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NEW SERIES, NO. 176 (VOL. XXVI) DECEMBER, 1931 

JOURNAL OF THE AMERICAN 
STATISTICAL ASSOCIATION 
Formerly the Quarterly Publication of the American Statistical Association 

STATISTICAL CORRELATION AND THE THEORY OF 
CLUSTER TYPES 

BY RAGNAR FRISCH, University of Oslo, AND BRUcJE D. MUDGETT, University of 
Minnesota 

1. THE NOTION OF CLUSTER TYPES AND THEIR GEOMETRIC REPRESENTA- 
TION IN THREE DIMENSIONS 

Let there be given a statistical population composed of N observa- 
tions each characterized by n variable attributes, xi, x2 . . . x". Let 
n be called the dimensionality of the observations. It is proposed to 
discuss the types of systematic variation that may take place between 
the several variables: What is the degree of freedom of the system? 
Which variables can be considered independent? And so on. To 
simplify, we shall consider only linear relationships between the 
variables. This will be sufficient to indicate the nature of the possi- 
bilities it is proposed to analyze. Most of the argument in the present 
paper is built upon the theory of cluster types developed by Ragnar 
Frisch in his paper, "Correlation and Scatter in Statistical Variables," 
in the Nordic Statistical Journal, Vol. 1, 1928, pp. 36-102. To simplify 
the discussion and to make it possible to build upon a direct geometric 
intuition of the situation, the case of three variables, Xl, x2 and X3 Will 
first be discussed. That is to say, we deal with a population having 
three attributes measured along three rectilinear axes. In this case, 
the dimensionality of the population, n, is equal to three. A point in 
three-dimensional space then represents a given observation, that is, a 
given individual in the population of N. Each such observation is 
characterized by a given value of each of the three variables x1, x2 and 
X3. By assuming that the variables x1, x2 and X3 are measured as 
deviations from their means, the mean of each xi will lie in the origin 
of the coordinate axes. The swarm of N observation points thus 
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obtained forms a three-dimensional scatter diagram. This scatter 
diagram may exhibit any one of the following cluster types. 

A. The disorganized swarm. In this case the observations are 
distributed in a disorganized way in space with no restrictions upon 
their positions, or no loss of freedom. The number of degrees of 
freedom in the population will be called its rank, or its unfolding capac- 
ity, and will be designated by p, so that in the present case p = n = 3. 
The rank is now equal to the dimensionality. The case is illustrated 
by a swarm of bees distributed widely in a given space without con- 
centration at any point or again by the raindrops as they fall through 
space in a storm. 

B. The plane (the " pancake"). If the swarm is pressed together in a 
given direction it assumes the shape of a "pancake." This pancake 
has as its ideal representation a plane passing through the origin. 
This plane represents the systematic variations while the deviations 
from the plane, the thickness of the pancake, represent the accidental 
variations. It may now be said that the observations come close to 
lying in a plane, the accidental variations producing a thin slab in place 
of a plane. From the point of view of systematic (as distinguished 
from accidental) variations, the population has now been subjected to 
the loss of one degree of freedom. The representative point may move 
freely within the slab but cannot go beyond it except by "accident." 
It may be said that the swarm has received a one-dimensional flatten- 
ing, or, again, that it has been simply flattened. The population may 
also be called simply collinear in this instance. If the number of 
degrees of freedom lost by the population be designated by p, the 
result now is: p=1, p=2, p+p=n. The rank is now exactly one less 
than the dimensionality. The case may be illustrated perhaps by a 
swarm of bees that has alighted on a board which passes through the 
origin of the co6rdinate axes, the bees forming a cluster on this board. 

C. The rod. If the population discussed under B be pressed together 
so that it come to cluster along a line in the plane, the swarm of scatter 
points loses one further degree of freedom. The observations become- 
concentrated around a rod through the origin. This case is referred to 
as multiply flattened, or multiply collinear (more precisely, two-fold 
flattened). The rank of the population is now 1, p= 1; the flattening 
is p = 2. The sum of the rank and the flattening is, of course, still 
equal to 3. 

