i Instructions

ECON4310 - Macroeconomic Theory

This is some important information about the written exam in ECON4310. Please read this carefully before you start answering the exam.

Date of exam: Friday, November 23, 2018 **Time for exam:** 09.00 a.m. – 12.00 noon

The problem set: The problem set consists of 3 exercises (A-C) with several subquestions. They count as

indicated.

Sketches: You may use sketches on all questions. You are to use the sketching sheets handed to you. You can use more than one sketching sheet per question. See instructions for filling out sketching sheets on your desk. It is very important that you make sure to allocate time to fill in the headings (the code for each problem, candidate number, course code, date etc.) on the sheets that you will use to add to your answer. You will find the code for each problem under the problem text. You will NOT be given extra time to fill out the "general information" on the sketching sheets (task codes, candidate number etc.).

Access: You will not have access to your exam right after submission. The reason is that the sketches with equations and graphs must be scanned in to your exam. You will get access to your exam within 2-3 days.

Resources allowed: No written or printed resources - or calculator - is allowed (except if you have been granted use of a dictionary from the Faculty of Social Sciences).

Grading: The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

Grades are given: Friday 14 December 2018.

2

Short Questions (40 Points)

Answer each of the following short questions. You will only get points for correct answer with an explanation.

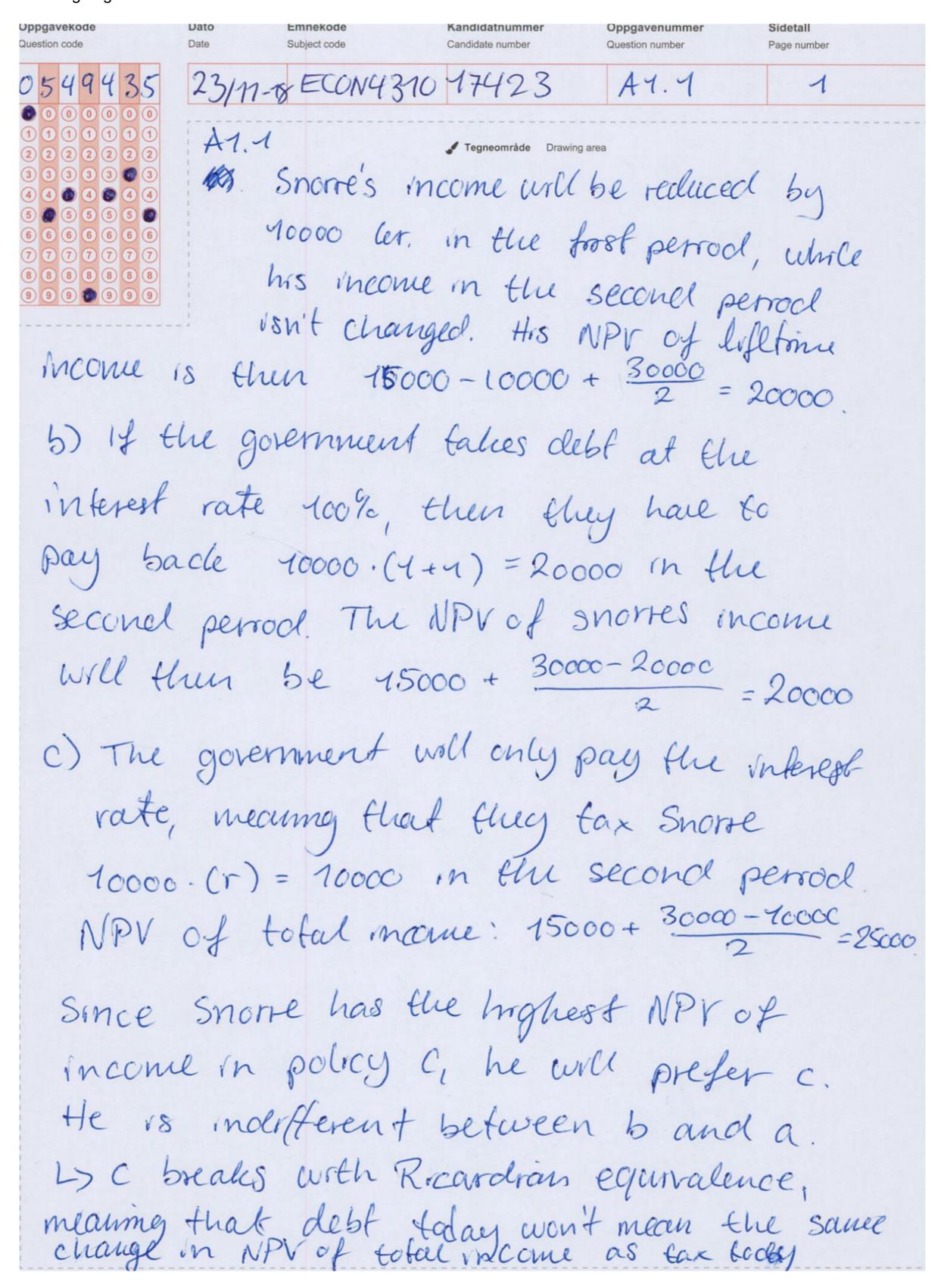
Exercise A.1: (20 Points) Ricardian Equivalence

You are advisor to the Swedish king in 1618, right at the onset of the 30-year war in Eu-rope between protestant forces, led by Sweden, and catholic forces, led by the German emperor. The cost, per capita, of the war for the next thirty years, is 10, 000 kroner. The king has come up with three policies to finance the war:

- a Finance the war with immediate taxes of 10, 000 kroner.
- b Issue government debt, and repay that debt, including interest, in the 30 year period after the war (1648-1678).
- c Issue government debt and simply pay the interest on that government debt forever, without ever redeeming the debt itself.

Assume that the interest rate for a 30 year period is r = 100% (so that 1 + r = 2).

Now consider Snorre Viking, a Swedish fisherman that lives from 1618 to 1678, that is, for 2 periods lasting 30 years each. By selling his fish he earns 15, 000 kroner in the first period of his life and 30, 000 kroner in the second period of his life (he gets better catching fish with experience). Snorre has utility function

