Evolution leads to Kantian morality

Ingela Alger (Toulouse School of Economics and IAST)
Jörgen Weibull (Stockholm School of Economics and IAST)

Oslo, 6 October 6, 2015
Introduction

- For decades economics was based on *homo oeconomicus*, a species motivated by material self-interest

- Focus on:
 - extrinsic incentives to work, to pay taxes, etc
 - the role of institutions in mitigating information problems
• Then came behavioral economics

• Focus on preferences:
 – altruism (Becker)
 – warm glow (Andreoni)
 – fairness, inequity aversion (Rabin, Fehr and Schmidt)
 – reciprocal altruism (Levine)
 – honesty (Alger and Ma)
 – esteem (Bénabou and Tirole, Ellingsen and Johannesson)
- Moral values sometimes included by economists:

 - Smith (1759) and Edgeworth (1881)
 - Arrow (1973), Laffont (1975), Sen (1977)
 - Brekke, Kverndokk and Nyborg (2003), Tabellini (2008), Bénabou and Tirole (2011)
• But how can differences between countries be explained?

• Could the Nordic model have arisen in, say, South America?
• Since institutions are built by people, preferences should matter

• How are preferences formed in the first place?

 – study evolutionary foundations of human motivation!

 – “behavioral ecology” approach
What preferences and/or moral values should we expect humans to have from first principles?

Evolutionary logic:

1. Human populations have evolved under scarcity of resources

2. Not all who are born survive and not all who survive reproduce

3. Darwinian logic: those alive today had ancestors who were successful at surviving and reproducing; we have inherited their traits
- The approach in today’s paper:
 - preferences \Rightarrow behaviors \Rightarrow material payoff consequences \Rightarrow evolutionary selection pressure on preferences
 - place minimal restrictions on the set of possible preferences
 - which preferences are evolutionarily stable?
• This sounds too general to give anything...

• But ... the math leads to a new class of social preferences cum moral values: those of *homo moralis*
The model

- A continuum population

- Individuals are randomly matched into n-player groups

- Strategy set: X

- Each individual has a preference type $\theta \in \Theta$, which defines a continuous function $u_\theta : X^n \rightarrow \mathbb{R}$

- Each individual’s type is his/her private information

- Material payoff from using strategy $x \in X$ against $x_{-i} \in X^{n-1}$: $\pi(x, x_{-i})$
• Each randomly matched group of n individuals play some (Bayesian Nash) equilibrium under incomplete information (as if individuals would know the type-distribution they meet, but not the types of the other individuals in their group)
Definition 1 A type $\theta \in \Theta$ is evolutionarily stable against type $\tau \in \Theta$ if, for all sufficiently small $\varepsilon > 0$, individuals of type θ on average earn a higher material payoff than individuals of type τ in all equilibria under incomplete information.

Definition 2 A type θ is evolutionarily stable if it is evolutionarily stable against every type $\tau \neq \theta$.

Definition 3 A type θ is evolutionarily unstable if there exists a type τ such that, irrespective of how small $\varepsilon > 0$ is, there exists an equilibrium in which individuals of type τ earn a higher material payoff than individuals of type θ.
Main result

For a given population state $s = (\theta, \tau, \varepsilon)$:

- Let $\Pr(\tau|\tau, \varepsilon)$ be probability that, for a given mutant, another group member, uniformly randomly sampled from the group, is also a mutant.

- Let $\sigma = \lim_{\varepsilon \to 0} \Pr(\tau|\tau, \varepsilon)$ and call this the index of assortativity.
Theorem 1 Assume conditionally independent random matching, with index of assortativity $\sigma \in [0, 1]$.

(i) Homo moralis with degree of morality $\kappa = \sigma$ is evolutionarily stable against all types τ that are not its behavioral alikes.

(ii) A type $\theta \in \Theta$ is evolutionarily unstable if its carrier does not behave like homo moralis with degree of morality $\kappa = \sigma$.