D. The point. Subject the rod to one further degree of flattening, or 
to the loss of its one remaining degree of freedom and the observations 
become concentrated around a point or in a tiny ball at the origin. The 
meaning of this is that from the point of view of systematic variations, 
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the observed population does not show any variation at all. What- 
ever variation there has been is in the nature of accidental errors of 
observation. Now the flattening is p = 3. That is, the flattening is 
equal to the dimensionality. All degrees of freedom are lost and the 
unfolding capacity, p, is equal to zero. 

These four cases represent the main types of relationships between 
the variables x1, x2 and x3 of the population when the systematic varia- 
tion in the x's is linear in character. Proceeding now to a more de- 
tailed discussion of these main types, it is necessary to distinguish 
between certain subtypes. In case (A) there is no systematic relation- 
ship existing between the variables. The selection of an arbitrary 
value of xi and an arbitrary value of x2 leads to no particular expecta- 
tion with respect to X3. Geometrically, if a line x1 = constant = a1, 
x2= constant = a2 is drawn in the coordinate space (x1, X2, X3) there will 
be no concentration of the observations around any particular value 
of X3 on this line. And similarly for comparisons of x2 with x1 and X3 etc. 

Case (B) is not so simple. The slab, or plane, may assume various 
positions so long as it passes through the origin (this requirement being, 
of course, a matter only of the selection of the origin of the x's). The 
following subcases are to be distinguished: 

B 1. The plane may contain none of the coordinate axes. As it passes 
through the origin it makes an angle not equal to zero with 
each of the three co6rdinate axes. 

B 2. The plane may contain one axis, say the x3 axis. It will then 
be perpendicular to the co6rdinate plane (xl, x2), and will appear 
as a door hinged to the x3 axis. It might, of course, equally 
well have been hinged to any other of the co6rdinate axes. 
This is a very important case for what follows. 

B 3. The plane of the observations may contain two of the co6rdinate 
axes, say x2 and x,. It now coincides with the (x2, x3) co6rdi- 
nate plane and the variable xi shows no systematic variation, 
its variation being only within the thickness of the slab; , = 0 
approximately, that is o would have been zero if it were not for 
the accidental variations. In the case (B) the plane can, of 
course, never contain all three axes, so that (B 1-2-3) cover 
all possible cases. 

The rod through the origin, i.e., the main type (C), likewise presents 
three sub-types. 

C 1. The rod does not lie in any of the coordinate planes. 
C 2. It lies in one co6rdinate plane, say (X2, X3); then a, = 0, ap- 

proximately. 
C 3. It lies in two of the co6rdinate planes, that is it coincides with 
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one axis. For example, lying in the co6rdinate planes (xi, x3) 
and (x2, X3), it coincides with the X3 axis and o- = o2 =0, ap- 
proximately. 

The case (D) involves only one situation, the observations lying 
within a very limited distance (very tiny ball) around the origin. 
Here o,, o-2, and U3 are all approximately equal to zero. 

The term "approximately" in the above analysis is used to indicate 
that the parameters in question, because of the accidental variations, 
may deviate somewhat from their systematic values. It is because of 
the accidental variations that the points lie, in one case, in a slab rather 
than in a plane; again in a rod rather than on a perfect line and finally 
in a tiny ball rather than rigorously in a point. For brevity hereafter 
the term "approximately" will as a rule be omitted in the discussion 
of the various cases. 

2. ALGEBRAIC INTERPRETATION OF CLUSTER TYPES IN THREE VARIABLES 

The cluster types that have been discussed are basic to an under- 
standing of the nature of the systematic relationships between the 
variables x1, x2 and X3 and for interpreting the linear regression of any 
of the variables upon one of, or all, the others. This will be recognized 
when the algebraic expressions for the various cluster types are brought 
to mind. We proceed now to discuss the various types in algebraic 
terms, that is, in terms of the nature of the linear relationships that 
exist between the variables. 