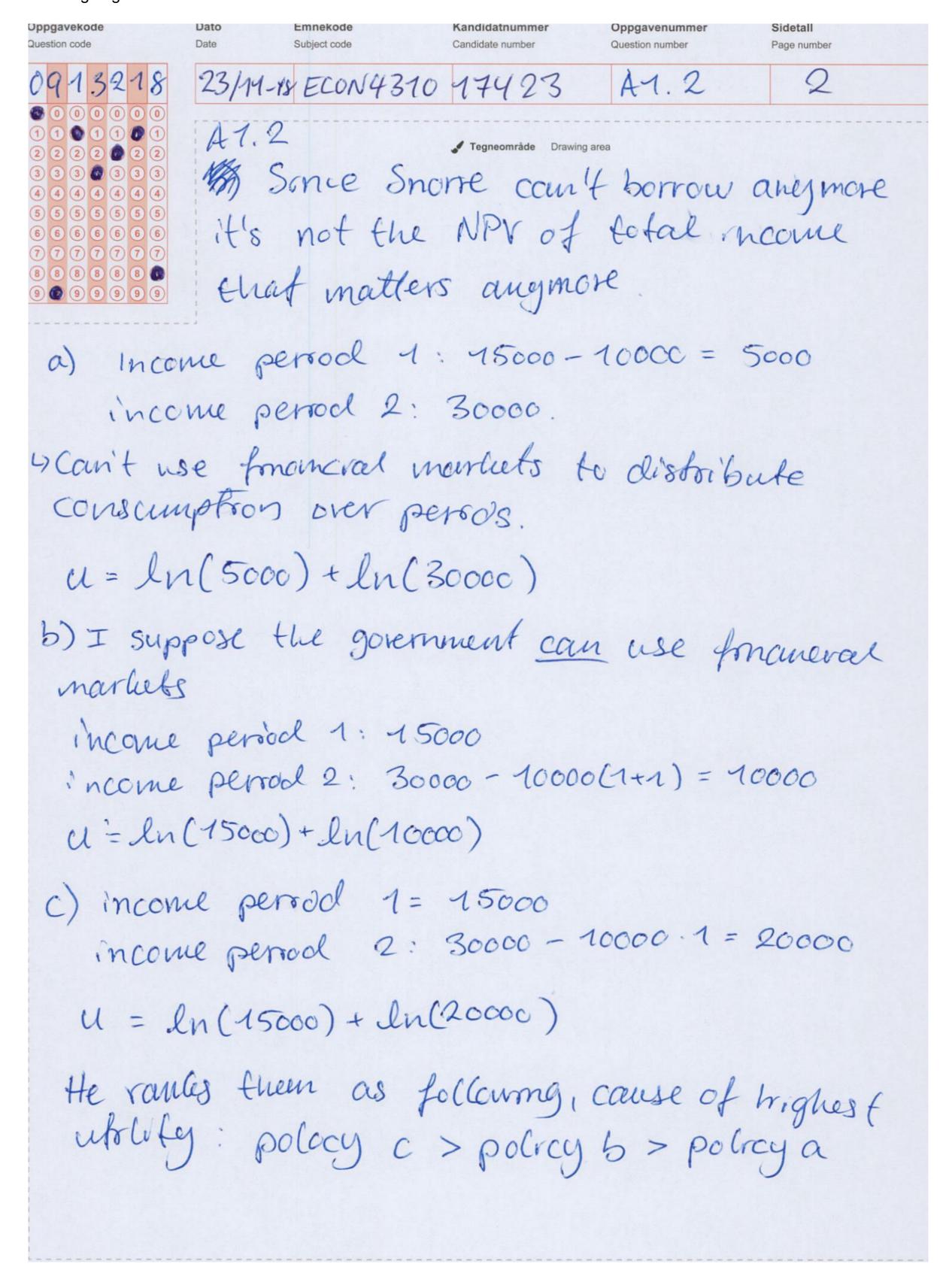

$$log(c_1) + log(c_2)$$

Exercise A1.1 1

A1.1 (6 points)

Assume that Shorre can borrow and lend freely in the financial market. How does Shorre rank policies

a., b. and c., that is, which one does he like best and which one is worst for him? Explain.		
Fill in your answer here and/or on sketching paper		
	Ubesvart.	
Knytte håndtegninger til denne oppgaven? Bruk følgende kode:	0549435	

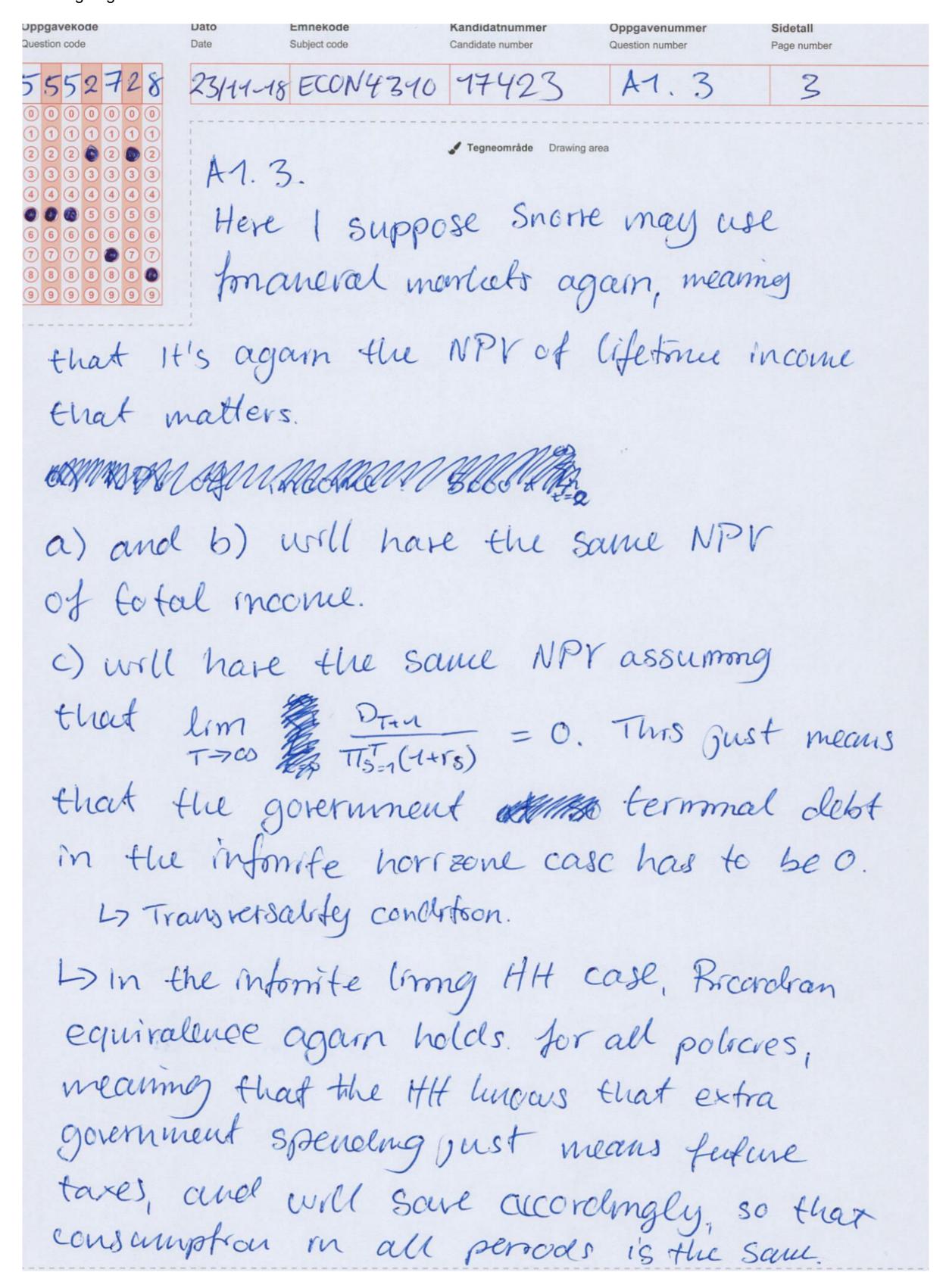


Exercise A1.2

Bruk følgende kode:

Now suppose that Snorre cannot borrow any longer. How does Snorre rank policies a., b. and c., that is, which one does he like best and which one is worst for him? Explain.

