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Abstract

This paper examines evaluation criteria for streams of utility vectors of
generations with variable population size. Specifically, we axiomatically an-
alyze how an evaluation criterion applied to a single generation is extended
between generations. First, we show that the axioms of finite anonymity,
weak existence of critical levels, and existence independence are jointly equiv-
alent to the existence of an ordering of utility profiles of finite generations
satisfying the properties corresponding to the axioms that we can use to rank
streams of utility vectors with a common tail. Then, adding strong Pareto and
consistency axioms, we axiomatize three generalized evaluation criteria for
streams of utility vectors including generalized overtaking and catching-up
criteria. Further, adding minimal inequality aversion, we show that among
the generalized overtaking and catching-up criteria, only those associated
with a positive critical level avoid an infinite-horizon version of the repug-
nant conclusion. Also, we apply the results of the generalized criteria to ax-
iomatizing infinite-horizon extensions of the critical-level leximin principle
and examine their population ethics properties.

Keywords: Intergenerational equity, Variable population social choice, Over-
taking criteria, Population ethics, Critical-level leximin principle

JEL Classification Numbers: D63, D71

∗I am grateful to Geir B. Asheim, Susumu Cato, Marc Fleurbaey, Kaname Miyagishima, Paolo G.
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1 Introduction

Evaluation criteria that we can use to compare possible social states with differ-
ent population sizes are indispensable for evaluating public policies that will af-
fect population sizes of the present and/or future generations. For example, when
we evaluate public policies on childcare, reproductive health, immigration and
refugees and so on, we need evaluation criteria that can deal with different pop-
ulation sizes. Also, the evaluation of climate change policy requires taking into
account possible changes in population sizes of the present and future generations.

Evaluation criteria for possible social states with different population sizes have
been developed in variable population social choice, where evaluation orderings of
variable dimensional utility vectors are presented and axiomatized; see Blackorby,
Bossert, and Donaldson (2002, 2005) for comprehensive reviews of the literature.
In the standard framework of variable population social choice, population size is
assumed to be finite and no distinction between generations is made. Consequently,
evaluation orderings developed in that framework cannot be used to compare inter-
generational utility distributions involving different population sizes of the present
and infinitely many future generations such as

1st generation 2nd generation t-th generation
u =

(
( 6, . . . . . . , 6︸       ︷︷       ︸
5 million people

), ( 7, . . . . . . , 7︸       ︷︷       ︸
3 million people

), . . . , ( 8, . . . . . . , 8︸       ︷︷       ︸
1 million people

), . . .
)

v =
(
(4, . . . . . . . . . , 4︸           ︷︷           ︸

10 million people

), (3, . . . . . . . . . , 3︸           ︷︷           ︸
11 million people

), . . . , (2, . . . . . . . . . , 2︸           ︷︷           ︸
11.5 million people

), . . .
)
,

where an intragenerational utility distribution is represented by a utility vector,
which is an element of infinite streams. The issue of how we should evaluate
streams of variable dimensional utility vectors like these actually arises when we
consider intertemporal economic models with endogenous population. The streams
u and v described above will be attainable in a very simple economic model where
each generation is endowed with a fixed amount of resources to be consumed by
people alive and each potential people is assumed to have the same strictly con-
cave utility function. See Boucekkine and Fabbri (2003), Boucekkine, Fabbri, and
Gozzi (2011, 2014), Palivos and Yip (1993), and Razin and Yuen (1995) for more
complicated dynamic economic models with production and endogenous popula-
tion.

The framework for analyzing evaluation criteria for streams of utility vectors
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was presented in Kamaga (2016). This framework is different for the standard
framework of variable population social choice in two respects. First, it allows
us to examine evaluation criteria for utility distributions for infinitely many gen-
erations. Second, it explicitly distinguishes different generations describing each
intragenerational utility distribution as an element of stream. When we deal with
infinitely many generations, the explicit use of the notion of generation is important
since without the distinction between different generations, we may end up with the
evaluation regarding u and v described above that there are infinitely many people
alive in both u and v and every individual in u has a higher utility level than people
alive in v, so that u is better than v. It would be hard to agree with this evalu-
ation immediately since there is the quality-quantity trade-off in each generation
between u and v.

There have been proposed three evaluation criteria for streams of utility vec-
tors in Kamaga (2016), which are called a critical-level generalized utilitarian
social welfare relation (SWR), a critical-level generalized overtaking SWR, and
a critical-level generalized catching-up SWR, respectively.1 Each of them is an
infinite-horizon extension of critical-level generalized utilitarianism that was intro-
duced by Blackorby and Donaldson (1984) in the finite-horizon framework of vari-
able population social choice; see also Blackorby, Bossert, and Donaldson (1995).
Specifically, they have a common feature that they apply critical-level general-
ized utilitarianism to the utilities of individuals alive in finite generations. In other
words, they apply critical-level generalized utilitarianism within a generation and
also extend its application between generations.

The purpose of this paper is to clarify through axiomatic analysis how an eval-
uation criterion applied within a generation is extended between generations and
also to axiomatize generalized evaluation criteria for streams of utility vectors that
can represent infinite-horizon extensions of critical-level generalized utilitarianism
and some other finite-horizon evaluation criteria as specific examples. The impor-
tance of analyzing generalized evaluation criteria for streams of utility vectors is
analogous to that of the analysis done for generalized evaluation criteria for in-
finite utility streams where the well-being of each generation is represented by a
single utility value. In the literature on ranking infinite utility streams, a lot of
researches have been done on generalized evaluation criteria to make possible to
apply existing results obtained for the finite case to constructing and axiomatizing

1An SWR is an intratemporally anonymous and finitely complete quasi-ordering. The precise
definition is given in Sect. 2.
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specific evaluation criteria for infinite utility streams. See, for example, Asheim,
d’Aspremont, and Banerjee (2010), Asheim and Banerjee (2010), d’Aspremont
(2007), Kamaga and Kojima (2009, 2010), and Sakai (2010).2 Analogously, the
analysis of generalized criteria for streams of utility vectors allows us to make use
of a large body of literature on variable population social choice developed for the
finite case.

Our first result is a characterization of a class of SWRs satisfying three axioms,
namely, finite anonymity, weak existence of critical levels, and existence indepen-
dence. Finite anonymity formalizes equal treatment of finitely many generations.
Weak existence of critical levels is a very weak assumption of the existence of
a utility level such that the addition of an individual at that utility level does not
change the goodness of stream. Existence independence requires the evaluation be
independent of the addition of utility-unconcerned individuals. We show that the
three axioms are jointly equivalent to the existence of an ordering of utility profiles
of finite generations satisfying the properties corresponding to the axioms that we
can use to rank streams of utility vectors with a common tail. That is, an SWR sat-
isfying these axioms must apply an ordering of variable dimensional utility vectors
satisfying the properties corresponding to the axioms not only within a generation
but between generations. Examples of such orderings include critical-level gener-
alized utilitarianism, the critical-level leximin principle in Blackorby, Bossert, and
Donaldson (1996), and their lexicographic composition.

The generalized evaluation criteria for streams of utility vectors we propose and
axiomatize are the dominance-in-tails criterion, the generalized overtaking crite-
rion, and the generalized catching-up criterion. The dominance-in-tails criterion
applies an ordering of variable dimensional utility vectors to the utilities of indi-
viduals alive in finite generations and also applies the Suppes–Sen grading prin-
ciple to each of the subsequent generations. The generalized overtaking and the
generalized catching-up criteria consecutively applies an ordering of variable di-
mensional utility vectors to the utilities of individuals alive in finite generations in
the same way as the overtaking and catching-up criteria in Atsumi (1965) and von
Weizsäcker (1965), respectively. Specific representations of these generalized cri-
teria are given by employing, for example, critical-level generalized utilitarianism,
the critical-level leximin principle, or their lexicographic composition as an order-
ing applied to finite generations. We axiomatize the dominance-in-tails criterion by

2Reviews of the literature on ranking infinite utility streams are presented by Asheim (2010) and
Lauwers (2016).
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adding the strong Pareto principle to the three axioms and the generalized overtak-
ing and generalized catching-up criteria by adding consistency axioms. Further, we
show the consequence of adding a weak distributional equity axiom called minimal
inequality aversion.

We also evaluate population ethics properties of the generalized criteria. In the
literature on population ethics, one of the most fundamental issue is how we can
avoid the repugnant conclusion discussed by Parfit (1976, 1982, 1984); namely,
the possibility of avoiding an ethically unacceptable preference for overpopulation
in dealing with the quality-quantity trade-off. Using the axiom of avoidance of
the repugnant conclusion, we present characterizations of the generalized overtak-
ing and generalized catching-up criteria associated with an ordering for variable
dimensional utility vectors that has a positive critical level of utility.

Our results of the generalized criteria can be applied to the analysis of their
specific representations obtained by the choice of an ordering applied to finite gen-
erations. Indeed, if we additionally impose a restricted continuity axiom, we obtain
the axiomatizations of the three infinite-horizon extensions of critical-level gener-
alized utilitarianism presented in Kamaga (2016). Another application can be con-
sidered for the case of the critical-level leximin principle. Adding the Hammond
equity axiom to the axiomatizations of the generalized criteria, we axiomatize the
three infinite-horizon extensions of the critical-level leximin principles that corre-
spond to specific representations of the generalized criteria. We also examine their
population ethics properties using an infinite-horizon reformulation of the axiom
of priority for lives worth living in Blackorby, Bossert, and Donaldson (2005).

The rest of the paper is organized as follows. Sect. 2 presents notation and basic
definitions. Sect. 3 presents the characterization of a class of SWRs satisfying
the three basic axioms. In Sect. 4, we provide the axiomatizations of the three
generalized criteria. In Sect. 5, we evaluate population ethics properties of the
generalized criteria. Sect. 6 presents the application of the general results to the
critical-level leximin principle. Sect. 7 concludes the study.