In case (A), the disorganized swarm, or the raindrops, there is com- 
plete lack of system in the spatial distribution of the variables and a 
regression equation between them has no meaning. The only thing to 
do in this case is to leave the data alone. This case, therefore, may 
be dismissed from further consideration once a criterion has been 
established by which the lack of systematic organization can be 
recognized. 

In case (B), the plane, where the observations have lost one degree of 
freedom, there exists one and only one systematic relationship between 
the variables of the form: 

(2.1) a1xl+a2x2+a3x3 = 0. 

But this relationship may or may not actually contain all three variables. 
The case where it does contain them all is the case where the plane 
contains none of the axes (Case B 1). Here the coefficients a1, a2 and a3 
are all different from zero. Then the equation (2.1) may be solved 
for any xi in terms of the other x's. That is to say, equation (2.1) may 
be written in any one of the following three ways: 
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Xi = al2.3x2+al3.2x3 
(2.2) X2 a21.3X1+a23.1x3 

X.3 = an- 2 X1+ a,32 . 12 

The notation a12.3, etc., is here used instead of the usual b12.3 for the 
regression coefficients in order to indicate that it is here only a question 
of solving the equation (2.1) in three different ways. The notation 
b12.3, etc., for the regression coefficients involves something more than 
merely different ways of writing the same equation. It refers to 
different statistical procedures for determining the coefficients, namely 
different directions in which to make the least squared minimalization. 

In the case (B 1) where it is possible to express each variable in terms 
of the others the variables are said to form a closed set. 

Case (B 2) is the situation where the observational plane contains the 
x3 axis. The set is still collinear but is no longer a closed set; x, has now 
become a superfluous variable. It has no place in the regression. This 
can be seen easily in the geometric figure. The plane of the observa- 
tions is perpendicular to the (xi, x2) co6rdinate plane and intersects the 
latter in a line through the origin. This line is called the trace of the 
regression plane in the (xi, x2) plane. This trace is evidently a locus of 
points with (xi, x2) co6rdinates. If an arbitrary (xi, x2) point be se- 
lected, then one of the following two things will happen. Either this 
(xi, x2) point falls on the trace, and then any magnitude of X3 may cor- 
respond to the selected (xi, x2) point; or the (xi, x2) point falls outside 
the trace, in which case no x3 magnitude will correspond to it. It, 
therefore, has no meaning now to express xi in terms of xi and x2. 
That which does have a meaning is to express a relation between xi and 
x2. Selection of any value of xi therefore immediately specifies a 
corresponding value of x2 as defined by the trace but does not specify 
any particular value of x3. Inversely, selection of a particular value of 
X3 does not locate a particular value of either xi or x2. The variable x3 
is not a partner in the systematic relationship. This is equivalent to 
saying that in the equation (2.1) as = 0, so that the relationship be- 
tween the variables is now of the form: 

aixl+a2X2 = 0 

where a, and a2 are not equal to zero. In other words, xi can be ex- 
pressed in terms of x2, thus: xi = a12x2; or inversely, x2=a2lxl. The 
relationship X3 = a31.2X1+a32.1X2 does not exist in the present case; xi and 
x2 taken by themselves form a closed set, and x3 is superfluous. 

Case (B 3) where the regression plane coincides with one of the 
co6rdinate planes also represents a single relationship of the form (2.1) 
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between the variables. But in this relationship there are now two 
coefficients that are zero. If the plane lies in the (x2, x3) co6rdinate 
plane, a2 =a3 = 0. The relationship is then represented by 

aix1=O; ai=O; ai-O. 
That is, the observations are scattered freely in the (x2x3) co6rdinate 
plane, there being no systematic relationship between them in this 
plane. And xi is an ineffective variable. So far as the systematic 
variation is concerned xi = 0 for all values of x2 and x3. 