- So what is a homo moralis?
Homo moralis

• For any player i, any $\kappa \in [0, 1]$, and any strategy profile (x_i, x_{-i}), let $	ilde{x}_{-i}$ be a random vector with statistically independent components \tilde{x}_j (for all $j \neq i$) such that

$$\Pr[\tilde{x}_j = x_i] = \kappa \text{ and } \Pr[\tilde{x}_j = x_j] = 1 - \kappa$$
Definition 4 A homo moralis is an individual with utility function

\[u_\kappa (x_i, x_{-i}) = \mathbb{E}_\kappa [\pi (x_i, \tilde{x}_{-i})] \]

for some \(\kappa \in [0, 1] \), the individual’s degree of morality.
$n = 2$:

$$u_\kappa (x, y) = (1 - \kappa) \cdot \pi (x, y) + \kappa \cdot \pi (x, x)$$

$n = 3$:

$$u_\kappa (x, y, z) = (1 - \kappa)^2 \cdot \pi (x, y, z)$$

$$+ \kappa (1 - \kappa) \cdot [\pi (x, x, z) + \pi (x, y, x)]$$

$$+ \kappa^2 \cdot \pi (x, x, x)$$
Remarks:

• *Homo moralis* with degree of morality $\kappa = 0$ is purely self-interested, while *homo moralis* with degree of morality $\kappa = 1$ always “does the right thing” according to Kant’s *categorical imperative*: “Act only according to that maxim whereby you can, at the same time, will that it should become a universal law” [*Grundlegung zur Metaphysik der Sitten, 1785*]

• For intermediate degrees of morality, $0 < \kappa < 1$, *homo moralis* chooses a strategy that would maximize her expected material payoff if others were to choose that same strategy with probability κ.
Intuition for the theorem:

(i) HM with $\kappa = \sigma$ preempts mutants.

For instance, for $n = 2$: a resident population of HM with $\kappa = \sigma$ play some

$$x_\sigma \in \arg\max_{x \in X} (1 - \sigma) \cdot \pi(x, x_\sigma) + \sigma \cdot \pi(x, x),$$

while a vanishingly rare mutant type, who plays some $z \in X$, obtains expected material payoff

$$(1 - \sigma) \cdot \pi(z, x_\sigma) + \sigma \cdot \pi(z, z)$$

(ii) Any resident type θ that does not behave like HM with $\kappa = \sigma$ can be invaded by a mutant that is "committed" to a strategy that would maximize the mutant’s material payoff in the limit as the mutant population share $\varepsilon \to 0$
How does homo moralis behave? An example

A public goods game

$$\pi (x_i, x_{-i}) = \left[\sum_{i=1}^{n} x_i \right]^{1/2} - x_i^2$$

$$x^* = n^{1/3} \cdot \left[\frac{1 + \sigma (n - 1)}{4} \right]^{2/3}$$
$\sigma = 0.5$ (pink), $\sigma = 0.25$ (blue), $\sigma = 0.1$ (red), $\sigma = 0$ (black)
Discussion

- A new class of preferences, that springs out of stability under natural selection

- This preference class connects with moral philosophy

- Implications of *homo moralis* preferences for economics?
 - principal-agent relations
 - bargaining
 - participation and voting in elections
 - taxation
 - environmental economics
The Nordic model?

- Small degrees of morality can lead to high levels of contributions to public goods even in large groups

- Our theory predicts that high degrees of morality should be expected where assortativity is high
The Nordic model?

- The size of the welfare system

- Alger and Weibull (AER 2010) “Kinship, incentives and evolution”

- Main finding: natural selection leads to weaker family ties in harsher environments
• “The great achievement of ... the ethical and ascetic sects of Protestantism was to *shatter the fetters of the sib*. These religions established ... a common ethical way of life in opposition to the community of blood, even to a large extent in opposition to the family.” (*Max Weber: The Religion of China*)

• Evolution by way of natural selection may explain Weber’s observation about the “fetters of the sib” without recourse to Protestantism as a cause: perhaps “nature” selects family ties, and families select religions that fit their values
The Nordic model?

- Family structure

- Main finding: natural selection leads to preference for monogamy in harsher environments

- Implications for incentives for males to fight to accumulate resources...