i Instructions

ECON4310 - Macroeconomic Theory
This is some important information about the written exam in ECON4310. Please read this carefully before you start answering the exam.
Date of exam: Friday, November 23, 2018
Time for exam: $09.00 \mathrm{a} . \mathrm{m} .-12.00$ noon
The problem set: The problem set consists of 3 exercises (A-C) with several subquestions. They count as indicated.
Sketches: You may use sketches on all questions. You are to use the sketching sheets handed to you. You can use more than one sketching sheet per question. See instructions for filling out sketching sheets on your desk. It is very important that you make sure to allocate time to fill in the headings (the code for each problem, candidate number, course code, date etc.) on the sheets that you will use to add to your answer. You will find the code for each problem under the problem text. You will NOT be given extra time to fill out the "general information" on the sketching sheets (task codes, candidate number etc.).
Access: You will not have access to your exam right after submission. The reason is that the sketches with equations and graphs must be scanned in to your exam. You will get access to your exam within 2-3 days.

Resources allowed: No written or printed resources - or calculator - is allowed (except if you have been granted use of a dictionary from the Faculty of Social Sciences).

Grading: The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.
Grades are given: Friday 14 December 2018.

Short Questions (40 Points)

Answer each of the following short questions. You will only get points for correct answer with an explanation.

Exercise A.1: (20 Points) Ricardian Equivalence

You are advisor to the Swedish king in 1618, right at the onset of the 30-year war in Eu-rope between protestant forces, led by Sweden, and catholic forces, led by the German emperor. The cost, per capita, of the war for the next thirty years, is 10,000 kroner. The king has come up with three policies to finance the war:
a Finance the war with immediate taxes of 10, 000 kroner.
b Issue government debt, and repay that debt, including interest, in the 30 year period after the war (1648-1678). c Issue government debt and simply pay the interest on that government debt forever, without ever redeeming the debt itself.

Assume that the interest rate for a 30 year period is $r=100 \%$ (so that $1+r=2$).

Now consider Snorre Viking, a Swedish fisherman that lives from 1618 to 1678 , that is, for 2 periods lasting 30 years each. By selling his fish he earns 15,000 kroner in the first period of his life and 30,000 kroner in the second period of his life (he gets better catching fish with experience). Snorre has utility function

$$
\log \left(c_{1}\right)+\log \left(c_{2}\right)
$$

1 Exercise A1.1

A1.1 (6 points)

Assume that Snorre can borrow and lend freely in the financial market. How does Snorre rank policies a., b. and c., that is, which one does he like best and which one is worst for him? Explain.

Fill in your answer here and/or on sketching paper
\square

Ubesvart.

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:
0549435

Dato Date	Emnekode Subject code	Ophdatnummer Candidate number	Side tall Question number
Page number			

A1.1
Snore's income url be reduced by 40000 lir. in the frost period, while his income in the seconal period isn't changed. His NPV of lifeline income is then $15000-10000+\frac{30000}{2}=20000$.
b) If the government takes debt at the interest rate 100%, then they have to pay bale $10000 \cdot(1+1)=20000$ in the secund perrod. The NPV of snores income will thin be $15000+\frac{30000-20000}{2}=20000$
C) The government will only pay the interest rate, meaning that they tax snore $10000 \cdot(r)=10000$ in the second period NPV of total income: $15000+\frac{3000-10000}{2}=25000$.
Since snore has the highest NPr of income in policy c_{1} he will prefer c. He rs indifferent between b and a. $\rightarrow C$ breaks with Recardian equivalence, meaning that debt today won't mean the sane change on NPV of total income as tax tody
2 Exercise A1.2
A1.2 (7 points)

Now suppose that Snorre cannot borrow any longer. How does Snorre rank policies a., b. and c., that is, which one does he like best and which one is worst for him? Explain

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:
0913218

A1. 2 Drawing area
Sonce Snorre can't borrow anymare it's not the NPV of total rncome that matters angmore
a) Income perod 1:15000-10000 $=5000$ income perrod 2:30000.
\rightarrow Can't use financial marluts to distribute conscumptron over perods.