Fill in your answer here and/or on sketching paper		
Ubesvart.		
0913218		



3 Exercise A1.3

Finally, suppose that Snorre eats so much healthy fish that he lives forever and that he can borrow. All other things remain the same. How does Snorre rank policies a., b. and c., that is, which one does he like best and which one is worst for him? Explain.

Fill in your answer here and/or on sketching paper		
	Ubesvarl	

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

4 Exercise A.2

Consumption Response

Consider a simple two-period model of labor supply, as we have seen in lectures, where we assume that utility is separable in consumption and labor supply:

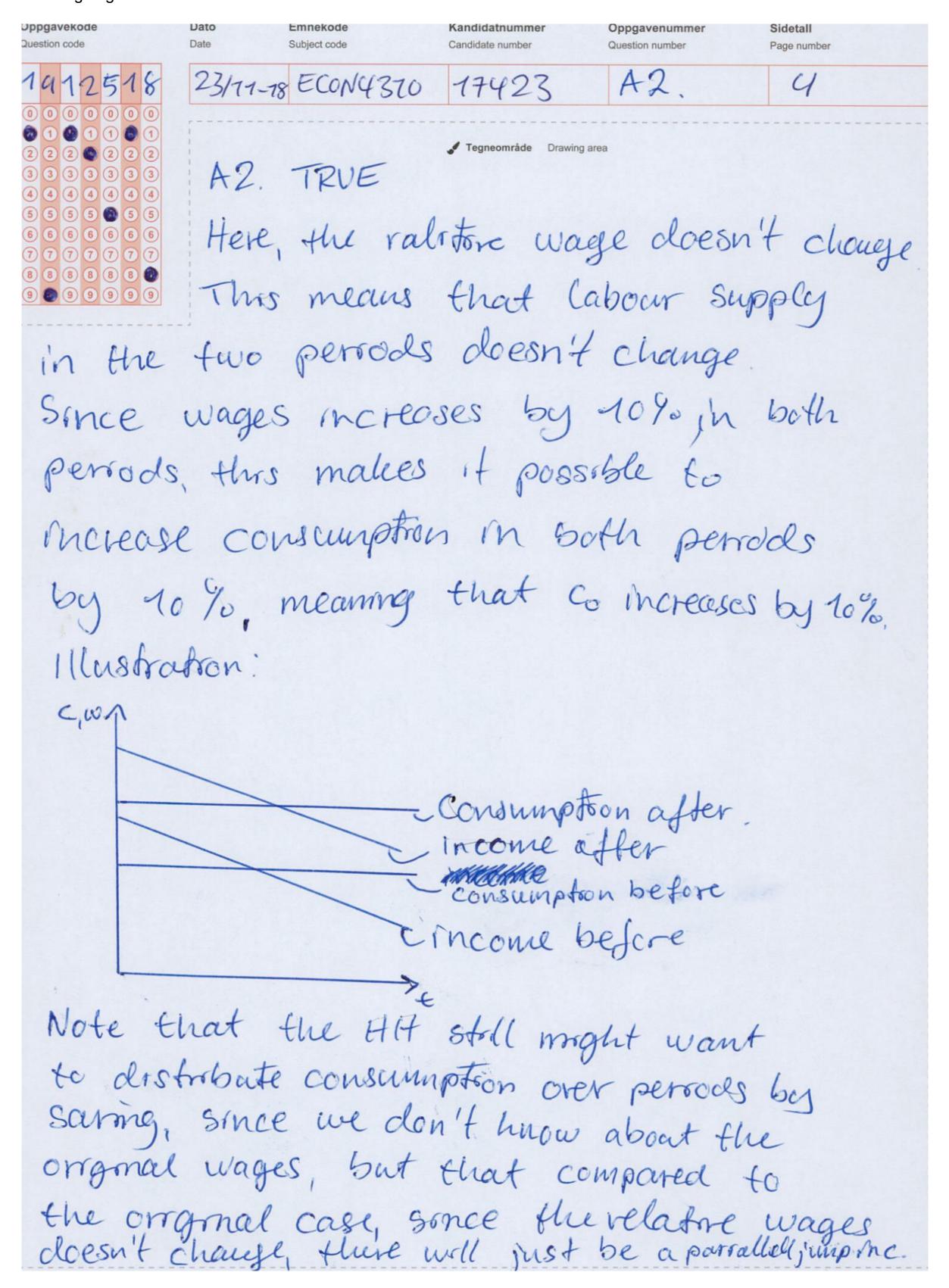
$$egin{aligned} \max_{\{c_0,c_1,h_0,h_1,a_1\}}&\log c_0-\phirac{h_0^{1+ heta}}{1}+eta[\log c_1-\phirac{h_1^{1+ heta}}{1+ heta}]\ s.\,t.\ &c_0+a_1=w_0h_0+(1+r_0)a_0\ &c_1=w_1h_1+(1+r_1)a_1 \end{aligned}$$

for given a_0 = 0. Assume r_0 , r_1 are exogenously given. We know the household has the following intertemporal labor supply condition:

$$eta rac{\phi h_1^ heta}{\phi h_0^ heta} = rac{w_1}{(1+r_1)w_0},$$

and the solution for h_0 is given by:

$$\phi h_0^{1+ heta} \left[1 + \left(rac{w_1}{(1+r_1)w_0}
ight)^{1+rac{1}{ heta}} eta^{-rac{1}{ heta}}
ight] = (1+eta).$$


Suppose there is a permanent change to wages at the beginning of time 0: both wages in the first and second period increase by 10%. Then this household will take advantage of this opportunity and consume more in c_0 by 10%.

True or false?

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

5 Exercise A.3

Consider households' optimal intertemporal consumption choice in a two-period model. Suppose there are two types of workers in the economy, type A with constant wages w_a over time and type B with constant wages w_B , with $w_B=(1+10\%)w_A$. Both of them begin with 0 initial assets. Households have preferences $U=\sum_{t=0}^1 \beta^t u(c_t)$ where $\beta\in(0,1)$ is the discount factor and the momentary utility function is

$$u(c_t)=rac{c_t^{1- heta}-1}{1- heta}, heta>1.$$

Also, assume the risk-free interest rate r is constant. Assume eta(1+r)<1.

Denote the optimal consumption for type-A household as $(c_0^A,c_1^A), and(c_0^B,c_1^B)$ for type-B household. The we know type-B workers will have relatively lower consumptions in the first period, i.e., $c_0^B < (1+10\%)c_0^A$.

True or false?

