a much greater threat.
Posterior distributions are asymptotically normal.
Again…it works.
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CHALLENGES IN USING BAYESIAN METHODS

Many (most) reviewers are not familiar with statistics
Requires more independent thought.
Can be extremely computationally intensive for some complex models.
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SOME IMPORTANT BAYESIAN CONCEPTS
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POSTERIOR PREDICTIVE CHECKS (1)

Posterior predictive checks are a common way of evaluating the �t of a
bayesian model.
They involve simulating replicated data under the �tted model and then
comparing these to the observed data.
You then use posterior predictive results to look for systematic
discrepancies between real and simulated data.
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POSTERIOR PREDICTIVE CHECKS (2)

Our goal of seeking out aspects of prediction in which the model might fail.

We are looking at the expectations under our model in different ways:
Left: Longest run length of water is quite in line with what we would expect.
Right: Number of switches is less lin line with what we would expect (but
not extremely off).
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BAYES FACTOR EXAMPLE (1)

Two researchers are interested in public opinion about public smoking bans.
Paul believes that 70% of the public support such bans; Carole believes that the
support is less, at 60%. Paul and Carole decide ask 100 randomly selected
people whether they support public smoking bans.

If 62 people in a sample of 100 say they support the ban. How does this
support the different models?

https://www.r-bloggers.com/2014/02/what-is-a-bayes-factor/
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In this example the bayes factor is
3.95.

Bayes factor Interpretation

1 - 3 Negligible evidence

3 - 20 Positive evidence

20 - 150 Strong evidence

>150 Very strong evidence

BAYES FACTOR EXAMPLE (2)

 

https://www.r-bloggers.com/2014/02/what-is-a-bayes-factor/
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BAYES FACTOR EXAMPLE (3)

 

Often our hypotheses are more diffuse.
Above left: Our hypotheses are here expressed as distributions.
Anove left: The odds of 62 must now be seen relative to all possible values
under our hypotheses, and the bayes factor drops from 3.95 to 2.83.

https://www.r-bloggers.com/2014/02/what-is-a-bayes-factor/
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BAYES FACTOR CONCLUSION

Bayes factors is a Bayesian alternative to classical hypothesis testing. The
aim of the Bayes factor is to quantify the support for a model over another,
regardless of whether these models are correct.

Bayes factors are the degree to which the data shift the relative odds
between two hypotheses.

They have been proposed as more principled replacements for common
classical statistical procedures such as p-values.

One popular use for bayes factors is the tesing of null models.

BFab =
P(D|Ha)

P(D|Hb)
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