$$
u=\ln (5000)+\ln (30000)
$$

b) I suppose the government can use frnameral markets
income period 1:15000
income perrod 2: $30000-10000(1+1)=10000$

$$
u=\ln (15000)+\ln (10000)
$$

C) income perrad $1=15000$
income perrod 2:30000-10000.1 $=20000$

$$
u=\ln (15000)+\ln (20000)
$$

He raules fluem as follarng, cause of trighest utblify: polocy $c>$ polrcy $b>$ polrcy a

3 Exercise A1.3

Finally, suppose that Snorre eats so much healthy fish that he lives forever and that he can borrow. All other things remain the same. How does Snorre rank policies a., b. and c., that is, which one does he like best and which one is worst for him? Explain

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode: Hảndtegning 1 av 1

AT. 3.
Here I suppose Snore may use franeval morluets again, meaning that It's again the NP V of cifetinue income that matters.
a) and b) url hare the same NP V of total income.
c) will have the same NPr assuming that $\lim _{T \rightarrow \infty} \frac{D_{T+u}}{\pi_{s=1}^{T}\left(1+r_{s}\right)}=0$. This just means that the government termmal debt in the inforife horrzone case has to be 0 .
\rightarrow Transiersalsty condition.
\rightarrow in the intorite limn HH case, Pricadran equivalence again holds. for all policies, meaning that the HIt luncous that extra government spending gust means future tares, and will save accordingly, so that consumption in all periods is the same.

4 Exercise A. 2

Consumption Response

Consider a simple two-period model of labor supply, as we have seen in lectures, where we assume that utility is separable in consumption and labor supply:

$$
\begin{aligned}
& \max _{\left\{c_{0}, c_{1}, h_{0}, h_{1}, a_{1}\right\}} \log c_{0}-\phi \frac{h_{0}^{1+\theta}}{}+\beta\left[\log c_{1}-\phi \frac{h_{1}^{1+\theta}}{1+\theta}\right] \\
& \text { s.t. } \\
& c_{0}+a_{1}=w_{0} h_{0}+\left(1+r_{0}\right) a_{0} \\
& c_{1}=w_{1} h_{1}+\left(1+r_{1}\right) a_{1}
\end{aligned}
$$

for given $a_{0}=0$. Assume r_{0}, r_{1} are exogenously given. We know the household has the following intertemporal labor supply condition:

$$
\beta \frac{\phi h_{1}^{\theta}}{\phi h_{0}^{\theta}}=\frac{w_{1}}{\left(1+r_{1}\right) w_{0}},
$$

and the solution for h_{0} is given by:

$$
\phi h_{0}^{1+\theta}\left[1+\left(\frac{w_{1}}{\left(1+r_{1}\right) w_{0}}\right)^{1+\frac{1}{\theta}} \beta^{-\frac{1}{\theta}}\right]=(1+\beta)
$$

Suppose there is a permanent change to wages at the beginning of time 0 : both wages in the first and second period increase by 10%. Then this household will take advantage of this opportunity and consume more in c_{0} by 10%.
True or false?

Fill in your answer here and/or on sketching paper Håndtegning 1 av 1

A2. true
Here, the valitore wage doesn't change This means that labour supply in the two periods doesn't change Since wages increases by 10% in both periods, this makes it possible to increase consumption in both periods by 10%, meaning that c_{0} increases by 10%. Illustration:

Note that the HIt stall might want to distribute consumption over periods bey saving, since we don't know about the orrgmal wages, but that compared to the original case, since the velate wages doesn't change there well just be a parralley,jupine.