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

Oppgavekode Question code	Dato Emnekode Date Subject code	Kandidatnummer Candidate number	Oppgavenummer Question number	Sidetall Page number
7718611	23/11-18 ECON4340	17423	A3.	5
2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4	A3: FALSE	✓ Tegneområde Drawing area	a	
5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Sonce this i		,	
999999	1% they saw	benoon the	egt inco	me
does no	t change re	latine to	their in	come.
They a euler	eduation:	the sa	me consc	unp tron
	r) u'(cn) = u'(c	0)		
u'Cq	$(x) = C^{-\Theta}$			
=> B((4+r) = Co = C.	1, where	Co > C1	
=> 7	hey are both	n borrown	9-	
CRRS	u'(c)	·C0.0	0-4 C =-0 =	- <u>6</u> c - 6 - 6 - 1 - 1 - 1 - - 1 -
	= 0			
Mean	mmy that Co^{B}	= C1+10%	co ^A	

3

A Four Period Model

For the entire question, the interest rate is r = 0. First consider a household that lives for four periods. It has utility function

$$log(c_1) + log(c_2) + log(c_3) + log(c_4)$$

and income in the four periods of $y_1=10,000,y_2=10,000,y_3=50,000\ and\ y_4=10,000$

1 Exercise B.1

(5 Points)

Compute the optimal consumption choices (c_1,c_2,c_3,c_4)

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

Oppgavekode Question code	Date Emnekode Subject code	Kandidatnummer Candidate number	Oppgavenummer Question number	Sidetall Page number
811287 0000000 00000 186111 2222222 333333333 44444444 555555555 66666666 777777700	B.1. We cour that th	regneområde Drawing See foom fl ne HH coves The fecture	re cutolofy jost as	much
got In Consump of consump Total in	re interest - utilities, tron, is to umption i recome: 100	rate is 0 the best u to have eq n every per	and we say of directles	stockatorg
gres 2 persod.	Gren tha	qually over the consult one unit	mptsonin	eterey
$Costs$ $C_1 = 2$ $C_2 = 2$ $C_3 = 2$ $C_4 = 2$	-0000 -0000	This means borrow 100 1 and 2, 2000c(1+0 and then for perroc yrelds with (1000c)(1+	then pay of in person in person saves 100 l 4, which nterests;	back 23,

2 Exercise B.2

Suppose the household cannot borrow. Now what are the optimal consumption choices?

Now consider two members of the same dynasty that both live for two periods. Children have utility function

$$log(c_3) + log(c_4)$$

and parents have the utility function

$$log(c_1) + log(c_2) + V(b)$$

where b are the bequests left to the children and V(b) is the maximal utility children can obtain when given bequests b. Income of parents is $(y_1,y_2)=(10,000,10,000)$ and that of children is $(y_3,y_4)=(50,000,10,000)$.

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

Oppgavekode Question code	Date Emnekode Subject code	Kandidatnummer Candidate number	Oppgavenummer Question number	Sidetall Page number
3038219	23/11-18 ECON43	10 17423	B2.	7
	B2:	✓ Tegneområde Drawing a	rea	
3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5	Since the p	avents can'	t borrow,	
6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 8 8 8 8	Since the potential their budge	ts are cons	trained to	
999999	harmy a p	osofore net a	sarmg.	
As I so	fated in B1	, they woo	uld prefer	
to have	the same	consumptão	n in ever	
perrod,	meaning the	I the par	ehts woul	cl
tille to	borrow 100	oc in each	1 perrod c	and
beare n	egative beque	est to the	r chr(dre	2
But so	nce they are	not allow	ed to bo	rroui
only &	save, their b	udget wru	be the	
	as their inc			
	1 = 10000			
	2 = 10000.			
	wloten wow	ld now a	he to dis	lo bute
the re	emaining 6000	o on the	to perrod	. 2
Since	they are a	ellowed to	Wohlde ?	save,
they	well some	20000 in p	errod 3:	
	- ay = w3			= 30000
$C_{4} = i$	N9 + (1+r) ac	1 => CB = 1	0000 + (410)	20000
		C4 = "	30000.	

3 Exercise B.3

Solve the maximization problem of the children to obtain V(b), that is, solve

$$V(b) = \max_{c_3, c_4} \log(c_3) + \log(c_4) \ s.\ t. \ c_3 + c_4 = 60,000 + b$$

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

Oppgavekode Question code	Dato Emnekode Date Subject code	Kandidatnummer Candidate number	Oppgavenummer Question number	Sidetall Page number
8694055	23/19-18 ECON4310	17423	B3.	8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		✓ Tegneområde Drawing are	ea	
3 3 3 3 3 3 3 3 4 4 4 4 4 6 6 6 6 6 6 6	max In(c3)	+ In(C4)		
88888 999999	S.t. C3+C	4 = 60000	+6	
d: ln	(C3)+dn(C4)	+ 1 (6000	00 + b - C3	-C4)
FOC .	$\frac{1}{C_3} = \lambda$			Ø
FOC Cy:	$\frac{4}{Cq} = \lambda$.			2
FCC:	C3+C4 = 600	00 + 6.		3
From	9 and 2 =>	C3 = C4		9
	$(3) => 2C_3$			
(=> (= 30000 +	5 2		
=> C	4 = 30000 +	62		
Again:	consamption e same, and	in both	serveds st	rolid
equalli	e same, and y distorbated	between	them.	

4 Exercise B.4

Use your answer from the previous question to solve the parents' maximization problem. *Allow bequests to be negative.*

Fill in your answer here and/or on sketching paper	
	Ubesvart.
Knytte håndtegninger til denne oppgaven? Bruk følgende kode:	0947561

Oppgavekode Question code	Dato Emnekode Date Subject code	Kandidatnummer Candidate number	Oppgavenummer Question number	Sidetall Page number
0 9 4 7 5 6 4 0 0 0 0 0 0 0 1 1 1 1 1 1 0 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9	23/11-10 ECON431 Max In(Cy) S.t. 80000	✓ Tegneområde Drawing ard	-V(B)	9
L: ln(c))+ln(C2)+lr	n(c3)+ln	(C4)	
	(80000 - C1 -			
FOC : -	$\frac{1}{1} = \lambda$			9
FOC:	1 = \			2
FOC =	1 = 1			3
FOC Cy: E	$\frac{1}{c_u} = \lambda$		(0
FCC: 8	30000 = C1+C	z + C3 + C1	(5)
From 6 6 into	(6, 3), Q =: (5) yrelds:	> C1 = C2 =	C3 = C4 -	6
	00 = 4 C1			
	00 = C1 = C2	= C3 = C0	7.	

Oppgavekode Question code	Dato Emnekode Date Subject code	Kandidatnummer Candidate number	Oppgavenummer Question number	Sidetall Page number
0 9 4 7 5 6 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 9 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7	23/11-18 ECON 43-10 Solving for B33:	✓ Tegneområde Drawing are		10 sk
C3=	30000 + 5			
=> 20	000 = 30000 +	5		
(=) -1	$0000 = \frac{5}{2}$			
	0000 = 6.			
So, th	e parents lea	ves beh	nd 2000	0
in d	ebt for their	Children	n ûn opto	mum.
1045	is because th	e parent	25 cases	
ther	eir chrichens. Chrichen will therefore tale	Since t	hey knou	
	therefore take this on to			

5 Exercise B.5

Repeat question B.4, but now assume that bequests cannot be negative (that is, assume a constraint of the form $b \ge 0$). You don't have to do any calculations, but you have to explain your anwer.

Fill in your answer here and/or on sketching paper

Since the parents can't leave negative bequest, they will now be be constrained to having their consumption equal to their wage, since their wage is lower than the next generation. This means that we are back in the case of task B2, where c1 and c2 is equal to 10000 and c3 and c4 is equal to 30000.