Where the observations are clustered in a rod, there exist two inde- 
pendent relationships between the variables. There even exist three 
relationships, represented by the three equations: 

aix1 +a2x2 = 0 
(2.3) a'lxl+a'3x3 = 0 

a"2x2+a"3x3 = 0 

But only two of these three relations will be independent. By knowing 
any two of them, the third can be derived. Any set of two variables 
taken by themselves now constitutes a two-dimensional collinear set. 

In the case (C 1), each of the three two-dimensional collinear sets 
(2.3) is closed. That is to say, all the coefficients in (2.3) are i 0. Any 
of the variables may now be expressed in terms of any one of the other 
variables. 

In the case (C 2) the rod lies in one, and only one, of the co6rdinate 
planes, say in (x2, x3). There is now one closed set of two variables, 
represented by the equation a2X2+a3X3 = 0, where a2 and a3 are both 
=i 0. Furthermore, there is one ineffective set of one variable, a1x, = 0, 
a, l 0, o = 0. But xi cannot be expressed in terms either of x2 or of X3 

(except in the trivial form x1 = O.x2+0.x3). 
The case (C 3), where the rod is lying in the x3 axis involves two 

ineffective sets of one variable each, namely: 

(24) aa1x1 = 0 a1, 0 i = 0 
(2.4) a2X2 = 0 a2 + 0 2 = 0 

that is, there is variation along the X3 axis but no variation along the 
x1 and x2 axes. 

In the case of the point (or tiny ball), (D), there exist three inde- 
pendent relations between the variables. There is no freedom left now 
in the three variables, all three being ineffective. That is to say, the 
three independent relations are: 

aix1=0 a,10 c1 =0 
(2.5) a2X2=0 a240 0-2=0 

a3x3= 0 a3 4 0 03 = 0 
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3. ALGEBRAIC INTERPRETATION OF CLUSTER TYPES IN n VARIABLES 

A set of n variables (x1, x2 . . . x,) is called a linearly dependent set, 
or collinear when there exists at least one relation of the form: 

(3.1) a1xi+a2x2+ . . . +anxn=O 

where the coefficients, ai, are not all equal to zero. A collinear set is 
said to be flattened exactly p times, or to be p-fold flattened when there 
exist exactly p independent relationships of the form (3.1) between the 
n variables. A necessary and sufficient condition for a set to be p-fold 
flattened is that there exist at least one p-dimensional set which is non- 
collinear, where p = n - p, while all (p+ 1) and higher dimensional 
subsets are collinear. In this case there exist exactly p independent 
regressions, each involving not more than (p+ 1) variables, and further 
being such that the set of these (p+1) variables is a simply collinear set. 

When p = 0 the set of n variables is not flattened; there exists no 
systematic linear relationship between the variables and no regression 
equation is possible. 

When p= 1 the set is once flattened or is simply collinear. The rank, 
p, of the set is now (n-1) and there exists one (n-1)-dimensional 
regression plane. 

This regression plane may or may not contain all the variables. The 
plane will not contain those variables the co6rdinate axes of which in 
n-dimensional space lie in the regression plane, and the corresponding 
coefficients in the regression equation (3.1) will be equal to zero. 
These variables are superfluous variables in the regression system. If 
the regression coefficients ai (i =1, 2, . . . n) are all different from 
zero, all of the n variables are present in the regression equation. The 
set is then a closed set. The (n - 1)-dimensional regression plane now 
contains none of the co6rdinate axes and each xi can be expressed 
linearly in terms of the others. In this case there cannot exist any 
relationship of the form (3.1) involving fewer than n variables. 

When p>1 the set is multiply collinear or multiply flattened and 
there exists a regression manifold of less than (n -1) dimensions. 