5 Exercise A. 3

Consider households' optimal intertemporal consumption choice in a two-period model. Suppose there are two types of workers in the economy, type A with constant wages w_{a} over time and type B with constant wages w_{B}, with $w_{B}=(1+10 \%) w_{A}$. Both of them begin with 0 initial assets.
Households have preferences $U=\sum_{t=0}^{1} \beta^{t} u\left(c_{t}\right)$ where $\beta \in(0,1)$ is the discount factor and the momentary utility function is

$$
u\left(c_{t}\right)=\frac{c_{t}^{1-\theta}-1}{1-\theta}, \theta>1
$$

Also, assume the risk-free interest rate r is constant. Assume $\beta(1+r)<1$.
Denote the optimal consumption for type-A household as $\left(c_{0}^{A}, c_{1}^{A}\right)$, and $\left(c_{0}^{B}, c_{1}^{B}\right)$ for type-B household. The we know type-B workers will have relatively lower consumptions in the first period, i.e., $c_{0}^{B}<(1+10 \%) c_{0}^{A}$.

True or false?

Fill in your answer here and/or on sketching paper

Ubesvart.
$23 / 11-18$ ECON 4340 17423 A3.

AB: FALSE
Since this is a CRRS, the \% they save of their income does not change relative to their income. They curl both hare the same consumption euler equation:

$$
\begin{aligned}
& B(1+r) u^{\prime}\left(c_{1}\right)=u^{\prime}\left(c_{0}\right) \\
& u^{\prime}\left(c_{4}\right)=c^{-\theta} \\
& \Rightarrow B(1+r)^{\frac{1}{\theta}} c_{0}=c_{1}, \text { where } c_{0}>c_{1}
\end{aligned}
$$

\Rightarrow They are both borrowing.

$$
\begin{aligned}
\text { CRRS: } & -\frac{u^{\prime \prime}(c) \cdot c}{u(c)}=-\frac{-\theta \cdot c^{-\theta-1} \cdot c}{e^{-\theta}}=-\frac{-\theta e^{-\theta}}{c^{-\theta}} \\
& =\theta
\end{aligned}
$$

Mearryy that $\mathrm{C}_{0}^{B}=(1+10 \%) \mathrm{C}_{0}^{A}$

A Four Period Model

For the entire question, the interest rate is $r=0$. First consider a household that lives for four periods. It has utility function

$$
\log \left(c_{1}\right)+\log \left(c_{2}\right)+\log \left(c_{3}\right)+\log \left(c_{4}\right)
$$

and income in the four periods of $y_{1}=10,000, y_{2}=10,000, y_{3}=50,000$ and $y_{4}=10,000$

1 Exercise B. 1

(5 Points)
Compute the optimal consumption choices $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:

| Dato | Emnekode
 Subject code | Kandidatnummer
 Candidate number | Oppgavenummer
 Question number |
| :--- | :--- | :--- | :--- | | Sidetall |
| :--- |
| Page number |

B. 1.

We can see from the atolify function that the HH cares just as much about the future as today.
Since the interest rate is 0 and we got \ln-utilities, the best way of disforbutirg consumption, is to have equal levels of consumption in every perrod.
Total income: $10000 \cdot 3+50000=80000$.
Distributing this equally over the perrods grues 20000 to use on consumption on every perrod. Green that one unit of consumption costs 1 Y :

$$
\begin{aligned}
& c_{1}=20000 \\
& c_{2}=20000 \\
& c_{3}=20000 \\
& c_{4}=20000 .
\end{aligned}
$$

This means that they borrow 10000 in period 1 and 2, then pay back $20000(1+0)$ in period 3: and the saves 10000 for perrod 4, which yrelds urth interests; $(10000)(1+0)=10000$

2 Exercise B. 2

Suppose the household cannot borrow. Now what are the optimal consumption choices?
Now consider two members of the same dynasty that both live for two periods.
Children have utility function

$$
\log \left(c_{3}\right)+\log \left(c_{4}\right)
$$

and parents have the utility function

$$
\log \left(c_{1}\right)+\log \left(c_{2}\right)+V(b)
$$

where b are the bequests left to the children and $V(b)$ is the maximal utility children can obtain when given bequests b. Income of parents is $\left(y_{1}, y_{2}\right)=(10,000,10,000)$ and that of children is $\left(y_{3}, y_{4}\right)=(50,000,10,000)$.