2 Notation and definitions

Let R (resp. R++ and R−−) be the set of all (resp. all positive and all negative)
real numbers and N be the set of all positive integers. For all n ∈ N, 1n is the
vector consisting of n ones. The notation for the vector inequality is as follows:
for all n ∈ N and all (u1, . . . , un), (v1, . . . , vn) ∈ Rn, (u1, . . . , un) ≥ (v1, . . . , vn)
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if and only if ui ≥ vi for all i = 1, . . . , n; and (u1, . . . , un) > (v1, . . . , vn) if and
only if (u1, . . . , un) ≥ (v1, . . . , vn) and (u1, . . . , un) , (v1, . . . , vn). Further, for all
(u1, u2, . . .), (v1, v2, . . .) ∈ RN, (u1, u2, . . .) ≫ (v1, v2, . . .) if and only if ui > vi for
all i ∈ N. For all n ∈ N and for all (u1, . . . , un) ∈ Rn, (u[1], . . . , u[n]) denotes a non-
decreasing rearrangement of (u1, . . . , un), ties being broken arbitrarily. For any sets
A and B, we write A ⊆ B to mean that A is a subset of B and A ⊂ B to mean A ⊆ B
and A , B. The empty set is denoted by ∅. Negation of a statement is indicated by
the symbol ¬.

We consider the welfarist framework of infinite-horizon variable population
social choice presented in Kamaga (2016). Let Ω = ∪n∈NRn, and let ΩN be the set
of all streams of utility vectors u = (u1,u2, . . .). For all u ∈ Ω and all t ∈ N, n(ut)
is the number of components in ut, and thus, ut =

(
ut

1, . . . , u
t
n(ut)

)
. For all u ∈ ΩN

and all t ∈ N, we interpret ut as the utility distribution among n(ut) individuals in
the t-th generation and we ignore the identities of individuals in each generation.
This simplification does not affect the analysis since the evaluation relations we
consider do not depend on the identities of individuals. We employ the convention
in population ethics that a utility level of zero represents neutrality and a utility
level above zero represents her life is worth living.3

For any u ∈ ΩN and any t ∈ N, let u−t denote (u1, . . . , ut) ∈ Ωt and u+t

denote (ut+1,ut+2, . . .) ∈ ΩN. Thus, u = (u−t,u+t) = (u−(t−1),ut,u+t). We refer
to u−t as the head of a stream of utility vectors and u+t as the tail of a stream of
utility vectors. For any u, v ∈ ΩN and any t ∈ N, we write [ut, vt] as [ut, vt] =(
ut

1, . . . , u
t
n(ut), v

t
1, . . . , v

t
n(vt)

)
∈ Ω. Extending this notation to heads of a stream of

utility vectors, for any u ∈ ΩN and any t ∈ N, let [u1, . . . , ut] denote the vector in
Ω defined by [u1, . . . , ut] =

(
u1

1, . . . , u
1
n(u1)
, . . . , ut

1, . . . , u
t
n(ut)

)
.

A binary relation on ΩN is generically denoted by R. The asymmetric and
symmetric parts of R is denoted by P and I, respectively. A binary relation on
ΩN is quasi-ordering if it is reflexive and transitive. A binary relation R on ΩN

is intratemporally anonymous if and only if, for all u, v ∈ ΩN, uIv if, for all
t ∈ N, there exists a bijection πt : {1, . . . , n(ut)} → {1, . . . , n(vt)} such that ut =(
vt
πt(1), . . . , v

t
πt(n(ut))

)
. A binary relation R on ΩN is finitely complete if and only if

uRv or vRu for all u, v ∈ ΩN with u+t = v+t for some t ∈ N. An SWR on ΩN is
an intratemporally anonymous and finitely complete quasi-ordering. Given binary
relations R1 and R2 on ΩN, we say that R1 is a subrelation of R2 if I1 ⊆ I2 and
P1 ⊆ P2.

3For a discussion of neutrality and its normalization to zero, see Broome (1993).
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We also consider a binary relation on Ω, which we generically denote by ≿.
The asymmetric and symmetric parts of ≿ are denoted by ≻ and ∼, respectively. A
binary relation on Ω is a quasi-ordering if it is reflexive and transitive. A binary
relation on Ω is an ordering if it is a complete quasi-ordering.

3 Basic extension result

We begin by characterizing SWRs satisfying three axioms in Kamaga (2016),
namely, finite anonymity, weak existence of critical levels, and existence inde-
pendence. Finite anonymity asserts that the relative ranking of any two streams of
utility vectors should be invariant with respect to reordering two generations.

Finite Anonymity (FA): For all u, v,w, z ∈ ΩN, if there exist t1, t2 ∈ N such that
ut1 = wt2 , ut2 = wt1 , vt1 = zt2 , vt2 = zt1 , and, for all t , t1, t2, ut = wt and vt = zt,
then uRv⇔ wRz.

According to Asheim, d’Aspremont, and Banerjee (2010), this axiom should be
called relative finite anonymity. However, we refer to the axiom as finite anonymity
since for a finitely complete and transitive relation, imposing this axiom is equiv-
alent to requiring the stronger property that is analogous to the finite anonymity
axiom in the context of ranking infinite utility streams, i.e., for all u, v ∈ ΩN, if
there exist t1, t2 ∈ N such that ut1 = vt2 , ut2 = vt1 , and ut = vt for all t , t1, t2, then
uIv.

To present the axiom fo weak existence of critical levels, we define the notion
of a critical level of utility. For any u ∈ ΩN and any t ∈ N, α ∈ R is said to
be a critical level for u at the t-th generation if uI(u−(t−1), [ut, α],u+t). That is, a
critical level of utility is the utility level such that the addition of an individual with
that utility level does not change the goodness of a stream of utility vectors. Weak
existence of critical levels asserts that a critical level of utility exists for at least one
stream of utility vectors at at least one generation.

Weak Existence of Critical Levels (WECL): There exist t ∈ N, α ∈ R, and
u ∈ ΩN such that uI(u−(t−1), [ut, α],u+t).

The existence independence axiom formalizes an independence property with
respect to the existence of utility unconcerned individuals. It requires that the eval-
uation for streams of utility vectors be independent of any addition of individuals
at all generations as long as the streams have a common tail.
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Existence Independence (EI): For all u, v,w ∈ ΩN, if there exists T ∈ N such that
ut = vt for all t > T , then uRv⇔ ([ut,wt]

)
t∈N R

(
[vt,wt]

)
t∈N.

We state two lemmas that show the implications of the three axioms The first
one shows that finite anonymity together with existence independence imply that
any transposition of individuals across generations does not change the goodness
of streams of utility vectors.

Lemma 1. Suppose that an SWR R on ΩN satisfies finite anonymity and existence
independence. For all u, v ∈ ΩN with n(ut) = n(vt) for all t ∈ N, if there exist
t1, t2 ∈ N, i ∈ {1, . . . , n(ut1)}, and j ∈ {1, . . . , n(ut2)} such that ut1

i = vt2
j , ut2

j = vt1
i ,

and ut
k = vt

k for all (k, t) , (i, t1), ( j, t2), then uIv.

Proof. Let u, v ∈ ΩN with n(ut) = n(vt) for all t ∈ N, and suppose that there exist
t1, t2 ∈ N, i ∈ {1, . . . , n(ut1)}, and j ∈ {1, . . . , n(ut2)} such that ut1

i = vt2
j , ut2

j = vt1
i ,

and ut
k = vt

k for all (k, t) , (i, t1), ( j, t2). To show that uIv, we first consider v̄ ∈ ΩN

defined by
v̄t1 = ut2 , v̄t2 = ut1 , and v̄t = ut for all t , t1, t2.

By FA, uIv̄. Next, we define ũ, ṽ ∈ ΩN byũ
t1 = [ut1 , ut1

i ], ũt2 = [ut2 , ut2
j ], and ũt = [ut,ut] for all t , t1, t2;

ṽt1 = [ut2 , ut1
i ], ṽt2 = [ut1 , ut2

j ], and ṽt = [ut,ut] for all t , t1, t2.

By EI, uIv̄ implies ũIṽ. Now, define v̌ ∈ ΩN by

v̌t1 = [ut1 , ut2
j ], v̌t2 = [ut2 , ut1

i ], and v̌t = [ut,ut] for all t , t1, t2.

By FA, ṽIv̌. Since ũIṽ and R is transitive, it follows ũIv̌. Next, define v̂ ∈ ΩN by

v̂t1 = [vt1 , ut1
i ], v̂t2 = [vt2 , ut2

j ], and v̂t = [ut,ut] for all t , t1, t2.

Since R is intratemporally anonymous, we obtain v̌Iv̂. Further, since ũIv̌ and R is
transitive, we obtain ũIv̂. Thus, by EI, uIv follows. ■

The next lemma is a replication of the result presented by Blackorby, Bossert,
and Donaldson (2005, Theorem 6.9 (i)) in the framework of finite-horizon variable
population social choice. It shows that in the presence of finite anonymity and
existence independence, weak existence of critical levels implies that the existence
of a utility level which is a critical level for all streams and for all generations.
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Lemma 2. If an SWR R on ΩN satisfies finite anonymity, weak existence of critical
levels, and existence independence, then there exists α ∈ R such that

uI(u−(t−1), [ut, α],u+t) for all t ∈ N and for all u ∈ ΩN. (1)

Proof. By WECL, there exist t∗ ∈ N, α ∈ R, and v ∈ ΩN such that vI(v−(t∗−1), [vt∗ , α], v+t∗).
Let u ∈ ΩN. We show that uI(u−(t∗−1), [ut∗ , α],u+t∗). Let ṽ = (v−(t∗−1), [vt∗ , α], v+t∗)
and ũ = (u−(t∗−1), [ut∗ , α],u+t∗). By EI, vIṽ implies ([vt,ut])t∈NI([ṽt,ut])t∈N. Note
that [ṽt∗ ,ut∗] is a rearrangement of [vt∗ , ũt∗] since [ṽt∗ ,ut∗] = [vt∗ , α, ut∗]. Further,
for all t ∈ N\{t∗}, [vt,ut] = [ṽt,ut] = [vt, ũt]. Since R is transitive and intratempo-
rally anonymous, ([vt,ut])t∈NI([ṽt,ut])t∈N implies ([ut, vt])t∈NI([ũt, vt])t∈N. By EI,
we obtain uIũ = (u−(t∗−1), [ut∗ , α],u+t∗). Since R is transitive and it satisfies FA,
we can extend this result (established for t∗) to any t ∈ N. We omit the easy proof
of it for the sake of brevity. ■

To state the characterization of an SWR satisfying the three axioms, we need
some additional definitions. Given an ordering ≿ on Ω, we say that an SWR R on
ΩN is an extension of ≿ if for all T ∈ N and for all u, v ∈ ΩN with u+T = v+T ,

[u1, . . . , uT ] ≿ [v1, . . . , vT ]⇔ uRv, (2)

that is, if R is an extension of ≿, R ranks streams of utility vectors with a common
tail applying ≿ to vectors consisting of utilities of individuals in finite generations.
Next, we define the properties of an ordering ≿ on Ω corresponding to the finite
anonymity and existence independence axioms and the existence of critical levels
proved in Lemma 2. Throughout the paper, properties of an ordering ≿ on Ω are
labeled using an asterisk to distinguish them from axioms for an SWR.