4. STATISTICAL CRITERIA FOR CLUSTER TYPES 

As statistical criteria for these several types of clustering there are 
here introduced the coefficient of collective alienation and its correla- 
tive, the coefficient of collective correlation. Proceeding now to the 
exact definition of the collective alienation and correlation coefficients, 
let 
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(ri, rl2 . . . rin 

(R) - r21, r22 . . . r2n) 

rnly rn2 . . . rnn 

be the correlation matrix for the n variables xi, x2 . . . xn; rij is the 
simple (total) correlation coefficient between xi and xi. The de- 
terminant value of this matrix is denoted by 

rii, r12 . . . rln 

R=R(2 r2i, r22 . . . r2n 

rnly rn2 . . . rnn 

Further, R i= Rj(12. . ..) denotes the element in the i-th row and 
the j-th column of the adjoint correlation matrix (R). Each R j is 
determined by calculating the determinant value of (R) after crossing 
out the i-th row and the j-th column and multiplying by (-1) i+ 
We shall not here enter into a theoretical discussion as to why the 
collective alienation and correlation coefficients offer plausible criteria 
of how far a given set of statistical variables deviates from being 
linearly dependent. This interpretation is discussed at length in the 
paper by Ragnar Frisch already referred to.' Here mention will be 
made only of the formal hierarchic order that exists between the 
partial, the multiple and the collective coefficients. Consider the set 
of variables, xl, x2 . . . xn, and denote the classical partial correlation 
and alienation coefficients by rij(12 . . . n) and 5ij(12 . . .. For the 
sake of symmetry, all the subscripts, 1, 2 . . . n are written as second- 
ary subscripts, without omitting i and j. In order not to give rise to 
confusion with the usual notation, where i and j are omitted from the 
list of secondary subscripts, the secondary subscripts are here enclosed 
in a parenthesis. Similarly the classical multiple correlation and 
alienation coefficients are designated by ri(12 .. .) and 5i(12 . * n) 

respectively. As is well known, these parameters satisfy the equation: 

(4.1) r2+52= 1 

where the same set of subscripts is attached to r and to s. The col- 
lective correlation and alienation coefficients are also defined so as to 
satisfy (4.1). But while the partial coefficients depend on two primary 
subscripts and the multiple coefficients depend on one primary sub- 
script, the collective coefficients have no primary subscripts at all. 
They are defined with regard to the set of variables as such. More 
precisely, they are defined thus: 

1 In this paper the term coefficient of scatter was used instead of coefficient of alienation. 
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(4.2) s=S(1 2 . . . n)=V 7 R(l =coefficient of collective 
alienation in the set 
(Xl, X2 . . . Xn) 

r = r(l 2. . .n) = 1/l-R(l 2 . . . )= coefficient of collec- 
tive correlation in 
the set (xI, x2 . . . x") 

It is easy to prove that these coefficients satisfy the relations: 

(4.3) O<s<1 

If n = 2 the collective alienation coefficient reduces to the simple (total) 
alienation coefficient and the correlation coefficient (apart from its 
sign) reduces to the simple (total) correlation coefficient. From the 
definitions here given it follows that S2 and r2 are polynomials in the 
simple correlation coefficients ri1; S2 and r2, therefore, never can become 

of the indeterminate form 0(unless one or more of the simple correla- 

tion coefficients become of this form). This is a fundamental property 
of the collective alienation and correlation coefficients, which dis- 
tinguishes these parameters from the corresponding partial and multiple 
coefficients. The fact that the partial and multiple coefficients may 

become of the indeterminate form -is easily seen from the well known 

formulae: 

(4.4) ri(l 2 . . . n)= L R coefficient of multiple corre- (4 ri(1 2 . * * n) =X~~' + lation 