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:
3038219

Since the parents can't borrow, their budgets are constrained to haring a posofire net sarmg.
As I stated in B1, they would prefer to hare the same consumption in every perrod, meaning that the parents would like to borrow 10000 in each pard and leave negatrie bequest to their children. But since they are not allowed to borrow, only save, their budget will be the same as their income.

$$
\begin{aligned}
\Delta C_{1} & =10000 \\
c_{2} & =10000
\end{aligned}
$$

The children would now like to distribute the remaining 60000 on the to perrods. Since they are allowed to save, they will save 20000 in period 3:

$$
\begin{aligned}
c_{3}+a_{4}=w_{3} \Leftrightarrow c_{3}=50000-20000=30000 \\
c_{4}=w_{4}+(1+r) a_{4} \Rightarrow c_{1}=10000+(1+0) 20000 \\
c_{1}=30000 .
\end{aligned}
$$

3 Exercise B. 3

Solve the maximization problem of the children to obtain $V(b)$, that is, solve

$$
\begin{aligned}
V(b)= & \max _{c_{3}, c_{4}} \log \left(c_{3}\right)+\log \left(c_{4}\right) \\
& \text { s.t. } \\
c_{3}+c_{4}= & 60,000+b
\end{aligned}
$$

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven? Bruk følgende kode:

$$
\mathcal{L}: \ln \left(c_{3}\right)+\ln \left(c_{4}\right)+\lambda\left(60000+b-c_{3}-c_{4}\right)
$$

$$
\underset{C_{3}}{\mathrm{COC}_{3}}: \frac{1}{C_{3}}=\lambda
$$

$$
\begin{align*}
& F O C \tag{2}\\
& C_{4}
\end{align*}: \frac{1}{C_{4}}=\lambda
$$

$$
\begin{equation*}
\underset{\lambda}{F O C}: \quad c_{3}+c_{4}=60000+b . \tag{3}
\end{equation*}
$$

From (1) and (2) $\Rightarrow C_{3}=C_{4}$

$$
\begin{aligned}
& \text { (4) into (3) } \Rightarrow 2 C_{3}=60000+b \\
& \Leftrightarrow C_{3}=30000+\frac{b}{2} \\
& \Rightarrow C_{4}=30000+\frac{b}{2}
\end{aligned}
$$

Again: consumption in both periods should be the same, and bequest should be equally disforbuted between them.

4 Exercise B. 4

Use your answer from the previous question to solve the parents' maximization problem. Allow bequests to be negative.

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:
0947561
$2311-18$ ECON4310 $17423 \quad B 4 \quad 9$

$$
\begin{aligned}
\mathcal{L}: & \ln \left(c_{1}\right)+\ln \left(c_{2}\right)+\ln \left(c_{3}\right)+\ln \left(c_{4}\right) \\
& +\lambda\left(80000-c_{1}-c_{2}-c_{3}-c_{4}\right)
\end{aligned}
$$

$$
\begin{equation*}
\text { FOC }: \quad \frac{1}{C_{1}}=\lambda \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& F O C \tag{2}\\
& C_{2}
\end{align*}: \quad \frac{1}{C_{2}}=\lambda
$$

$$
\begin{array}{ll}
F O C \tag{3}\\
C_{3}
\end{array} \frac{1}{C_{3}}=\lambda
$$

$$
\begin{equation*}
\text { FOC }_{C_{4}}: \frac{1}{C_{4}}=\lambda \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\underset{\lambda}{F C C}: \quad 80000=C_{1}+C_{2}+C_{3}+C_{4} \tag{5}
\end{equation*}
$$

From (1), (2), (3), (1) $\Rightarrow c_{1}=c_{2}=c_{3}=c_{4}$
(6) into (5) yrelds:

$$
\begin{aligned}
80000 & =4 c_{1} \\
\Leftrightarrow & 20000=c_{1}=c_{2}=c_{3}=c_{4}
\end{aligned}
$$ Håndtegning 2 av 2