To take this question to a realistic setting: The parents cares equally much about their childrens well being as their own, as long as their children is having less wage than them selves. At once the parents believes that the children will have less income than theirselves, they will leave on positive bequest. But as long as the parents believes that their children is having more wage than themselves, they will not take any of the money from their children.

Another way to look upon this, is that the children should not be "punished" by their parents because they have a better marginal productivity for their labour than their parents. Therefore the government imposes a rule that all generations needs to have positive terminal net savings.

Besvart.

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

3306884

6 Exercise B.6

(10 Points)

Bequests still cannot be negative. Now suppose the government increases taxes in period 2 by 5,000 and gives back 5,000 in subsidies in period 3. What is the optimal consumption allocation now. Again you don't have to do any calculations, but you have to explain your answer.

Fill in your answer here and/or on sketching paper

The parents will now have a NPV of life time income equal to 20000-5000=15000. Since they want to distribute the consumption equally over their lifetime, they will now use 7500 of their total income in period 1 amd 7500 in period 2. Since the parents are not allowed to leave negative bequest, they will not be able to borrow money and make the children pay. I here assume that the parents can have negative net saving(borrow) inside their generation, since the task only says that they can't have negative bequest for their children. If i have misunderstood here, the consumption in period 1 will be 10000 and consumption in period 2 will be 5000.

The children on the other hand will now have 50000+5000+10000=65000 in total lifetime income. Same in NPV, since there is no impatience and interest rate. This means that they also will distribute this equally over the lifetime, meaning that they will spend 32500 in period 3 and 32500 in period 4.

One logical explanation behind this tax, is that the government cares more about future generations than they do about the current one. Another one is that the government explains their tax with ricardian equivalence, so that the NPV of the infinitely living HH does not change, but forgot to think about the fact that generations dies. They should therefore have allowed for negative bequest equal to the taxation which is later given as a lump sum subsidy.

Besvart.

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

4

A real business cycle model

Consider a representative household of a closed economy. The household has a planning horizon of two periods and is endowed with the following preferences over consumption, c,

$$U=u(c_1)+\beta Eu(c_2(s_2)),$$

with the following marginal utility

$$u'(c)=c^{-\gamma}, \gamma\geq 1.$$

The variable $oldsymbol{s_2}$ denotes the state of the economy in the second period which follows the stochastic process

$$s_2 = \left\{ egin{aligned} s_G, ext{ with prob. } p \ s_B, ext{ with prob. } 1-p, \end{aligned}
ight.$$

and the household conditions the consumption, $c_2(s_2)$, in the second period on the state, s_2 . Assume the household's labor supply is exogenous and always equal to 1.

Labour market assumptions:

Assume that in each period and in each state of the economy, $oldsymbol{s_t}$, there is a linear (in labor

 n_t) production technology of the form

$$y_t(s_t) = A_t(s_t) n_t(s_t),$$

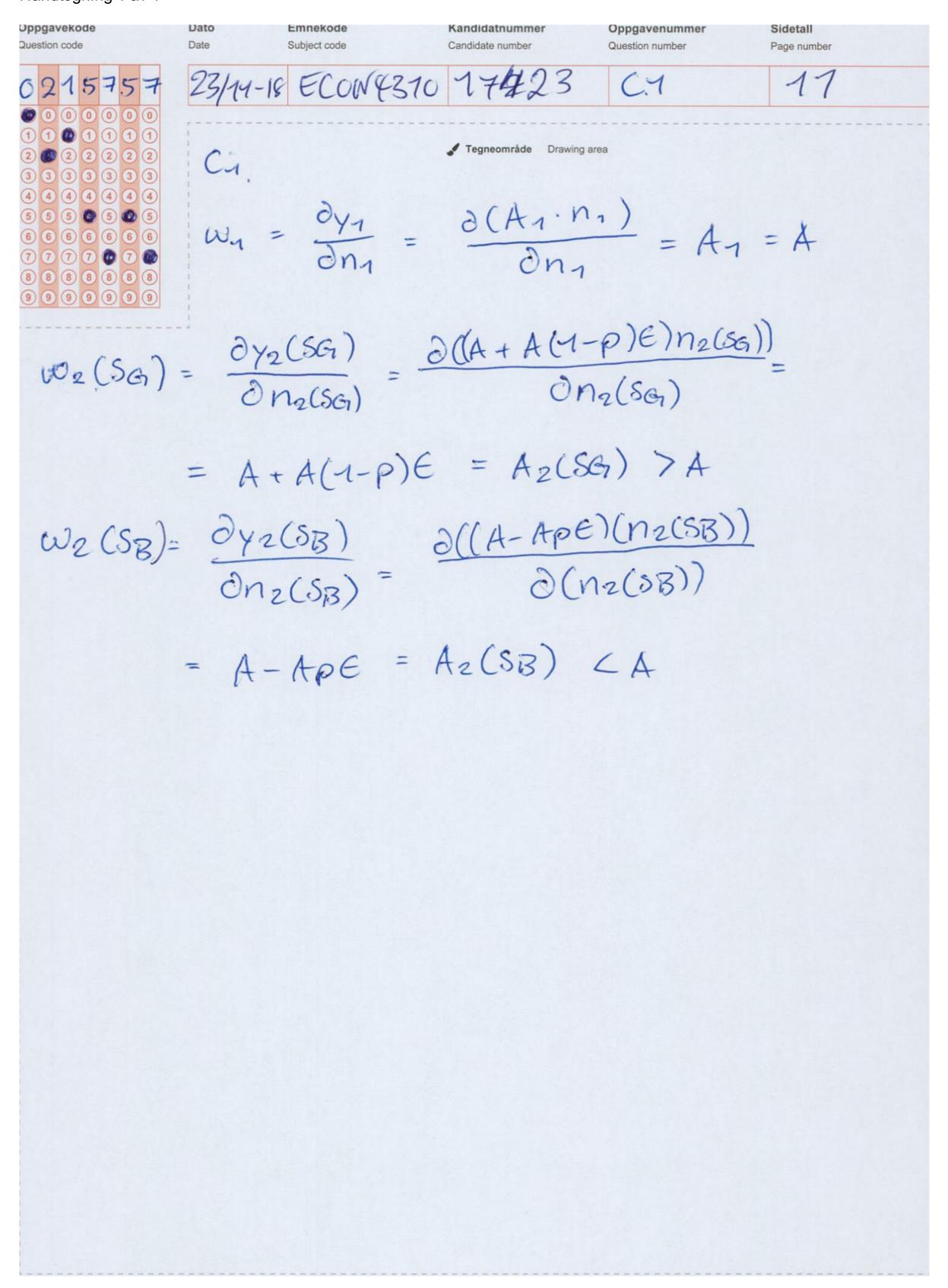
and the labor market is assumed to be perfect competitie. Assume tha labor productivity in the firs period is given by $A_1=A$, and the labor productivity is higher in the good state of the second period,

$$A_2(s_G) = A + A(1-p)\epsilon > A_2(s_B) = A - Ap\epsilon, \quad \epsilon > 0, A > 0, 0$$

than in the bad state of the second period. The wages are denoted as $w_1, w_2(s_G)$ and $w_2(s_B)$.

Asset market assumptions:

Assume the household does have access to a risk-free asset, a_2 , and the associated interest rate is denoted as r_2 .