(4.5) ri_(l 2 - R?1 coefficient of partial corre- 
v'RWRII ii lation 

It is indeed easy to prove that 

(4.6) R2 ij< Rjj,Rjj 
and (4.7) =<R<Rii< 1 

so that if RI 0, (4.4) and (4.5) must give rise to indeterminate 

expressions of the type 0 

The general property of the collective alienation coefficient which 
makes this parameter a useful tool in studying cluster types is the 
following. The collective alienation is equal to zero when, and only 
when, there exists an exact linear dependency in the set for which the 
collective alienation is computed, and furthermore this coefficient 
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increases as the swarm of scatter points takes on a shape that deviates 
more and more from the shape where a linear dependency exists. 
When the collective alienation has become equal to 1 (which is its 
largest possible value) the swarm of scatter points has reached a shape 
which may be characterized as perfect unfolding. The variables have 
now become orthogonal (uncorrelated), that is to say, all the simple 
correlation coefficients, ri1 are equal to zero. The collective alienation 
coefficient being equal to unity is the necessary and sufficient condition 
for orthogonality in the above defined sense. 

The three variables xi, x2 and x3 may be taken to illustrate the use of 
the collective alienation as a tool in determining cluster types. The 
various cases to be discussed have their ideal pattern in the elementary, 
well-known algebraic propositions regarding linear forms. What is 
done here is primarily to translate these propositions from the language 
of perfect linear dependency to the language of " nearly " linear 
dependency. 

A. The disorganized swarm is characterized by s(123) being near to 
unity. 

B. The plane. One flattening; p =1, p = 2, simply collinear. The 
criterion for this case is that s(123) is near to zero, and furthermore 
at least one of the three magnitudes, 8(23) = R 8(13) = 

\/R22(123,, 8(12) = VR33(-23) is significantly different from zero. 
B 1. Plane contains no coordinate axis. Each of the three 

magnitudes, s(13), 8(23) and 8(12) is significantly different 
from zero. In this case (Xl, X2, X3) form a closed set. 

B 2. Plane contains one co6rdinate axis (x3). Now 8(12)= 

V/R33(123) is close to zero while 8(23) and s(13) are signifi- 
cantly different from zero. In this case the two variables 
(xl, x2) taken by themselves form a closed set and x3 is a 
superfluous variable. 

B 3. Plane contains two co6rdinate axes, (X2, x3): Here s(n) 
and S(13) are both close to zero, while S(23) is significantly 
different from zero. In this case x2 and X3 form a set of 
disorganized variables while xi is ineffective. 

C. The rod. Two-dimensional flattening; p = 2, p =1; multiply 
collinear. The criterion for this case is that S(123) shall be near to 
zero and, at the same time, that S(12), S(13) and S(23) shall also be 
close to zero. There now exist two independent relationships 
between the variables.' These two relationships may be written 

1 Strictly speaking, the criteria here considered show only that there exist at least two linear relation- 
ships. If it be assumed that not all the three variables are ineffeotive (i.e., that we do not have case D) 
then the criteria considered show that there are exactly two independent relationships. 
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in different ways. In particular they may by elimination be 
written in such a way that each of them contains at most two 
variables. If it be assumed that all the variables are effective 
then each of the two relations thus obtained must contain exactly 
two variables. In this case any set of two variables constitutes 
a closed two-dimensional set. 

Criteria for the sub-types (C2) and (C3) cannot be discussed 
in terms of the collective alienation coefficients only. Or more 
precisely expressed: The very fact of computing the collective 
alienation coefficients (which are based on the simple correlation 
coefficients) involves the assumption that all the variables are 
effective. But this is also the only assumption made in using 
the collective alienation coefficients. If none of the variables 
are ineffective, all the simple (total) correlation coefficients are 
determinative. 

The situation for three variables is now easily generalized to the case 
of n variables. If a great number of variables (x1, x2 . . . xn) are 
observed, and criteria for cluster types are wanted, compute first the 
collective alienation coefficient S(12 . . . . for the whole set. If this 
coefficient is not close to zero, any attempt at studying the variables 
by means of linear relationships should be abandoned. 