Solmg for bequest from task Bu:

$$
\begin{aligned}
& c_{3}=30000+\frac{b}{2} \\
\Rightarrow & 20000=30000+\frac{b}{2} \\
\Leftrightarrow & -10000=\frac{b}{2} \\
\Leftrightarrow & -20000=b .
\end{aligned}
$$

So, the parents leaves behrond 20000 in debt for their children in optrmam. This is because the parents cares inst as mach about their own well being as their chrldrens. Since they know their children will be richer, they will therefore tale up debt and pass this on to their children.

Repeat question B.4, but now assume that bequests cannot be negative (that is, assume a constraint of the form $b \geq 0$). You don't have to do any calculations, but you have to explain your anwer.

Fill in your answer here and/or on sketching paper

Since the parents can`t leave negative bequest, they will now be be constrained to having their consumption equal to their wage, since their wage is lower than the next generation. This means that we are back in the case of task B2, where $c 1$ and $c 2$ is equal to 10000 and $c 3$ and $c 4$ is equal to 30000 .

To take this question to a realistic setting: The parents cares equally much about their childrens well being as their own, as long as their children is having less wage than them selves. At once the parents believes that the children will have less income than theirselves, they will leave on positive bequest. But as long as the parents believes that their children is having more wage than themselves, they will not take any of the money from their children.
Another way to look upon this, is that the children should not be "punished" by their parents because they have a better marginal productivity for their labour than their parents. Therefore the government imposes a rule that all generations needs to have positive terminal net savings.

Knytte håndtegninger til denne oppgaven?
3306884
Bruk følgende kode:

$6 \quad$ Exercise B. 6

(10 Points)

Bequests still cannot be negative. Now suppose the government increases taxes in period 2 by 5,000 and gives back 5,000 in subsidies in period 3 . What is the optimal consumption allocation now. Again you don't have to do any calculations, but you have to explain your answer.

Fill in your answer here and/or on sketching paper

The parents will now have a NPV of life time income equal to 20000-5000=15000. Since they want to distribute the consumption equally over their lifetime, they will now use 7500 of their total income in period 1 amd 7500 in period 2 . Since the parents are not allowed to leave negative bequest, they will not be able to borrow money and make the children pay. I here assume that the parents can have negative net saving(borrow) inside their generation, since the task only says that they can't have negative bequest for their children. If i have misunderstood here, the consumption in period 1 will be 10000 and consumption in period 2 will be 5000 .

The children on the other hand will now have $50000+5000+10000=65000$ in total lifetime income. Same in NPV, since there is no impatience and interest rate. This means that they also will distribute this equally over the lifetime, meaning that they will spend 32500 in period 3 and 32500 in period 4.

One logical explanation behind this tax, is that the government cares more about future generations than they do about the current one. Another one is that the government explains their tax with ricardian equivalence, so that the NPV of the infinitely living HH does not change, but forgot to think about the fact that generations dies. They should therefore have allowed for negative bequest equal to the taxation which is later given as a lump sum subsidy.

A real business cycle model

Consider a representative household of a closed economy. The household has a planning horizon of two periods and is endowed with the following preferences over consumption, c,

$$
U=u\left(c_{1}\right)+\beta E u\left(c_{2}\left(s_{2}\right)\right)
$$

with the following marginal utility

$$
u^{\prime}(c)=c^{-\gamma}, \gamma \geq 1
$$

The variable s_{2} denotes the state of the economy in the second period which follows the stochastic process

$$
s_{2}=\left\{\begin{array}{l}
s_{G}, \text { with prob. } p \\
s_{B}, \text { with prob. } 1-p
\end{array}\right.
$$

and the household conditions the consumption, $c_{2}\left(s_{2}\right)$, in the second period on the state, s_{2}. Assume the household's labor supply is exogenous and always equal to 1 .
Labour market assumptions:
Assume that in each period and in each state of the economy, s_{t}, there is a linear (in labor n_{t}) production technology of the form