1 Exercise C.1

(5 Points)

Find the equilibrium wages, $w_1, w_2(s_G)$, and $w_2(s_B)$, and show that the expected wages in the second period is the same as wage in in the first period.

Fill in your answer here and/or on sketching paper		
	Ubesvart.	

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

2 Exercise C.2

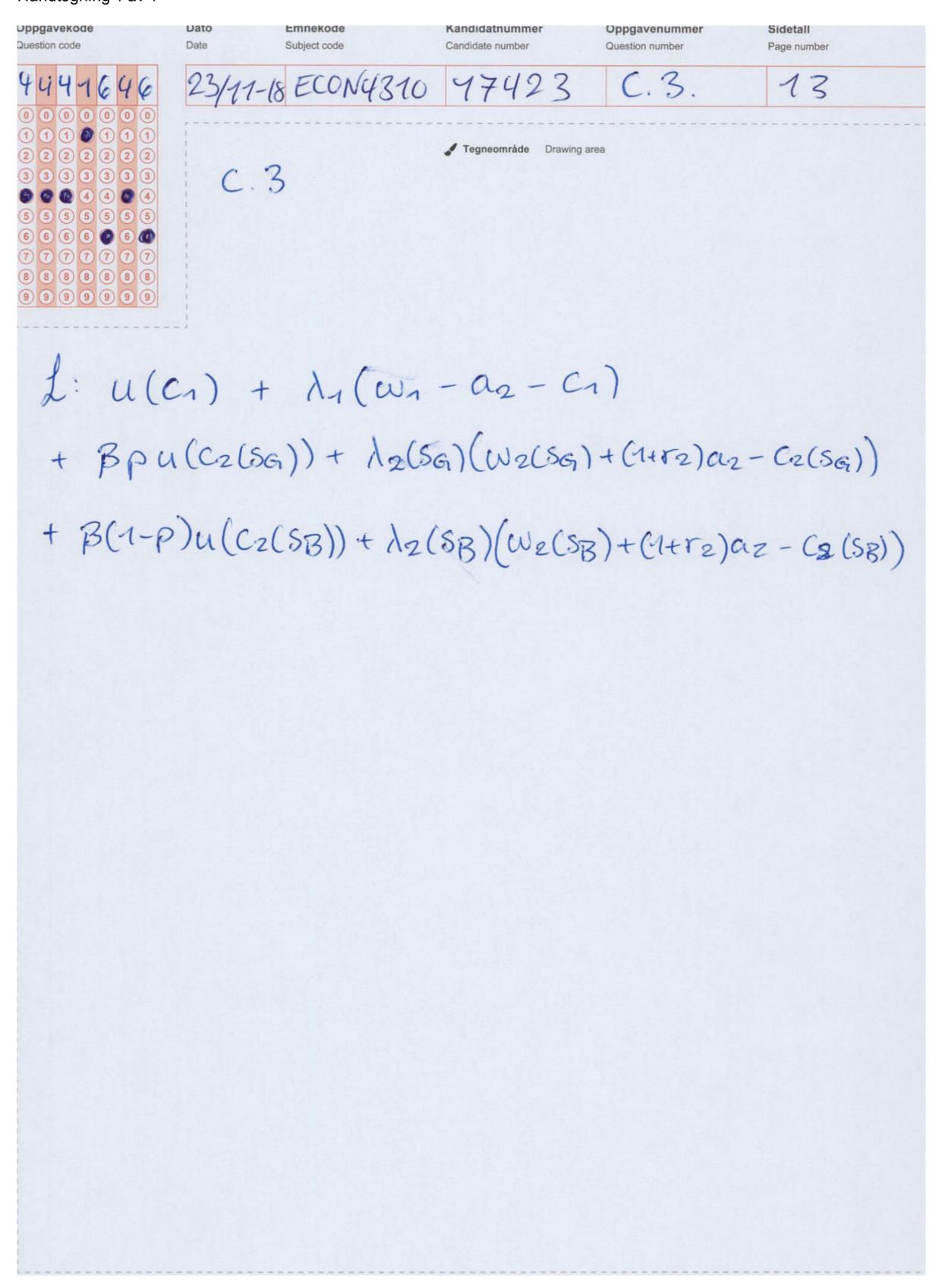
(5 Points)

Write down the state-by-state budget constraints for the household.

Fill in your answer here and/or on sketching paper	
	Ubesvart.
Knytte håndtegninger til denne oppgaven? Bruk følgende kode:	9837360

Oppgavekode Question code	Date Emnekode Kandidatnummer Oppgavenummer Sidetall Date Subject code Candidate number Question number Page number
9837360	23/44-18 ECON4310 17423 C.2 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	✓ Tegneområde Drawing area
3 3 0 3 0 3 3 4 4 4 4 4 4 4	C.2
5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7	
8 8 8 8 8 8 9 9 9 9 9 9 9 9 9	
C1 + a	$z = W_1$
Cr(SG)	= W2(SG)+(1+82)a2
C2(SB)	= W2(SB) + (1+12)a2