Anonymity∗ (A∗): For all n ∈ N and all ut, vt ∈ Rn, if there exists a permutation µ
on {1, . . . , n} such that ut =

(
vt
µ(1), . . . , v

t
µ(n)

)
, then ut ∼ vt.

Existence of Constant Critical Levels∗ (ECCL∗): There exists α ∈ R such that
for all ut ∈ Ω, [ut, α] ∼ ut.

Existence Independence∗ (EI∗): For all ut, vt,wt ∈ Ω, ut ≿ vt ⇔ [ut,wt] ≿
[vt,wt].

We are ready to state the characterization of an SWR that satisfies finite anonymity,
weak existence of critical levels, and existence independence. The following theo-
rem shows that an SWR satisfying the three axioms is an extension of an ordering
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on Ω satisfying anonymity∗, existence of constant critical levels∗, and existence
independence∗.

Theorem 1. An SWR R on ΩN satisfies finite anonymity, weak existence of crit-
ical levels, and existence independence if and only if there exists an ordering ≿
on Ω satisfying anonymity∗, existence of constant critical levels∗, and existence
independence∗ such that R is an extension of ≿.

Proof. ‘If.’ To show that R satisfies FA, let u, v ∈ ΩN and suppose that there exist
t1, t2 ∈ N such that ut1 = vt2 , ut2 = vt1 , and ut = vt for all t ∈ N\{t1, t2}. Let
T = max{t1, t2}. Since R is an extension of ≿, it follows that

uRv⇔ [u1, . . . , uT ] ≿ [v1, . . . , vT ].

Since ≿ satisfies A∗, we have [u1, . . . , uT ] ∼ [v1, . . . , vT ]. Since R is an extension
of ≿, uIv follows.

Next, we show that R satisfies WECL. Since ≿ satisfies ECCL∗, there exists
α ∈ R such that u1 ∼ [u1, α] for all u1 ∈ Ω. Let v ∈ ΩN. Since R is an extension of
≿, we obtain (u1, v+1)I([u1, α], v+1). Thus, R satisfies WECL.

Finally, to show that R satisfies EI, let u, v,w ∈ ΩN and T ∈ N, and suppose
that ut = vt for all t > T . Since R is an extension of ≿, we obtain

uRv⇔ [u1, . . . , uT ] ≿ [v1, . . . , vT ]

and

([ut,wt])t∈NR([vt,wt])t∈N ⇔ [u1,w1, . . . , uT ,wT ] ≿ [v1,w1, . . . , uT ,wT ].

Since ≿ is transitive and it satisfies A∗ and EI∗, it follows that

[u1, . . . , uT ] ≿ [v1, . . . , vT ]⇔ [u1,w1, . . . , uT ,wT ] ≿ [v1,w1, . . . , uT ,wT ].

Thus, combining the above equivalence assertions, we obtain

uRv⇔ ([ut,wt])t∈NR([vt,wt])t∈N.

‘Only if.’ We first show the existence of an ordering ≿ on Ω such that R is an
extension of it. Given w ∈ ΩN, define ΩNw by ΩNw = {u ∈ ΩN : u+1 = w+1}. Since
there exists a bijection from ΩNw to Ω, we can define the binary relation ≿ on Ω as

10



follows: for all u, v ∈ ΩNw ,

u1 ≿ v1 ⇔ uRv. (3)

Since R is an SWR, ≿ is an ordering. We show that ≿ satisfies (2) if T = 1. To
show this, let z ∈ ΩN and u, v ∈ ΩNw . Then, we obtain, by (3) and EI, that

u1 ≿ v1 ⇔ uRv⇔ ([ut, zt])t∈NR([vt, zt])t∈N ⇔ (u−1, z+1)R(v−1, z+1).

Thus, ≿ satisfies (2) if T = 1.
Next, we show that ≿ satisfies (2) for T > 1. Let u, v ∈ ΩN and T ∈ N\{1} and

suppose u+T = v+T . Let ℓ(u) denote ℓ(u) =
∑T

t=1 n(ut) for all u ∈ ΩN. By Lemma
2, there exists α ∈ R that satisfies (1). Define ū, v̄ ∈ ΩN by ū+T = v̄+T = u+T ,

ūt = [ut, α1ℓ(u)−n(ut)] for all t ≤ T,

and
v̄1 = [v1, α1ℓ(v)−n(v1)] and v̄t = [vt, α1ℓ(u)−n(vt)] for all t = 2, . . . , T.

By (1) and the transitivity of R, uIū and vIv̄. Thus, by transitivity,

uRv⇔ ūRv̄. (4)

Next, define ũ, ṽ ∈ ΩN as follows: ũ+T = ṽ+T = u+T ,

ũ1 = [u1, . . . , uT ] and ṽ1 = [v1, . . . , vT ],

and
ũt = ṽt = α1ℓ(u) for all t = 2, . . . , T.

By Lemma 1 and the transitivity of R, we obtain ūIũ and v̄Iṽ. Thus, by transitivity,

ūRv̄⇔ ũRṽ. (5)

Further, by the definitions of ũ and ṽ, we obtain

ũRṽ⇔ [u1, . . . , uT ] ≿ [v1, . . . , vT ]. (6)

Combining (4), (5), and (6), we complete the proof that ≿ satisfies (2). Thus, R is
an extension of ≿.
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Finally, we show that ≿ satisfies A∗, ECCL∗, and EI∗. Since R is an extension
of ≿ and intratemporally anonymous, ≿ satisfies A∗. Further, since R satisfies EI,
≿ satisfies EI∗. From Lemma 2, there exists α ∈ R that satisfies (1). Since ≿ is
an extension of ≿, it follows that for all ut ∈ Ω, [ut, α] ∼ ut. Thus, ≿ satisfies
ECCL∗. ■

From Theorem 1, if we require an SWR to satisfy the three axioms in the
theorem statement, a permissible SWR must be an extension of an ordering ≿ onΩ
satisfying the three properties in the theorem statement. Examples of an ordering ≿
on Ω satisfying those properties are given by a critical-level generalized utilitarian
ordering in Blackorby and Donaldson (1984), a critical-level leximin ordering in
Blackorby, Bossert, and Donaldson (1996), and the lexicographic composition of
these orderings that applies a critical-level generalized utilitarian ordering first.

Given α ∈ R and a continuous and increasing function g : R → R, the critical-
level generalized utilitarian ordering associated with α and g is defined as the fol-
lowing ordering ≿U,α on Ω: for all n,m ∈ N, for all ut ∈ Rn, and for all vt ∈ Rm,

ut ≿U,α vt ⇔
n∑

i=1

(g(ut
i) − g(α)) ≥

m∑
i=1

(g(vt
i) − g(α)).

Given α ∈ R, the critical-level leximin ordering associated with α is defined
as the following ordering ≿L,α on Ω: for all n,m ∈ N, for all ut ∈ Rn, and for all
vt ∈ Rm,

ut ≻L,α vt ⇔

u
t ≻n

L [vt, α1n−m] if n ≥ m

[ut, α1m−n] ≻m
L vt if n < m,

ut ∼L,α vt ⇔

u
t ∼n

L [vt, α1n−m] if n ≥ m

[ut, α1m−n] ∼m
L vt if n < m,

where for all n ∈ N, ≿n
L denotes the leximin ordering on Rn; that is, for all ut, vt ∈

Rn, (i) ut ≻n
L vt if and only if there exists m ≤ n such that ut

[m] > vt
[m] and ut

[i] = vt
[i]

for all i < m; and (ii) ut ∼n
L vt if and only if ut

[i] = vt
[i] for all i = 1, . . . , n.

Given α ∈ R and a continuous and increasing function g : R → R, the lex-
icographic composition of ≿U,α and ≿L,α that applies ≿U,α first is defined as the
following ordering ≿UL,α on Ω: for all n,m ∈ N, for all ut ∈ Rn, and for all
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vt ∈ Rm,

ut ≿UL,α vt ⇔ (i) ut ≻U,α vt or (ii) ut ∼U,α vt and ut ≿L,α vt.

Note that each of these orderings constitutes a class of orderings with respect
to a parameter α and a function g considered. Any member of these three classes
of orderings on Ω satisfies the strong Pareto property as well.

Strong Pareto∗ (SP∗): For all n ∈ N and all ut, vt ∈ Rn, if ut ≥ vt and ut , vt, then
ut ≻ vt.

Depending on the choice of the value of α and a function g, the associated
three classes of orderings ≿U,α, ≿L,α, and ≿UL,α satisfies additional properties. If
≿U,α, ≿L,α, and ≿UL,α are associated with a positive α, these orderings satisfy the
following property, which is stronger than existence of constant critical levels∗.

Existence of Positive Constant Critical Levels∗ (EPCCL∗): There exists α ∈
R++ such that for all ut ∈ Ω, [ut, α] ∼ ut.

If a continuous and increasing function g : R → R is concave, the associated
≿U,α and ≿UL,α exhibits inequality aversion. To retain the scope of general analysis
in the following sections as large as possible, we consider the very weak inequality
aversion property considered in Blackorby, Bossert, and Donaldson (2005) and
Blackorby, Bossert, Donaldson, and Fleurbaey (1998).

Minimal Inequality Aversion∗ (MIA∗): For all n ∈ N and for all u1, v1 ∈ Ω, if
u1

i = (1/n)
∑n

j=1 v1
j for all i ∈ {1, . . . , n}, then u ≿ v.

Not only ≿U,α and ≿UL,α associated with a continuous, increasing, and concave
function g but ≿L,α satisfies minimal inequality aversion∗ regardless of the choice
of α.

The three classes of orderings presented above can be used to give a specific
representation of the generalized evaluation criteria that we will analyze in the
following sections.
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4 Axiomatizations of generalized evaluation criteria

4.1 Dominance-in-tails criterion

In this section, we present and axiomatize three generalized evaluation criteria for
streams of utility vectors, which we call dominance-in-tails criterion, generalized
overtaking criterion, and generalized catching-up criterion. Each of them is an
extension of an ordering on Ω and is given a specific representation according to
the choice of an ordering onΩ that is applied to the heads of streams, for example, a
critical-level generalized utilitarian ordering ≿U,α, a critical-level leximin ordering
≿L,α, and a lexicographic composition ≿UL,α of them.