$$
y_{t}\left(s_{t}\right)=A_{t}\left(s_{t}\right) n_{t}\left(s_{t}\right)
$$

and the labor market is assumed to be perfect competitie. Assume tha labor productivity in the firs period is given by $A_{1}=A$, and the labor productivity is higher in the good state of the second period,

$$
A_{2}\left(s_{G}\right)=A+A(1-p) \epsilon>A_{2}\left(s_{B}\right)=A-A p \epsilon, \quad \epsilon>0, A>0,0<p<1
$$

than in the bad state of the second period. The wages are denoted as $w_{1}, w_{2}\left(s_{G}\right)$ and $w_{2}\left(s_{B}\right)$.
Asset market assumptions:
Assume the household does have access to a risk-free asset, a_{2}, and the associated interest rate is denoted as r_{2}.

1 Exercise C. 1

(5 Points)
Find the equilibrium wages, $w_{1}, w_{2}\left(s_{G}\right)$, and $w_{2}\left(s_{B}\right)$, and show that the expected wages in the second period is the same as wage in in the first period.

Fill in your answer here and/or on sketching paper
\square

Ubesvart.

$$
\begin{aligned}
\omega_{2}\left(S_{G}\right) & =\frac{\partial y_{2}(S G)}{\partial n_{2}\left(S_{G}\right)}=\frac{\left.\partial(A+A(1-p) \epsilon) n_{2}\left(S_{G}\right)\right)}{\partial n_{2}\left(S_{G}\right)}= \\
& =A+A(1-p) \epsilon=A_{2}\left(S_{1}\right)>A \\
\omega_{2}\left(S_{B}\right) & =\frac{\partial y_{2}\left(S_{B}\right)}{\partial n_{2}\left(S_{B}\right)}=\frac{\partial\left(\left(A-A_{p} E\right)\left(n_{2}(S B)\right)\right.}{\partial\left(n_{2}(S B)\right)} \\
& =A-A_{P} \in=A_{2}\left(S_{B}\right)<A
\end{aligned}
$$

2 Exercise C. 2

Write down the state-by-state budget constraints for the household.

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:
9837360
$23111-18$ ECON4310 17423 C.2

$$
\begin{aligned}
& c_{1}+a_{2}=w_{1} \\
& c_{12}\left(S_{G}\right)=\omega_{2}\left(S_{G}\right)+\left(1+r_{2}\right) a_{2} \\
& C_{2}\left(S_{B}\right)=\omega_{2}\left(S_{B}\right)+\left(1+r_{2}\right) a_{2}
\end{aligned}
$$

3 Exercise C. 3

Let $\left(\lambda_{1}, \lambda_{2}\left(s_{G}\right), \lambda_{2}\left(s_{B}\right)\right)$ denote the Lagrange multipliers of the state-by-state budget
constraints. State the representative agent's Lagrangian. (Note that the expected utility for the second period is the summation of utility across good and bad states, weighted by probability, i.e.,
$\left.\mathrm{E} u\left(c_{2}\left(s_{2}\right)\right)=p u\left(c_{2}\left(s_{G}\right)\right)+(1-p) u\left(c_{2}\left(s_{B}\right)\right).\right)$

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:
4441646

$$
\begin{aligned}
& \text { Uppgaveкоде } \\
& \mathcal{L}: u\left(c_{1}\right)+\lambda_{1}\left(w_{1}-a_{2}-c_{1}\right) \\
& +\beta p u\left(C_{2}\left(S_{G}\right)\right)+\lambda_{2}\left(S_{G}\right)\left(w_{2}\left(S_{G_{1}}\right)+\left(1+r_{2}\right) a_{2}-C_{2}\left(S_{G}\right)\right) \\
& +\beta(1-p) u\left(C_{2}\left(S_{B}\right)\right)+\lambda_{2}\left(S_{B}\right)\left(\omega_{2}\left(S_{B}\right)+\left(1+r_{2}\right) a_{2}-C_{2}\left(S_{B}\right)\right)
\end{aligned}
$$

4 Exercise C. 4

Derive the optimality conditions with respect to consumption, $\left(c_{1}, c_{2}\left(s_{G}\right), c_{2}\left(s_{B}\right)\right)$ and savings, a_{2} by using multipliers.