3 Exercise C.3

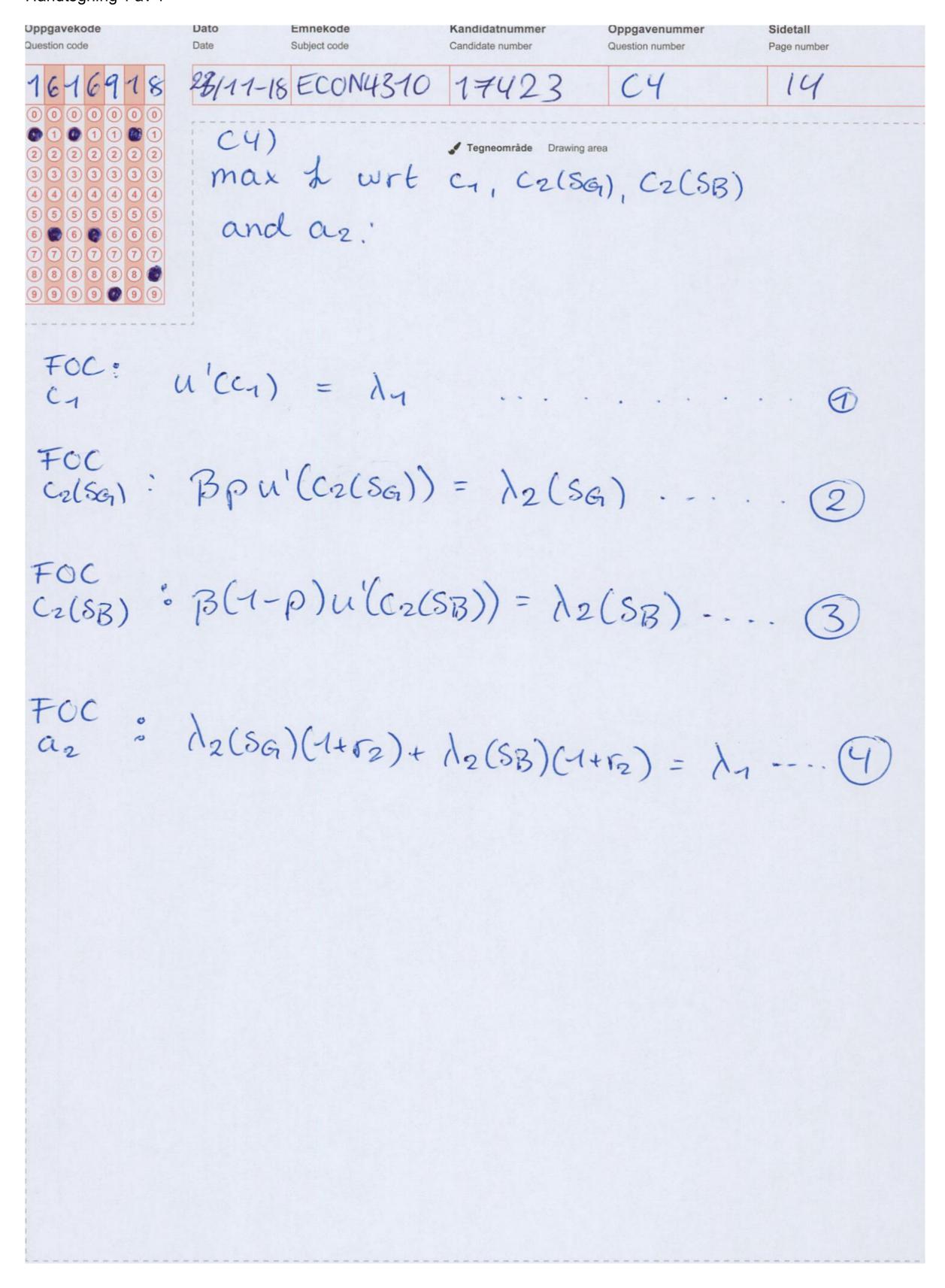

Let $(\lambda_1,\,\lambda_2(s_G),\,\lambda_2(s_B))$ denote the Lagrange multipliers of the state-by-state budget constraints. State the representative agent's Lagrangian. (Note that the expected utility for the second period is the summation of utility across good and bad states, weighted by probability, i.e.,

 $\mathrm{E} u(c_2(s_2)) = pu(c_2(s_G)) + (1-p)u(c_2(s_B)). \,)$

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

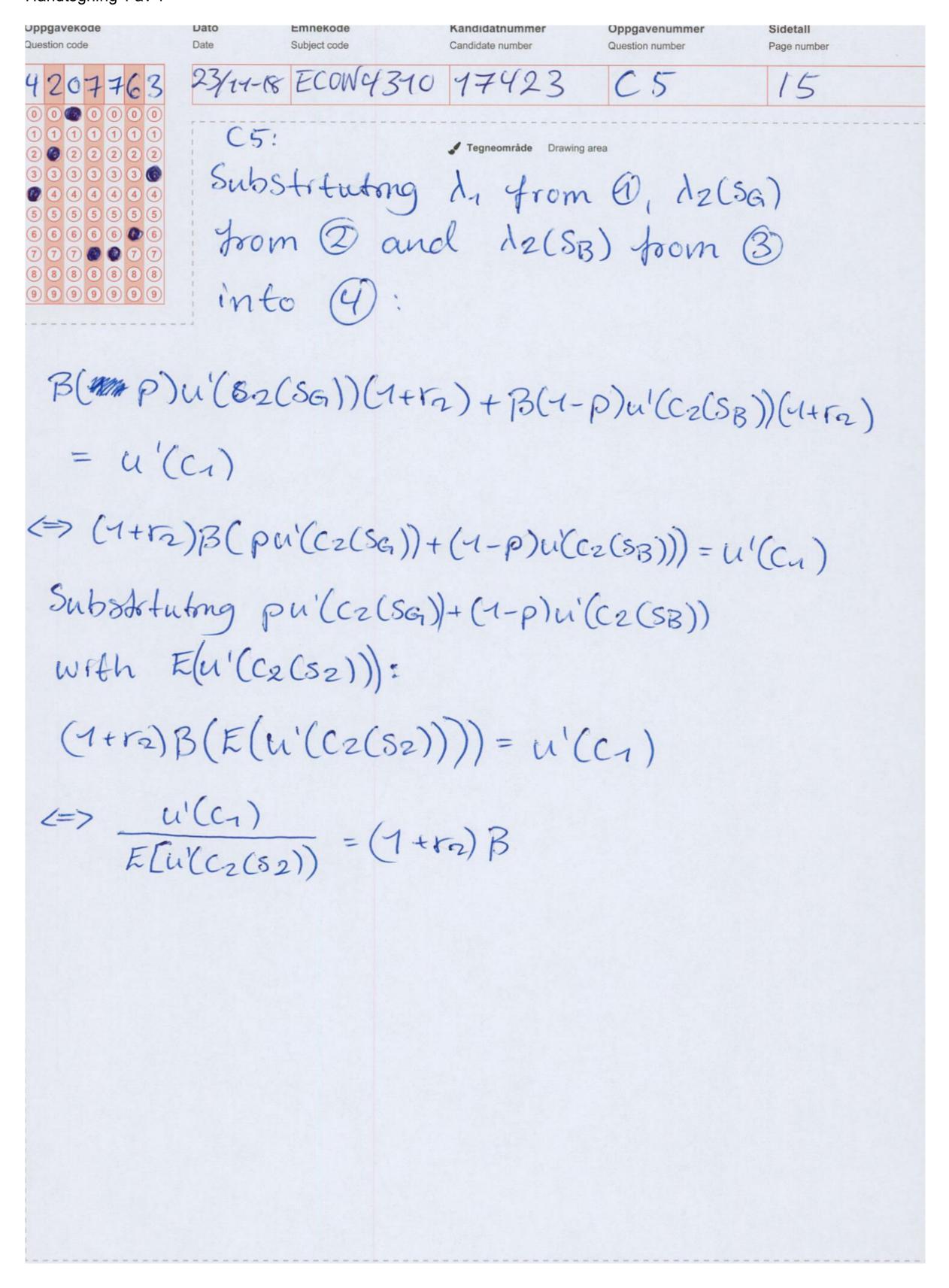


4 Exercise C.4

Derive the optimality conditions with respect to consumption, $(c_1,c_2(s_G),c_2(s_B))$ and savings, a_2 by using multipliers.