To present the definition of the dominance-in-tails criterion, we define the
quasi-ordering on Ω called the Suppes-Sen grading principle due to Sen (1970)
and Suppes (1966). The Suppes-Sen grading principle ≿S is the quasi-ordering on
Ω defined as follows: for all ut, vt ∈ Ω,

ut ≿S vt ⇔ n(ut) = n(vt) and (ut
[1], . . . , u

t
[n(ut)]) ≥ (vt

[1], . . . , v
t
[n(ut)]).

It is easy to check that, for all ut, vt ∈ Ω, (i) ut ≻S vt if and only if n(ut) = n(vt) and
(ut

[1], . . . , u
t
[n(ut)]) > (vt

[1], . . . , v
t
[n(ut)]), and (ii) ut ∼S vt if and only if n(ut) = n(vt)

and (ut
[1], . . . , u

t
[n(ut)]) = (vt

[1], . . . , v
t
[n(ut)]).

The dominance-in-tails criterion associated with an ordering ≿ on Ω ranks
streams of utility vectors applying ≿ to the heads of streams and ≿S to each gener-
ation in the tails of streams. Formally, given an ordering ≿ on Ω, the dominance-
in-tails criterion associated with ≿ is defined as the following binary relation RD

on ΩN: for all u, v ∈ ΩN,

uRDv⇔ there exists T ∈ N such that ut ≿S vt for all t > T and

[u1, . . . , uT ] ≿ [v1, . . . , vT ].
(7)

The dominance-in-tails criterion ≿D associated with a critical-level generalized
utilitarian ordering ≿U,α is called critical-level generalized utilitarian SWR in Kam-
aga (2016). While RD associated with ≿U,α is an SWR, there is no guarantee that RD

associated with an arbitrary ordering ≿ on Ω is an SWR. Meanwhile, the following
lemma shows that RD is well defined as an SWR if it is associated with an ordering
≿ onΩ satisfying strong Pareto∗, anonymity∗, and existence independence∗. It also
provides the characterization of the asymmetric and symmetric parts of RD. The
proof is relegated to Appendix.
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Lemma 3. Let ≿ be an ordering on Ω satisfying strong Pareto∗, anonymity∗, and
existence independence∗. Then, RD associated with ≿ is an SWR on ΩN and for all
u, v ∈ ΩN,

uPDv⇔ there exists T ∈ N such that ut ≿S vt for all t > T and

[u1, . . . , uT ] ≻ [v1, . . . , vT ],
(8a)

uIDv⇔ there exists T ∈ N such that ut ∼S vt for all t > T and

[u1, . . . , uT ] ∼ [v1, . . . , vT ].
(8b)

To present an axiomatization of the dominance-in-tails criterion RD, we use
the strong Pareto axiom, which requires an SWR must to be positively sensitive to
individuals’ utilities.

Strong Pareto (SP): For all u, v ∈ ΩN such that n(ut) = n(vt) for all t ∈ N, if
ut ≥ vt for all t ∈ N and there exists t′ ∈ N such that ut′ > vt′ , then uPv.

The following theorem shows that adding strong Pareto to the axioms in The-
orem 1, the dominance-in-tails criterion RD associated with an ordering ≿ on Ω
satisfying strong Pareto∗, anonymity∗, existence of constant critical levels∗, and
existence independence∗ is characterized in terms of subrelation. That is, the class
of SWRs satisfying the axioms coincides with the class of SWRs that include RD

associated with ≿ satisfying the four properties as a subrelation.

Theorem 2. An SWR R on ΩN satisfies strong Pareto, finite anonymity, weak ex-
istence of critical levels, and existence independence if and only if there exists
an ordering ≿ on Ω satisfying strong Pareto∗, anonymity∗, existence of constant
critical levels∗, and existence independence∗ such that RD associated with ≿ is a
subrelation of R.

Proof. ‘If.’ First, we show that RD is an extension of ≿. Let T ∈ N and u, v ∈ ΩN

with u+T = v+T . By (7), [u1, . . . , uT ] ≿ [v1, . . . , vT ] implies uRDv, which in turn
implies uRv since RD ⊆ R. Next, assume uRv. We show [u1, . . . , uT ] ≿ [v1, . . . , vT ]
by contradiction. Suppose ¬[u1, . . . , uT ] ≿ [v1, . . . , vT ]. Since ≿ is complete, we
obtain [v1, . . . , vT ] ≻ [u1, . . . , uT ]. By (8a), vPDu. Since PD ⊆ P, we obtain vPu.
This is a contradiction since uRv.

Next, we show that R satisfies the axioms in the theorem statement. Since R
is the extension of ≿, it follows from Theorem 1 that R satisfies FA, WECL, and
EI. Since ≿ satisfies SP∗ and RD is a subrelation of R, it follows from (8a) that R
satisfies SP.
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‘Only if.’ From Theorem 1, there exists an ordering ≿ on Ω satisfying A∗,
ECCL∗, and EI∗ such that R is an extension of ≿. Since R satisfies SP, it follows
from (2) that ≿ satisfies SP∗. We show that RD associated with ≿ is a subrelation
of R. To show that PD ⊆ P, let u, v ∈ ΩN and suppose uPDv. By (8a), there
exists T ∈ N such that ut ≿S vt for all t > T and [u1, . . . , uT ] ≻ [v1, . . . , vT ].
Let w = (u−T , v+T ). Since R is an SWR and satisfies SP, uRw. Since R is an
extension of ≿, we obtain wPv. By transitivity, uPv. Next, to show that ID ⊆ I,
let u, v ∈ ΩN and suppose uIDv. By (8b), there exists T ∈ N such that ut ∼S vt

for all t > T and [u1, . . . , uT ] ∼ [v1, . . . , vT ]. Let w = (u−T , v+T ). Since R is
intratemporally anonymous, uIw follows. Since R is an extension of ≿, we obtain
wIv. By transitivity, uIv. ■

To axiomatize the dominance-in-tails criterion associated with an ordering ≿ on
Ω that also satisfies minimal inequality aversion∗, we define a direct reformulation
of minimal inequality aversion∗ for an SWR as follows.

Minimal Inequality Aversion: There exists t ∈ N such that for all u, v ∈ ΩN

with ut′ = vt′ for all t′ , t, if n(ut) = n(vt) and ut
i = (1/n(ut))

∑n(ut)
j=1 vt

j for all
i ∈ {1, . . . , n(ut)}, then uRv.

In the following theorem, we state the consequence of adding minimal inequal-
ity aversion to the axioms in Theorem 2. The proof is analogous to Theorem 2.

Theorem 3. An SWR R on ΩN satisfies strong Pareto, finite anonymity, weak exis-
tence of critical levels, existence independence, and minimal inequality avresion if
and only if there exists an ordering ≿ on Ω satisfying strong Pareto∗, anonymity∗,
existence of constant critical levels∗, existence independence∗, and minimal in-
equality aversion∗ such that RD associated with ≿ is a subrelation of R.

From Theorems 2 and 3, the dominance-in-tails criterion associated with an
ordering ≿ satisfying the properties in the theorem statements is the least element
with respect to set inclusion in the class of all SWRs satisfying the axioms in the
theorem statements. By Arrow’s (1963) variant of Szpilrajn’s (1930) lemma, there
exists an ordering extension of RL in these class. However, it is non-constructible
object since the impossibility of explicit construction of a Paretian and finitely
anonymous ordering for infinite utility streams proved by Dubey (2011), Lauwers
(2010), and Zame (2007) carries over to the current framework.
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4.2 Generalized overtaking and catching-up criteria

We next present the generalized overtaking and catching-up criteria, which are
generalized reformulations of the overtaking and catching-up criteria in Atsumi
(1965) and von Weizsäcker (1965). These evaluation criteria can compare (not all
but some) streams of utility vectors even if the streams have different population
sizes in their tails. We will show that their axiomatic characterizations are obtained
by adding consistency axioms to the axioms in Theorem 1.

The generalized overtaking and generalized catching-up criteria associated with
an ordering ≿ on Ω rank streams of utility vectors by consecutively applying ≿ to
the heads of streams in slightly different ways. Given an ordering ≿ on Ω, the gen-
eralized overtaking criterion associated with ≿ is defined as the following binary
relation RO on Ω: for all u, v ∈ ΩN,

uPOv⇔ there exists T ∗ ∈ N such that, for all T ≥ T ∗

[u1, . . . , uT ] ≻ [v1, . . . , vT ],
(9a)

uIOv⇔ there exists T ∗ ∈ N such that, for all T ≥ T ∗

[u1, . . . , uT ] ∼ [v1, . . . , vT ].
(9b)

Analogously, given an ordering ≿ on Ω, we define the generalized catching-
up criterion associated with ≿ as the following binary relation RC on ΩN: for all
u, v ∈ ΩN,

uRCv⇔ there exists T ∗ ∈ N such that, for all T ≥ T ∗

[u1, . . . , uT ] ≿ [v1, . . . , vT ].
(10)

The generalized overtaking and generalized catching-up criteria associated with
a critical-level generalized utilitarian ordering ≿U,α are called critical-level general-
ized overtaking SWR and critical-level generalized catching-up SWR, respectively,
in Kamaga (2016).

The following lemma shows that the generalized overtaking and generalized
catching-up criteria associated with an ordering ≿ are well defined as an SWR on
ΩN if ≿ satisfies anonymity∗ and existence independence∗. It also characterizes the
asymmetric and symmetric parts of RC . We relegate the proof to Appendix.

Lemma 4. Let≿ be an ordering onΩ satisfying anonymity∗ and existence independence∗.

(i) RO is an SWR.
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(ii) RC is an SWR and for all u, v ∈ ΩN,

uPCv⇔ there exists T ∗ ∈ N such that, for all T ≥ T ∗

[u1, . . . , uT ] ≿ [v1, . . . , vT ]

and for all T ′ ∈ N, there exists T > T ′ such that

[u1, . . . , uT ] ≻ [v1, . . . , vT ];


(11a)

uICv⇔ there exists T ∗ ∈ N such that, for all T ≥ T ∗

[u1, . . . , uT ] ∼ [v1, . . . , vT ].
(11b)

From Lemmas 3 and 4, it follows that if an ordering ≿ on Ω satisfies strong
Pareto∗, anonymity∗, and existence independence∗, the dominance-in-tails criterion
RD associated with ≿ is a subrelation of the generalized overtaking criterion RO

associated with ≿, which in turn is a subrelation of the generalized catching-up
criterion RC associated with ≿.