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven?
Bruk følgende kode: Håndtegning 1 av 1

$\max \mathcal{L}$ wrt $C_{1}, C_{2}\left(S_{G}\right), C_{2}\left(S_{B}\right)$ and a_{2} :

$$
\begin{equation*}
\text { FOC: } u^{\prime}\left(c_{1}\right)=\lambda_{1} \tag{1}
\end{equation*}
$$

FOC

$$
\begin{equation*}
c_{2}\left(S_{G}\right): \beta p u^{\prime}\left(c_{2}\left(S_{G}\right)\right)=\lambda_{2}\left(S_{G}\right) \tag{2}
\end{equation*}
$$

FOC

$$
\begin{align*}
& F_{2}\left(S_{B}\right): \beta(1-\beta) u^{\prime}\left(C_{2}\left(S_{B}\right)\right)=\lambda_{2}\left(S_{B}\right) \cdots \tag{3}\\
& F O C: \lambda_{2}\left(S_{G}\right)\left(1+r_{2}\right)+\lambda_{2}\left(S_{B}\right)\left(1+r_{2}\right)=\lambda_{1} \tag{4}\\
& a_{2}:
\end{align*}
$$

5 Exercise C. 5

Derive the stochastic consumption Euler equation (it only involves with $c_{1}, c_{2}\left(s_{2}\right), \beta$ and r_{2} and No multipliers).

Fill in your answer here and/or on sketching paper

Ubesvart.

Knytte håndtegninger til denne oppgaven?

Bruk følgende kode:
4207763

C5:
Substituting λ_{1} from (1), $\lambda_{2}\left(S_{G}\right)$ from (2) and $\lambda_{2}\left(S_{B}\right)$ from into (4):

$$
\begin{aligned}
& B(p) u^{\prime}\left(S_{2}\left(S_{G}\right)\right)\left(1+r_{2}\right)+B(1-p) u^{\prime}\left(c_{2}\left(S_{B}\right)\right)\left(1+r_{2}\right) \\
& =u^{\prime}\left(c_{1}\right) \\
& \Leftrightarrow\left(1+r_{2}\right) B\left(p u^{\prime}\left(c_{2}\left(S_{G_{1}}\right)\right)+(1-p) u^{\prime}\left(c_{2}\left(s_{B}\right)\right)\right)=u^{\prime}\left(c_{1}\right)
\end{aligned}
$$

Substrtuting $p u^{\prime}\left(c_{2}\left(S_{G_{1}}\right)\right)+(1-p) u^{\prime}\left(c_{2}\left(S_{B}\right)\right)$
with $E\left(u^{\prime}\left(c_{2}\left(s_{2}\right)\right)\right)=$

$$
\begin{aligned}
& \left(1+r_{2}\right) B\left(E\left(u^{\prime}\left(c_{2}\left(s_{2}\right)\right)\right)\right)=u^{\prime}\left(c_{1}\right) \\
& \Leftrightarrow \frac{u^{\prime}\left(c_{1}\right)}{E\left[u^{\prime}\left(c_{2}\left(s_{2}\right)\right)\right.}=\left(1+r_{2}\right) B
\end{aligned}
$$

6 Exercise C. 6

For (f) and (g), assume that the asset a_{2} is available in zero supply. What is the household's optimal choice of a_{2} in the equilibrium? What are the household's optimal choices of consumption? Can the household fully smooth consumption? i.e., are $c_{1}, c_{2}\left(s_{G}\right)$ and $c_{2}\left(s_{B}\right)$ equal?