Fill in your answer here and/or on sketching paper				
	Ubesvar			

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

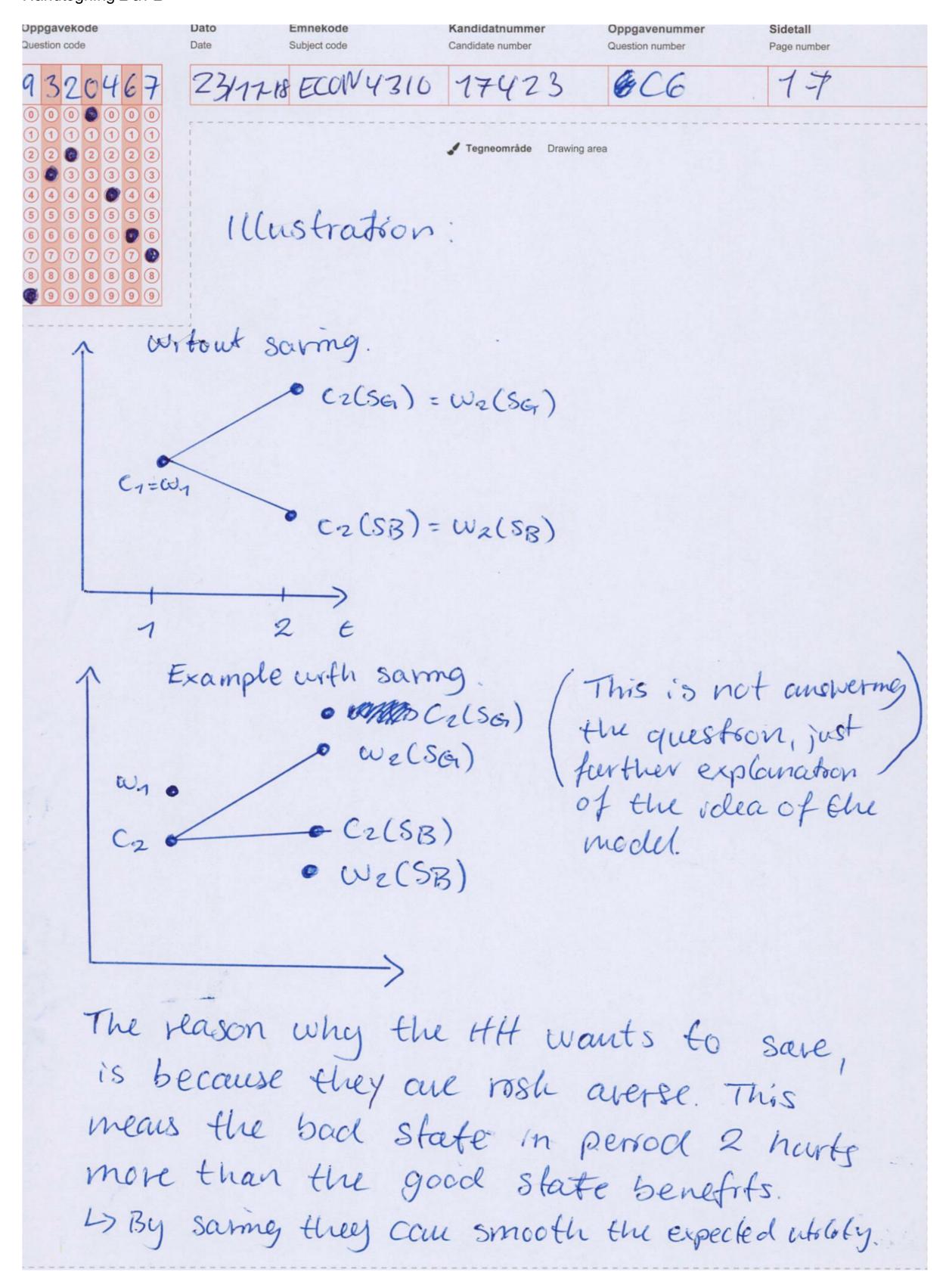


5 Exercise C.5

Derive the stochastic consumption Euler equation (it only involves with $c_1,c_2(s_2), \beta$ and r_2 and No multipliers).

Fill in your answer here and/or on sketching paper				
	Ubesvart.			

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:


Exercise C.6

For (f) and (g), assume that the asset a_2 is available in zero supply. What is the household's optimal choice of a_2 in the equilibrium? What are the household's optimal choices of consumption? Can the household fully smooth consumption? i.e., are c_1 , $c_2(s_G)$ and $c_2(s_B)$ equal?

Fill in your answer here and/or on sketching paper				
	Ubesvart.			

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

Oppgavekode Question code	Dato Emnekode Date Subject code	Kandidatnummer Candidate number	Oppgavenummer Question number	Sidetall Page number
9320467	23/4-18 ECON4340	17423	C6.	16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		✓ Tegneområde Drawing a	area	
3 0 3 3 3 3 3 4 4 4 4 6 4 4 6 5 5 5 5 5 5 5 5 5 5	C6.			
6 6 6 6 6 6 6 6 7 7 7 7 7 7 8	If there is	supply	of az,	them
88888	the optimal	c choice o	7 Uz for	the
HH is	$a_2 = 0$.			
This med	ans that the	HH can't s	smooth	
the co	nsumption by	sarmg, m	earing th	at
	smal choice fo			
use all	income in a	a persodyst	ate on	
Consum	ptoon. Frome	the persod	to by perro	col
budget	constraints	we flui	get:	State
	Wa			
C2(SG)	= W2(SG)			
	= W2 (SB)			
C1 = 1	A			
	A+ A(-1-P)E >			
C2CSB)	= A-ApE Z	A		
Cz(S	G) > C1 > C	z(SB)		

7 Exercise C.7

Is the equilibrium interest rate r_2 higher or lower than $r_{RN}\equiv \frac{1}{\beta}-1$? Why? (Hint: do it step by step: (1) use the budget constraint to link consumption andwages; (2) use the Euler equation and the result, $u'(w_1) \leq \mathrm{E}[u'(w(s_2))]$, which comes from the Jensen's inequality.)

Fill in your answer	here and/or or	n sketching paper
---------------------	----------------	-------------------

Ubesvart.

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

Oppgavekode Question code	Dato Emnekode Date Subject code	Kandidatnummer Candidate number	Oppgavenummer Question number	Sidetall Page number
6746363	23/11-18 ECOW4311	077423	C7.	18
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C7.	✓ Tegneområde Drawing ar	ea	
6 6 6 6 7 7 7 7 7 8 8 8 8 8	Without Sa	ing, the	e consu	motron
999999	is equal for	e Elu wa	eges, and	ol
we ca	en flurefore &	Substrate	the wa	iges
	u utolify fer			
u(w ₁)	+ BEn(Wz(Sz))		
The E	uler equition I	solved f	or in tas	le
	<u>el'(C1)</u> <u>Ela'(C2(52)</u> = C			
	using ca with			
E[a'(a	$\frac{J_1)}{J_2(S_2))} = (1 + r_2)$)3	1 17	
if (to	om Jensen's ine	quality) u	(wn) = Elu	(Wz(32)),
Ehen	the Euler equ	afron Onle	y holds a	xth
equal	the Euler equi	odes are	≤ 1	
Plottong	, in the rosh	neutral in	rterest rate	y relds,
(7+ 1/B	-1) 多合为于	3 = 1.		

Oppgavekode Question code	Dato Date	Emnekode Subject code	Kandidatnummer Candidate number	Oppgavenummer Question number	Sidetall Page number
6746363 0000000000000111111111111111111111111	For has	(4+r2	Tegneområde Drawing BET, the Cower equi	ien 12	-4)
Example	e: r	$2 = \frac{1}{2B} - \frac{1}{2B}$	1		
(4+ =	18-1)B = -	$\frac{B}{2B} = \frac{1}{2}$	24.	
The	locve	behmd	thus is	that	
if t	he t	th is roa	sh rentral	, the	
Good	sfat	e berref	As fluin	just a	S
much	r as	Elu E	od state	herts t	lum.
These	fore	the t	H ma who	ich is re	ésle
			Cilu ande		
unsan	one	e. But	this is a	stly, me	aling
the	risc	e preun	un, which	h here	15
the	dut	erest vo	ite, lis		
1782	ne	litral.	one.		