To provide axiomatic characterizations of RO and RC , we consider the three
consistency axioms presented in Kamaga (2016). The first two axioms assert, in
weak and strong forms, that the strict preference relation of the evaluation must be
consistent with the evaluations obtained for streams with a common tail.

Weak Preference Consistency (WPC): For all u, v ∈ ΩN, if (u−t,w+t)P(v−t,w+t)
for all t ∈ N and all w ∈ ΩN, then uPv.

Strong Preference Consistency (SPC): For all u, v ∈ ΩN, if, for all w ∈ ΩN,
(u−t,w+t)R(v−t,w+t) for all t ∈ N and, for all t′ ∈ N, there exists t > t′ such that
(u−t,w+t)P(v−t,w+t), then uPv.

Note that strong preference consistency is stronger than weak preference consis-
tency since the former allows weak preference relations in its premise.

The indifference consistency axiom requires the consistency property of the
indifference relation analogously to weak preference consistency.

Indifference Consistency (IC): For all u, v ∈ ΩN, if (u−t,w+t)I(v−t,w+t) for all
t ∈ N and all w ∈ ΩN, then uIv.

The following theorem shows (i) that adding weak preference consistency and
indifference consistency to the axioms in Theorem 1, the generalized overtaking
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criterion RO associated with an ordering ≿ satisfying anonymity∗, existence of
constant critical levels∗, and existence independence∗ is characterized in terms of
subrelation and (ii) that if we strengthen weak preference consistency to strong
preference consistency, we obtain an axiomatization of the generalized overtaking
criterion RO associated with the ordering ≿.

Theorem 4. (i) An SWR R on ΩN satisfies finite anonymity, weak existence of
critical levels, existence independence, weak preference consistency, and in-
difference consistency if and only if there exists an ordering ≿ on Ω satisfying
anonymity∗, existence of constant critical levels∗, and existence independence∗

such that RO associated with ≿ is a subrelation of R.

(ii) An SWR R on ΩN satisfies finite anonymity, weak existence of critical levels,
existence independence, strong preference consistency, and indifference con-
sistency if and only if there exists an ordering ≿ on Ω satisfying anonymity∗,
existence of constant critical levels∗, and existence independence∗ such that
RC associated with ≿ is a subrelation of R.

Proof. (i) ‘If.’ First, we show that R is an extension of ≿. Let T ∈ N and u, v ∈ ΩN

with u+T = v+T . Suppose [u1, . . . , uT ] ≿ [v1, . . . , vT ], and we show that uRv. Since
≿ satisfies EI∗, we obtain that, for all T ′ ≥ T ,

[u1, . . . , uT ] ≿ [v1, . . . , vT ]⇔ [u1, . . . , uT ′] ≿ [v1, . . . , vT ′].

Thus, by (9a) and (9b), we have uROv. Since RO is a subrelation of R, uRv.
Next, assume uRv, and we show [u1, . . . , uT ] ≿ [v1, . . . , vT ]. Suppose, by way
of contradiction, ¬[u1, . . . , uT ] ≿ [v1, . . . , vT ]. Since ≿ is complete, we have
[v1, . . . , vT ] ≻ [u1, . . . , uT ]. Since ≿ satisfies EI∗, we obtain that, for all T ′ ≥ T ,
[v1, . . . , vT ′] ≻ [u1, . . . , uT ′]. By (9a), vPOu. Since RO is a subrelation of R, we
obtain vPu. This is a contradiction since uRv.

Since R is an extension of ≿. it follows from Theorem 1, R satisfies FA,
WECL, and EI. To show that R satisfies WPC, let u, v ∈ ΩN and suppose that
(u−t,w+t)P(v−t,w+t) for all t ∈ N and all w ∈ ΩN. Since R is an extension of ≿,
[u1, . . . , uT ] ≻ [u1, . . . , uT ] for all T ∈ N. By (9a), uPOv. Since RO is a subrelation
of R, we obtain uPv. By using (9b) instead of (9a), we can analogously show that
R satisfies IC, and we omit its proof.

‘Only if.’ From Theorem 1, there exists an ordering ≿ on Ω satisfying A∗,
ECCL∗, and EI∗ such that R is an extension of ≿. We show that RO associated with
≿ is a subrelation of R. To show that PO ⊆ P, let u, v ∈ ΩN and suppose uPOv. By
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(9a), there exists T ∗ ∈ N such that, for all T ≥ T ∗, [u1, . . . , uT ] ≻ [v1, . . . , vT ]. By
Lemma 2, there exists α ∈ R satisfying (1). Define ũ, ṽ ∈ ΩN byũ

1 = u1, ũt = [ut, α] for all t ∈ {2, . . . , T ∗}, and ũ+T ∗ = u+T ∗ ;

ṽ1 = v1, ṽt = [vt, α] for all t ∈ {2, . . . , T ∗}, and ṽ+T ∗ = v+T ∗ .

Since R is transitive, we obtain by (1) that ũIu and ṽIv. We next define ū, v̄ ∈ ΩN

by ū
1 = [u1, . . . , uT ∗], ūt = α for all t = 2, . . . , T ∗, and ū+T ∗ = u+T ∗ ;

v̄1 = [v1, . . . , vT ∗], v̄t = α for all t = 2, . . . , T ∗, and v̄+T ∗ = v+T ∗ .

Since ≿ satisfies A∗, [ũ1, . . . , ũT ∗] ∼ [ū1, . . . , ūT ∗] and [ṽ1, . . . , ṽT ∗] ∼ [v̄1, . . . , v̄T ∗].
Since R is an extension of ≿, we obtain ũIū and ṽIv̄. Since R is transitive, we obtain

uRv⇔ ūRv̄.

We show ūPv̄ to prove PO ⊆ P. Recall that [u1, . . . , uT ] ≻ [v1, . . . , vT ] for all
T ≥ T ∗. Thus, ū1 ≻ v̄1. Since ≿ satisfies EI∗, we obtain [ū1, . . . , ūT ] ≻ [v̄1, . . . , v̄T ]
for all T = 2, . . . , T ∗. Further, since ≿ satisfies A∗ and EI∗ and it is transitive, we
obtain [ū1, . . . , ūT ] ≻ [v̄1, . . . , v̄T ] for all T > T ∗. Since R is an extension of ≿, we
obtain (ū−T ,w+T )P(v̄−T ,w+T ) for all T ∈ N and all w ∈ ΩN. By WPC, ūPv̄. Using
(9b) and IC instead of (9a) and WPC, the proof that IO ⊆ I is analogous.

(ii) ‘If.’ Since RO associated with ≿ is a subrelation of RC associated with ≿, R
satisfies FA, WECL, EI, and IC. Applying the same argument as the proof of (i)
using (11a) instead of (9a), the proof that R satisfies SPC is analogous.

‘Only if.’ By the same argument as the proof of (i), we can analogously show
that RC associated with ≿ is a subrelation of R. Specifically, since IO = IC , it
suffices to show PC ⊆ P. This can be shown by using (11a) and SPC instead of
(9a) and WPC. ■

If we add strong Pareto and minimal inequality aversion in Theorem 4, ≿ must
satisfy strong Pareto∗ and minimal inequality aversion∗. We state this result as the
following theorem. The proof is analogous to Theorem 4.

Theorem 5. (i) An SWR R on ΩN satisfies strong Pareto, finite anonymity, weak
existence of critical levels, existence independence, minimal inequality aver-
sion, weak preference consistency, and indifference consistency if and only if
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there exists an ordering ≿ on Ω satisfying strong Pareto∗, anonymity∗, exis-
tence of constant critical levels∗, existence independence∗, and minimal in-
equality aversion∗ such that RO associated with ≿ is a subrelation of R.

(ii) An SWR R on ΩN satisfies strong Pareto, finite anonymity, weak existence of
critical levels, existence independence, minimal inequality aversion, strong
preference consistency, and indifference consistency if and only if there ex-
ists an ordering ≿ on Ω satisfying strong Pareto∗, anonymity∗, existence of
constant critical levels∗, existence independence∗, and minimal inequality
aversion∗ such that RC associated with ≿ is a subrelation of R.

5 Avoidance of the Repugnant Conclusion

In this section, we evaluate the generalized overtaking and generalized catching-up
criteria, RO and RC , using the axiom of avoidance of the repugnant conclusion in
Kamaga (2016). We will show that if we add the axiom of avoidance of the re-
pugnant conclusion to the axioms in Theorem 5, we obtain characterizations of RO

and RC associated with an ordering ≿ on Ω that also satisfies existence of positive
constant critical levels∗.

One of the most fundamental issues is how we can avoid the repugnant conclu-
sion that was pointed out by Parfit (1976, 1982, 1984) against the classical utilitar-
ianism. In the context of evaluating social states with finite and variable population
size, the repugnant conclusion is defined as the following ethically unacceptable
evaluation, namely, some social state where every member of the population has
a high positive utility level is declared to be worse than another social state with
a much larger population where each member has a utility level which is positive
but barely above zero. Applying Parfit’s argument generation by generation, Ka-
maga (2016) reformulated the repugnant conclusion in the current framework as
follows. An SWR R on ΩN is said to imply the repugnant conclusion if and only
if, for any stream of population sizes (nt)t∈N ∈ NN and for any stream of positive
utility levels of generations (ξt)t∈N, (εt)t∈N ∈ RN++ satisfying (ξt)t∈N ≫ (εt)t∈N, there
exists a stream of population sizes (mt)t∈N ∈ NN with (mt)t∈N ≫ (nt)t∈N such that
(εt1mt )t∈NP(ξt1nt )t∈N. The following axiom requires the repugnant conclusion to be
avoided.

Avoidance of the Repugnant Conclusion (ARC): There exist (nt)t∈N ∈ NN and
(ξt)t∈N, (εt)t∈N ∈ RN++ with (ξt)t∈N ≫ (εt)t∈N such that for all (mt)t∈N ∈ NN with
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(mt)t∈N ≫ (nt)t∈N, (ξt1nt )t∈NR(εt1mt )t∈N.

Note that this axiom implies the negation of the repugnant conclusion.
The following theorem shows that if we add avoidance of the repugnant con-

clusion to the axioms in Theorem 5, RO and RC associated with an ordering ≿ that
has a positive constant critical level are characterized.

Theorem 6. (i) An SWR R onΩN satisfies strong Pareto, finite anonymity, weak
existence of critical levels, existence independence, minimal inequality aver-
sion, weak preference consistency, indifference consistency, and avoidance
of the repugnant conclusion if and only if there exists an ordering ≿ on Ω
satisfying strong Pareto∗, anonymity∗, existence of positive constant critical
levels∗, existence independence∗, and minimal inequality aversion∗ such that
RO associated with ≿ is a subrelation of R.