Fill in your answer here and/or on sketching paper

Ubesvart.
Knytte håndtegninger til denne oppgaven?
Bruk følgende kode:
9320467

Dato Date	Emnekode Subject code	Kandidatnummer Candidate number	Oppgavenummer Question number

CG.
If there is 0 supply of a_{2}, them the optimal choice of a_{2} for the $H H$ is $a_{2}=0$.

This means that the HH can't smooth the consumption by sarmg, mearng that the optrmal choice for consumption is to use all income in a perrod/state on consumption. From the period by period budget constraints we then get:

$$
\begin{aligned}
& C_{1}=W_{1} \\
& C_{2}\left(S_{G}\right)=W_{2}\left(S_{G}\right) \\
& C_{2}\left(S_{B}\right)=W_{2}\left(S_{B}\right) \\
& C_{1}=A \\
& C_{2}\left(S_{1}\right)=A+A(1-p) \epsilon>A \\
& C_{2}\left(S_{B}\right)=A-A_{p} \epsilon<A \\
& C_{2}\left(S_{G}\right)>C_{1}>C_{2}\left(S_{B}\right)
\end{aligned}
$$

| 231118 ECON 4310 | 17423 | $C 6$ | 17 |
| :--- | :--- | :--- | :--- | :--- |

Illustration:

The reason why the HH wants to save, is because they are risk averse. This meas the bad state in period 2 hurts more than the good stake benefits. \rightarrow By saving they cam smooth the expected utbibly.

7 Exercise C. 7

Is the equilibrium interest rate r_{2} higher or lower than $r_{R N} \equiv \frac{1}{\beta}-1$? Why? (Hint: do it step by step: (1) use the budget constraint to link consumption andwages; (2) use the Euler equation and the result, $u^{\prime}\left(w_{1}\right) \leq \mathrm{E}\left[u^{\prime}\left(w\left(s_{2}\right)\right)\right]$, which comes from the Jensen's inequality.)

Fill in your answer here and/or on sketching paper

Ubesvart.

C 7
Without saying, the consumbotron is equal to the wages, and we can therefore substofute the wages into the utolrify femctron:

$$
u\left(w_{1}\right)+\beta E u\left(w_{2}\left(s_{2}\right)\right)
$$

The Euler equation I solved for in task

$$
C 5: \quad \frac{u^{\prime}\left(c_{1}\right)}{E\left[u _ { 1 } ^ { \prime } \left(c_{2}\left(s_{2}\right)\right.\right.}=\left(1+r_{2}\right) \beta .
$$

Substituting C_{n} with w :

$$
\frac{u^{\prime}\left(w_{1}\right)}{E\left[u^{\prime}\left(w_{2}\left(s_{2}\right)\right)\right.}=\left(1+r_{2}\right) \beta
$$

if (from Jensen's inequalrtg) $u^{\prime}\left(w_{1}\right) \leq E\left[u^{\prime}\left(v_{2}\left(s_{2}\right)\right)\right.$, then the Euler equation only holds with equality if both soles are ≤ 1.
Plotting in the rash neutral interest rate yrelds.

$$
\left(1+\frac{1}{\beta}-1\right) \beta \Leftrightarrow \frac{1}{\beta} \cdot \beta=1 \text {. }
$$

Dato Date	Emnekoce Subject code	Kandıatnummer Candidate number	Oppgavenummer Question number

For $\left(1+r_{2}\right) \beta \leq 1$, then r_{2} has to be cower or equal to $\left(\frac{1}{\beta}-1\right)$

Example: $r_{2}=\frac{1}{2 \beta}-1$

$$
\left(1+\frac{1}{2 \beta}-1\right) \beta=\frac{\beta}{2 \beta}=\frac{1}{2}<1
$$

The locve behind this is that if the HH is rask neutral, the Good state benefits thun just as much as the bad state hurts them. Therefore the HH which is resh
 insurance. But this is costly, making the risk premium, which here is the interest rate, lass than the risk neutral one.