(ii) An SWR R on ΩN satisfies strong Pareto, finite anonymity, weak existence of
critical levels, existence independence, minimal inequality aversion, strong
preference consistency, indifference consistency, and avoidance of the re-
pugnant conclusion if and only if there exists an ordering ≿ on Ω satisfying
strong Pareto∗, anonymity∗, existence of positive constant critical levels∗,
existence independence∗, and minimal inequality aversion∗ such that RC as-
sociated with ≿ is a subrelation of R.

Proof. (i) ‘If.’ Since EPCCL∗ implies ECCL∗, it follows from Theorem 5 (i) that
we only need to show that R satisfies ARC. Since ≿ satisfies EPCCL∗, there exists
α ∈ R++ such that for all ut ∈ Ω, [ut, α] ∼ ut. Let ξt = α and εt ∈ (0, α) for all
t ∈ N. Then, for any (mt)t∈N, (nt)t∈N ∈ NN with (mt)t∈N ≫ (nt)t∈N, we obtain that
for all t ∈ N,

[ξ11n1 , . . . , ξt1nt ] ∼ [ξ11m1 , . . . , ξt1mt ].

Since ≿ satisfies strong Pareto∗, it follows that for all t ∈ N,

[ξ11m1 , . . . , ξt1mt ] ≻ [ε11m1 , . . . , εt1mt ].

By the transitivity of ≿, we obtain that for all t ∈ N,

[ξ11n1 , . . . , ξt1nt ] ≻ [ε11m1 , . . . , εt1mt ].
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From (9a), it follows that

(ξt1nt )t∈NPO(εt1mt )t∈N.

Since RO is a subrelation of R, we obtain (ξt1nt )t∈NP(εt1mt )t∈N. Thus, R satisfies
ARC.

‘Only if.’ From Theorem 5 (i), there exists an ordering ≿ on Ω satisfying SP∗,
A∗, ECCL∗, EI∗, and MIA∗ such that RO associated with ≿ is a subrelation of
R. From ECCL∗, there exists α ∈ R such that for all ut ∈ Ω, [ut, α] ∼ ut. We
show that α > 0. By way of contradiction, suppose α ≤ 0. Let (nt)t∈N ∈ NN and
(ξt)t∈N, (εt)t∈N ∈ RN++ with (ξt)t∈N ≫ (εt)t∈N. Consider (mt)t∈N ∈ NN that satisfies
that for all t ∈ N, mt > nt and

mtεt > ntξt + (mt − nt)α.

Define u, ū ∈ ΩN by, for all t ∈ N, ut = [ξt1nt , α1mt−nt ] and ūt = δt1mt , where

δt =
ntξt + (mt − nt)α

mt
.

Then, we obtain that for all t ∈ N

[ξ11n1 , . . . , ξt1nt ] ∼ [u1, . . . , ut].

Since ≿ is transitive and satisfies EI∗ and MIA∗, it follows that for all t ∈ N,

[ū1, . . . , ūt] ≿ [u1, . . . , ut]

Since δt < εt for all t ∈ N and ≿ satisfies SP∗, we obtain that for all t ∈ N

[ε11m1 , . . . , εt1mt ] ≻ [ū1, . . . , ūt].

Thus, by the transitivity of ≿, we obtain that for all t ∈ N,

[ε11m1 , . . . , εt1mt ] ≻ [ξ11n1 , . . . , ξt1nt ].

From (9a), it follows that (εt1mt )t∈NPO
L (ξt1nt )t∈N, which implies

(εt1mt )t∈NP(ξt1nt )t∈N.
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This means that R implies the repugnant conclusion. However, this is a contradic-
tion since R satisfies ARC. Thus, α > 0 and ≿ satisfies EPCCL∗.

(ii) The proof of the if-part is straightforward from Theorems 5 (ii) and 6 (i).
Also, the proof of the only-if-part is straightforward from Theorem 6 (i) since, if
RC associated with ≿ is a subrelation of R, then RO associated with ≿ is also a
subrelation of R. ■

Now, we consider two more issues in population ethics: the weak repugnant
conclusion due to Broome (1992) and the mere addition principle in Parfit (1984).
We consider the infinite-horizon reformulations of the weak repugnant conclusion
and the mere addition principle in Kamaga (2016). We say that an SWR R on ΩN

implies the weak repugnant conclusion if and only if, for any (nt)t∈N ∈ NN and any
(ξt)t∈N, (ϵt)t∈N ∈ RN++ with (ξt)t∈N ≫ (ϵt)t∈N ≫ (α, α, . . .), there exists (mt)t∈N ∈ NN

with (mt)t∈N ≫ (nt)t∈N such that (ϵt1mt )t∈NP(ξt1nt )t∈N, where α ∈ R++ is a critical
level for all u ∈ ΩN at any t ∈ N. An SWR R on ΩN satisfies the mere addition
principle if and only if, for all u ∈ ΩN and all (ξt)t∈N ∈ RN++, ([ut, ξt])t∈NRu.

It is easy to check that RO
L associated with a positive critical level implies the

weak repugnant conclusion, Further, it can be checked that RO
L associated with a

positive critical level α violates the mere addition principle since, for any u ∈ ΩN

and any ξ ∈ (0, α), we obtain uP([ut, ξ])t∈N. This observation applies to any SWR
that includes RO

L associated with α > 0. Thus, we state the following remark.

Proposition 1. Every SWR in the classes characterized in Theorem 6 implies the
weak repugnant conclusion and violates the mere addition principle.

Proof. For any SWR R on ΩN, there exists an ordering ≿ on Ω satisfying SP∗,
A∗, EPCCL∗, EI∗, and MIA∗ such that RO associated with ≿ is a subrelation of
R. Since ≿ satisfies EPCCL∗, there exists α ∈ R++ such that for all ut ∈ Ω,
[ut, α] ∼ ut. Note that α is a critical level of utility for all u ∈ ΩN at any t ∈ N.
Applying the same argument as the proof of the only-if-part of Theorem 6, we can
show that R implies the weak repugnant conclusion and we do not explicitly state
it.

To show show that R violates the mere addition principle, define u ∈ ΩN by
ut = α for all t ∈ N and let ξ ∈ (0, α). Then, we obtain that for all t ∈ N,

[u1, . . . , ut] ∼ [α12, . . . , α12︸         ︷︷         ︸
t times

].

Define v, v̄ ∈ ΩN by, for all t ∈ N. vt = (α, ξ) and v̄t = ((α + ξ)/2, (α + ξ)/2). Since
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≿ satisfies SP∗ and MIA∗, it follows that for all t ∈ N,

[α12, . . . , α12︸         ︷︷         ︸
t times

] ≻ [v̄1, . . . , v̄t]

and
[v̄1, . . . , v̄t] ≿ [v1, . . . , vt].

Since ≿ is transitive, we obtain that for all t ∈ N,

[u1, . . . , ut] ≻ [v1, . . . , vt].

From (9a), it follows that uPOv. Since RO is a subrelation of R, we obtain uPv.
This means that ≿ violates the mere addition principle. ■

6 Application to the critical-level leximin principle

In this section, we apply the results of the generalized criteria in Sect. 4 and 5
to axiomatizing infinite-horizon extensions of the critical-level leximin principle,
each of which is a specific representation of the generalized criteria associated with
a critical-level leximin ordering ≿L,α on Ω.

We will call the dominance-in-tails criterion associated with a critical-level
leximin ordering on Ω critical-level leximin SWR and denote it by RD

L,α. Formally,
the critical-level leximin SWR associated with a given α is defined as follows: for
all u, v ∈ ΩN,

uRD
L,αv⇔ there exists T ∈ N such that ut ≿S vt for all t > T and

[u1, . . . , uT ] ≿L,α [v1, . . . , vT ].
(12)

For any α ∈ R, the restriction of the associated critical-level leximin SWR to RN

coincides with the leximin quasi-ordering for infinite utility streams introduced by
Bossert, Sprumont, and Suzumura (2007).

To axiomatize the critical-level leximin SWR, we introduce the equity axiom
called Hammond equity, which is a reformulation of the axiom introduced by Ham-
mond (1976) in the fixed population social choice.4 It formalizes the equity prop-
erty that an order-preserving change that diminishes the inequality of utilities be-
tween two conflicting individuals in some generation is socially preferable. Our

4See Blackorby, Bossert, and Donaldson (1996, 2002, 2005) for a version of the axiom formalized
in the finite-horizon framework of variable population social choice.
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version of the axiom requires that this property hold for at least one generation.

Hammond Equity (HE): There exists t ∈ N such that for all u, v ∈ ΩN with
ut′ = vt′ for all t′ , t, if n(ut) = n(vt) and there exist i, j ∈ {1, . . . , n(ut)} such that
vt

i < ut
i ≤ ut

j < vt
j and ut

k = vt
k for all k , i, j, then uRv.

Note that Hammond equity implies minimal inequality aversion.
In the following theorem, we present an axiomatization of a critical-level lex-

imin SWR by strengthening minimal inequality aversion to Hammond equity in
the set of axioms in Theorem 3.

Theorem 7. An SWR R on ΩN satisfies strong Pareto, finite anonymity, weak exis-
tence of critical levels, existence independence, and Hammond equity if and only
if there exists α ∈ R such that RD

L,α associated with α is a subrelation of R.

Proof. ‘If.’ From Theorem 3, it follows that R satisfies SP, FA, WECL, and EI. It
is easy to show that R satisfies HE and we do not explicitly state it.

‘Only if.’ From Theorem 3, there exists an ordering ≿ on Ω satisfying SP∗,
A∗, ECCL∗, and EI∗ such that RD associated with ≿ is a subrelation of R. Further,
since R satisfies HE and FA and it is transitive, ≿ satisfies the following property
corresponding to HE.

Hammond Equity∗ (HE∗): For all n ∈ N and all ut, vt ∈ Rn, if there exists i, j ∈
{1, . . . , n} such that vt

i < ut
i < ut

j < vt
j and ut

k = vt
k for all k , i, j, then ut ≿ vt.

From Theorem 6. 13 in Blackorby, Bossert, and Donaldson (2005), if an ordering
≿ on Ω satisfies SP∗, A∗, ECCL∗, EI∗, and HE∗, then there exists α ∈ R such that
≿=≿L,α. ■

The generalized overtaking and catching-up criteria associated with a critical-
level leximin ordering, which we will call critical-level leximin overtaking and
critical-level leximin catching-up SWRs respectively, consecutively applies a critical-
level leximin ordering associated with a given α ∈ R to the heads of streams of util-
ity vectors. Given α ∈ R, the critical-level leximin overtaking SWR RO

L,α associated
with α is defined as follows: for all u, v ∈ ΩN,

uPO
L,αv⇔ there exists T ∗ ∈ N such that, for all T ≥ T ∗

[u1, . . . , uT ] ≻L,α [v1, . . . , vT ],
(13a)

uIO
L,αv⇔ there exists T ∗ ∈ N such that, for all T ≥ T ∗

[u1, . . . , uT ] ∼L,α [v1, . . . , vT ].
(13b)
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For any α ∈ R, the restriction of the associated critical-level leximin overtaking
SWR to RN coincides with the leximin version of the overtaking criterion, called
W-leximin quasi-ordering, for infinite utility streams introduced by Asheim and
Tungodden (2004).

Given α ∈ R, the critical-level leximin catching-up SWR RC
L,α associated with

α is defined as follows: for all u, v ∈ ΩN,

uRC
L,αv⇔ there exists T ∗ ∈ N such that, for all T ≥ T ∗

[u1, . . . , uT ] ≿L,α [v1, . . . , vT ].
(14)

For any α ∈ R, the restriction of the associated critical-level leximin catching-up
SWR to RN coincides with the leximin version of the catching-up criterion, called
S-leximin quasi-ordering, for infinite utility streams in Asheim and Tungodden
(2004).

In the following theorem, we axiomatize a critical-level leximin overtaking
SWR and a critical-level leximin catching-up SWR strengthening minimal inequal-
ity aversion to Hammond equity in Theorem 5.

Theorem 8. (i) An SWR R on ΩN satisfies strong Pareto, finite anonymity, weak
existence of critical levels, existence independence, Hammond equity, weak
preference consistency, and indifference consistency if and only if there exists
α ∈ R such that RO

L,α associated with α is a subrelation of R.

(ii) An SWR R on ΩN satisfies strong Pareto, finite anonymity, weak existence of
critical levels, existence independence, Hammond equity, strong preference
consistency, and indifference consistency if and only if there exists α ∈ R
such that RC

L,α associated with α is a subrelation of R.

Proof of Theorem 8. We only prove (i). The proof of (ii) is analogous. ‘If.’ From
Theorem 5 that R satisfies SP, FA, WECL, EI, WPC, and IC. Since RD

L,α is a
subrelation of RO

L,α, it follows from Theorem 7, R also satisfies HE.
‘Only if.’ From Theorem 5 (i), there exists an ≿ ordering on Ω satisfying SP∗,

A∗, ECCL∗, and EI∗ such that RO associated with ≿ is a subrelation of R. From
Lemmas 3 and 4, RD associated with ≿ is a subrelation of RO associated with ≿.
From Theorem 7, there exists α ∈ R such that ≿=≿L,α. ■

Applying Theorem 6, if we add avoidance of the repugnant conclusion to the
axioms in Theorem 4, we obtain axiomatizations of critical-level leximin overtak-
ing and catching-up SWRs associated with a positive critical-level.
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Theorem 9. (i) An SWR R on ΩN satisfies strong Pareto, finite anonymity, weak
existence of critical levels, existence independence, Hammond equity, weak
preference consistency, indifference consistency, and avoidance of the repug-
nant conclusion if and only if there exists α ∈ R++ such that RO

L,α associated
with α is a subrelation of R.

(ii) An SWR R on ΩN satisfies strong Pareto, finite anonymity, weak existence of
critical levels, existence independence, Hammond equity, strong preference
consistency, indifference consistency, and avoidance of the repugnant con-
clusion if and only if there exists α ∈ R++ such that RC

L,α associated with α is
a subrelation of R.

Proof. We only prove (i). The proof of (ii) is analogous. ‘If.’ From Theorems 6
and 8, it follows that R satisfies all the axioms in the theorem statement.

‘Only if.’ From Theorem 8, there exists α ∈ R such that RO
L,α associated with α

is a subrelation of R. From Theorem 6, ≿L,α satisfies EPCCL∗. Thus, α > 0. ■

In what follows, we examine other population ethics properties of the critical-
level leximin overtaking and catching-up SWR associated with a positive critical
level α. To this end, we consider an infinite-horizon variant of the very sadistic
conclusion that was introduced by Arrhenius (2000, forthcoming) in the finite-
horizon context of population ethics. Let Ω++ = ∪n∈NRn

++ and Ω−− = ∪n∈NRn
−−.

Following Kamaga (2016), we say that an SWR R on ΩN implies the very sadistic
conclusion if and only if, for any stream of negative utility vectors u ∈ ΩN−−, there
exists a stream of positive utility vectors v ∈ ΩN++ such that uPv.

To examine whether RO
L,α and RC

L,α associated with α > 0 avoid the very sadistic
conclusion, we define the infinite-horizon extension of the axiom of priority for
lives worth living in Blackorby, Bossert, and Donaldson (2005) as follows.

Priority for Lives Worth Living (PLWL): For all u ∈ ΩN−− and all v ∈ ΩN++, vPu.

Note that priority for lives worth living implies the negation of the very sadistic
conclusion.

The following proposition shows that every SWR that includes RO
L associated

with α > 0 as a subrelation avoids the very sadistic conclusion.

Proposition 2. Suppose that an SWR R on ΩN includes RO
L,α associated with α ∈ R

as a subrelation. R satisfies priority for lives worth living if and only if α ≥ 0.
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Proof. ‘If.’ Let u ∈ ΩN−−, v ∈ ΩN++, and α ≥ 0. Then, for all T ∈ N, [v1, . . . , vT ] ≻L,α

[u1, . . . , uT ]. Since RO
L,α associated with α, we obtain by (9a), vPu.

‘Only if.’ To prove the contraposition, suppose RO
L,α associated with α < 0 is a

subrelation of R. Consider u ∈ ΩN−− and v ∈ ΩN++ such that for all t ∈ N, ut = (ε, ε)
with ε ∈ (α, 0) and vt = −α. Then, for all T ∈ N, [u1, . . . , uT ] ≻L,α [v1, . . . , vT ].
Since RO

L associated with α, we obtain by (9a), uPv. Thus, R violates PLWL. ■

From Proposition 2, the critical-level leximin overtaking and catching-up SWRs
associated with a non-negative critical level α are characterized by replacing avoid-
ance of the repugnant conclusion with priority for lives worth living in Theorem
9.

Combining Propositions 1 and 2 with Theorem 9, the critical-level leximin
overtaking and catching-up SWRs associated with a positive critical level α avoid
the repugnant conclusion and very sadistic conclusion and satisfy priority for lives
worth living, whereas they imply the weak repugnant conclusion and violate the
mere addition principle.

7 Conclusion

In this paper, we examined generalized infinite-horizon extensions of an ordering
of variable dimensional utility vectors. We have shown that the axioms of finite
anonymity, weak existence of critical levels, and existence independence jointly
imply that a social welfare relation for streams utility vectors must apply an order-
ing of variable dimensional utility vectors satisfying the corresponding properties
to utility profiles of finite generations as long as streams have a common tail. The
three generalized evaluation criteria we axiomatized have specific representations
employing, for example, a critical-level generalized utilitarian ordering, a critical-
level leximin ordering, and their lexicographic composition, as an ordering used to
evaluate utility profiles of finite generations. As we demonstrated using a critical-
level leximin ordering, the results of generalized criteria are useful useful stepping
stones to analyzing possible infinite-horizon extensions of an ordering of variable
dimensional utility vectors with the use of existing results in variable population
social choice.

Our results of the generalized criteria, however, have a limitation in exploring
infinite-horizon extensions of some well-established orderings of variable dimen-
sional utility vectors. Specifically, as we showed in Lemmas 3 and 4, the existence
independence property of an ordering of variable dimensional utility vectors is in-
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cluded in a sufficient condition for the ordering to be extended as an SWR in the
forms of the generalized criteria we presented. In the literature of variable popula-
tion social choice, there have been proposed many orderings that violate the exis-
tence independence property, e.g., average generalized utilitarianism in Blackorby,
Bossert, and Donaldson (1999, 2005), number-dampened (generalized) utilitarian-
ism in Blackorby, Bossert, and Donaldson (2005) and Ng (1986), rank-discounted
critical-level generalized utilitarianism in Asheim and Zuber (2014), and a version
of the critical-level leximin principle in Arrhenius (forthcoming). Our results sug-
gest that we may need to explore other forms of infinite-horizon extension of an
ordering of variable dimensional utility vectors to construct infinite-horizon refor-
mulations of those orderings. We should address this issue in future research.

Appendix

Proof of Lemma 3. To prove that RD is an SWR, we first show that RD is re-
flexive. Let u ∈ ΩN. Since ≿ and ≿S are reflexive, we obtain u1 ≿ u1 and
ut ≿S ut for all t > 1. By (7), uRDu. Next, to show that RD is transitive, let
u, v,w ∈ ΩN and suppose that uRDv and vRDw. By (7), there exists T ∈ N such that
[u1, . . . , uT ] ≿ [v1, . . . , vT ] and ut ≿S vt for all t > T , and there exists T ′ ∈ N such
that [v1, . . . , vT ′] ≿ [w1, . . . ,wT ′] and vt ≿S wt for all t > T ′. If T = T ′, since ≿ and
≿S are transitive, we obtain [u1, . . . , uT ] ≿ [w1, . . . ,wT ] and ut ≿S wt for all t > T .
Thus, by (7), uRDw. Now, consider the case that T , T ′. Without loss of general-
ity, we assume T > T ′. Since ≿ satisfies EI∗, [v1, . . . , vT ′] ≿ [w1, . . . ,wT ′] implies
[v1, . . . , vT ′ ,wT ′+1, . . . ,wT ] ≿ [w1, . . . ,wT ]. Since ≿ satisfies SP∗ and A∗ and it
is transitive, we obtain [v1, . . . , vT ] ≿ [v1, . . . , vT ′ ,wT ′+1, . . . ,wT ]. By transitivity
of ≿, [v1, . . . , vT ] ≿ [w1, . . . ,wT ]. Further, since ≿S is transitive, ut ≿S wt for all
t > T . Thus, by (7), uRDw. Next, to show that RD is finitely complete, let u, v ∈ ΩN

and suppose that there exists T ∈ N such that u+T = v+T . Since ≿ is complete, we
obtain [u1, . . . , uT ] ≿ [v1, . . . , vT ] or [v1, . . . , vT ] ≿ [u1, . . . , uT ]. Since ut ∼S vt

for all t > T , we obtain, by (7), uRDv or vRDu. Finally, to show that RD is in-
tratemporally anonymous, let u, v ∈ ΩN and suppose that, for all t ∈ N, there exists
a bijection πt : {1, . . . , n(ut)} → {1, . . . , n(vt)} such that ut =

(
vt
πt(1), . . . , v

t
πt(n(ut))

)
.

Since ≿ satisfies A∗ and it is transitive, we obtain u1 ∼ v1. Further, we obtain
ut ∼S vt for all t > 1. Thus, by (7), uIDv.

We next prove (8a) and (8b). First, we prove the if-part of (8a). Let u, v ∈
ΩN and suppose that there exists T ∈ N such that ut ≿S vt for all t > T and
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[u1, . . . , uT ] ≻ [v1, . . . , vT ]. By (7), uRDv. We show ¬vRDu by contradiction. Sup-
pose vRDu. By (7), there exists T ′ ∈ N such that vt ≿S ut for all t > T ′ and
[v1, . . . , vT ′] ≿ [u1, . . . , uT ′]. Since we obtain a contradiction to [u1, . . . , uT ] ≻
[v1, . . . , vT ] if T = T ′, we consider the case that T , T ′. Without loss of gen-
erality, we assume T > T ′. Since ≿ satisfies EI∗, [v1, . . . , vT ′] ≿ [u1, . . . , uT ′]
implies [v1, . . . , vT ′ ,uT ′+1, . . . , uT ] ≿ [u1, . . . , uT ]. Since ≿ satisfies SP∗ and A∗

and it is transitive, we obtain [v1, . . . , vT ] ≿ [v1, . . . , vT ′ ,uT ′+1, . . . , uT ]. Thus, by
transitivity, [v1, . . . , vT ] ≿ [u1, . . . , uT ]. This is a contradiction to [u1, . . . , uT ] ≻
[v1, . . . , vT ]. Thus, ¬vRDu.

Next, we prove the only-if-part of (8a). Let u, v ∈ ΩN and suppose uPDv.
By (7), there exists T ∈ N such that ut ≿S vt for all t > T and [u1, . . . , uT ] ≿
[v1, . . . , vT ]. We distinguish two cases: (a) ut ∼S vt for all t > T and (b) uT ∗ ≻S vT ∗

for some T ∗ > T . First, consider case (a). We show ¬[v1, . . . , vT ] ≿ [u1, . . . , uT ] by
contradiction. Suppose [v1, . . . , vT ] ≿ [u1, . . . , uT ]. By (7), vRDu. This is a contra-
diction to uPDv. Thus, [u1, . . . , uT ] ≻ [v1, . . . , vT ]. Next, consider case (b). Since
≿ satisfies EI∗, [u1, . . . , uT ] ≿ [v1, . . . , vT ] implies [u1, . . . , uT , vT+1, . . . , vT ∗] ≿
[v1, . . . , vT ∗]. Since≿ satisfies SP∗ and A∗ and it is transitive, we obtain [u1, . . . , uT ∗] ≻
[u1, . . . , uT , vT+1, . . . , vT ∗]. By transitivity, [u1, . . . , uT ∗] ≻ [v1, . . . , vT ∗].

To prove the if-part of (8b), let u, v ∈ ΩN and suppose that there exists T ∈ N
such that ut ∼S vt for all t > T and [u1, . . . , uT ] ∼ [v1, . . . , vT ]. By (7), uRDv and
vRDu, or equivalently, uIDv. Next, to prove the only-if-part of (8b), let u, v ∈ ΩN

and suppose uIDv. By (7), there exists T ∈ N such that ut ≿S vt for all t > T and
[u1, . . . , uT ] ≿ [v1, . . . , vT ], and there exists T ′ ∈ N such that vt ≿S ut for all t > T ′

and [v1, . . . , vT ′] ≿ [u1, . . . , uT ′]. Without loss of generality, we assume T ≥ T ′.
Then, we obtain ut ∼S vt for all t > T . If ¬[v1, . . . , vT ] ≿ [u1, . . . , uT ], then by (8a),
we obtain uPDv, a contradiction to uIDv. Thus, [u1, . . . , uT ] ∼ [v1, . . . , vT ]. ■

Proof of Lemma 4. (i) First, we prove that RO is well defined as a binary relation
onΩN. To this end, we show that PO∩ IO , ∅ and that PO and IO are, respectively,
asymmetric and symmetric. We show PO∩IO , ∅ by contradiction. Suppose uPOv
and uIOv. By (9a) and (9b), there exists T ∈ N such that [u1, . . . , uT ] ≻ [v1, . . . , vT ]
and [u1, . . . , uT ] ∼ [v1, . . . , vT ]. This is a contradiction to that ≿ is a binary relation
on Ω. Next, to show that PO is asymmetric, suppose uPOv. By (9a), there is no
T ∗ ∈ N such that, for all T ≥ T ∗, [v1, . . . , vT ] ≻ [u1, . . . , uT ]. Thus, ¬vPOu. Now,
to show that IO is symmetric, suppose uIOv. By (9b), there exists T ∗ ∈ N such
that, for all T ≥ T ∗, [v1, . . . , vT ] ∼ [u1, . . . , uT ]. Thus, vIOu.

Next, we prove that RO is an SWR. First, to show that RO is reflexive, let
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u ∈ ΩN. Then, for all T ∈ N, [u1, . . . , uT ] ∼ [u1, . . . , uT ]. By (9a), uROu. Next,
to show that RO is transitive, let u, v,w ∈ ΩN and suppose that uROv and vROw.
By (9a) and (9b), there exist T ∗ ∈ N such that (a) [u1, . . . , uT ] ≻ [v1, . . . , vT ] for
all T ≥ T ∗ or [u1, . . . , uT ] ∼ [v1, . . . , vT ] for all T ≥ T ∗ and (b) [v1, . . . , vT ] ≻
[w1, . . . ,wT ] for all T ≥ T ∗ or [v1, . . . , vT ] ∼ [w1, . . . ,wT ] for all T ≥ T ∗. Since
≿ is transitive, we obtain that [u1, . . . , uT ] ≻ [w1, . . . ,wT ] for all T ≥ T ∗ or
[u1, . . . , uT ] ∼ [w1, . . . ,wT ] for all T ≥ T ∗. By (9a) and (9b), uROv. Now, to
show that RO is finitely complete, let T ∈ N and u, v ∈ ΩN with u+T = v+T . Since
≿ is complete, we obtain [u1, . . . , uT ] ≿ [v1, . . . , vT ] or [v1, . . . , vT ] ≿ [u1, . . . , uT ]
Since ≿ satisfies EI∗, we obtain that, for all T ′ > T

[u1, . . . , uT ] ≿ [v1, . . . , vT ]⇔ [u1, . . . , uT ′] ≿ [v1, . . . , vT ′]

and
[v1, . . . , vT ] ≿ [u1, . . . , uT ]⇔ [v1, . . . , vT ′] ≿ [u1, . . . , uT ′].

Thus, by (9a) and (9b), uROv or vROu. Finally, to show that RO is intratemporally
anonymous, let u, v ∈ ΩN and suppose that, for all t ∈ N, there exists a bijection
πt : {1, . . . , n(ut)} → {1, . . . , n(vt)} such that ut =

(
vt
πt(1), . . . , v

t
πt(n(ut))

)
. Since ≿

satisfies A∗ and it is transitive, we obtain [u1, . . . , uT ] ∼ [v1, . . . , vT ] for all T ∈ N.
By (9b), uIOv.

(ii) First, we prove that RC is an SWR. By (9a), (9b), and (10), RO ⊆ RC .
Thus, by Lemma 4 (i), RC is finitely complete. To show that RC is reflexive, let
u ∈ ΩN. Since ≿ is reflexive, we obtain that [u1, . . . , uT ] ≿ [u1, . . . , uT ] for all
T ∈ N. By (10), uRCv. Next, to show that RC is transitive, let u, v,w ∈ ΩN and
suppose that uRCv and vRCw. By (10), there exists T ∗ such that [u1, . . . , uT ] ≿
[v1, . . . , vT ] and [v1, . . . , vT ] ≿ [w1, . . . ,wT ] for all T ≥ T ∗. Since ≿ is transitive,
we obtain [u1, . . . , uT ] ≿ [w1, . . . ,wT ] for all T ≥ T ∗. By (10), uRCv. Finally,
to show that RC is intratemporally anonymous, let u, v ∈ ΩN and suppose that,
for all t ∈ N, there exists a bijection πt : {1, . . . , n(ut)} → {1, . . . , n(vt)} such
that ut =

(
vt
πt(1), . . . , v

t
πt(n(ut))

)
. Since ≿ satisfies A∗ and it is transitive, we obtain

[u1, . . . , uT ] ∼ [v1, . . . , vT ] for all T ∈ N. By (10), uICv.
Next, we prove (11a) and (11b). Let RA and RB be the binary relations on ΩN

defined by (11a) and (11b), respectively. We show that RA ∪ RB = RC and RA and
RB are asymmetric and symmetric. By (11a) and (11b), it is straightforward that
RA is asymmetric and RB is symmetric. To show that RA ∪ RB ⊆ RC , let u, v ∈ ΩN

and suppose (u, v) ∈ RA ∪ RB. By (11a) and (11b), there exists T ∗ ∈ N such that,
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for all T ≥ T ∗, [u1, . . . , uT ] ≿ [v1, . . . , vT ]. By (10), uRCv. Next, to show that
RC ⊆ RA ∪ RB, suppose uRCv. By (10), there exists T ∗ ∈ N such that, for all
T ≥ T ∗, [u1, . . . , uT ] ≿ [v1, . . . , vT ]. If there exists T ′ ≥ T ∗ such that, for all
T ≥ T ′, [u1, . . . , uT ] ∼ [v1, . . . , vT ], then we obtain uRBv by (11b). If there is no
T ′ ≥ T ∗ such that, for all T ≥ T ′, [u1, . . . , uT ] ∼ [v1, . . . , vT ], then, for all T ′ ≥ T ∗,
there exists T ≥ T ′ such that [u1, . . . , uT ] ≻ [v1, . . . , vT ], and we obtain uRAv by
(11a). Thus, (u, v) ∈ RA ∪ RB. ■
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