If S(12 . . . ) is close to zero, consider all the (n-1)-dimensional 
subsets (23 . . . n), (13 . . . n) . . . (12 . . . (n-1)) that can be 
formed by leaving out one variable at a time. There are in all n such 
subsets. Compute the collective alienation coefficient for each such 
subset. Such a collective alienation coefficient we call an (n - 1)- 
dimensional collective alienation coefficient. If there exists at least one 
such (n - 1)-dimensional coefficient that is significantly different from 
zero, the set is simply collinear, that is, there exists exactly one linear 
relation of the form. 

(4.8) aix1+a2x2+ . . . +anxn = 0. 

This relation should be looked upon as actually containing only those 
variables Xk that are such, that the collective alienation obtained by 
leaving out Xk, namely,' S(12 . . . )k( . . . n), is significantly different 
from zero. 

If all the (n - 1)-dimensional collective alienation coefficients 
8 (12 . . . )k( . . . n) (k = 1.2 . . . n) are close to zero, the set is at least 2 
dimensionally flattened, that is, there exist at least two independent, 
relations of the form (4.8). In order to find out if there exist exactly 
two or possibly even more than two such relations, consider all the 

I The inverse parenthesis ) ( is used to denote "exclusion of." 
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(n -2) subsets that can be formed by leaving out in all possible ways 
two of the variables, and compute the collective alienation coefficient 
for each such subset. Such a coefficient will be called an (n-2)- 
dimensional collective alienation coefficient. If there exists at least 
one such (n-2)-dimensional coefficient that is significantly different 
from zero, then the flattening is exactly two, that is there exist exactly 
two independent relations of the form (4.8). 

If all the (n-2)-dimensional collective alienation coefficients are 
close to zero, consider the (n - 3)-dimensional coefficients. If all these 
should also be close to zero, consider the (n -4)-dimensional coefficients, 
etc. Suppose it be necessary to continue to the p-dimensional co- 
efficients before a level is reached where at least one of the collective 
alienation coefficients is significantly different from zero. That is to 
say, all the (p+1)- and higher dimensional collective alienation co- 
efficients are close to zero, while there exists at least one p-dimensional 
coefficient that is significantly different from zero. In this case the 
rank (i.e., the unfolding capacity) of the set is p, and the flattening is 
p = n - p. There now exist exactly p independent systematic relations 
of the form (4.8). By combination and elimination, using these p 
relations, we may arrive at many sorts of linear relations between the 
variables. There is in particular one set of relations that is interesting: 
We may select a certain p-dimensional subset which is not a collinear 
set (at least one such set exists by the very definition of p). And then 
we may express each of the other p-variables linearly in terms of the 
selected p-dimensional subset. 

5. MEANINGLESS RESULTS WHEN LINEAR DEPENDENCIES EXIST 

Among the various possible cluster types discussed in the preceding 
sections there is only one very particular type in which all the orthodox 
correlation and regression parameters have a sense, namely, the case 
of a set which is not only collinear but also closed. If the set is not 
closed a great number of the orthodox correlation parameters lose their 
meaning. And if the set becomes multiply collinear, each of the ortho- 
dox correlation and regression parameters lose their meaning. Con- 
sider first the set which is simply collinear but is not a closed set. This 
is the case where S(12 . .. n) iS close to zero, and one or more, but not 
all, of the (n - 1)-dimensional coefficients S(12 . . . )k( ... n) are also 
close to zero. Those variables xk for which S(12 . .. )k( . . . ) is close 
to zero should simply be looked upon as superfluous variables from the 
point of view of linear regressions. Under no circumstances must the 
coefficients of (4.8) be determined by computing the regression co- 
efficients bk j 12 . .. n of xk on the other variables. In fact the collective 
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alienation coefficient S(12 . . . )k( . . . n) occurs as a denominator in 
bki. 12 . . . n Determining bk,. 12 . . . nwould, therefore, mean forcing a 
magnitude whose deviation from zero is non-significant into the de- 
nominator. The system of regression coefficients thus obtained would 
consequently be of the form: accidental error divided by accidental 
error, and would have no sense. This situation is illustrated by the 
three-dimensional case (B 2), that is the case where there exists exactly 
one systematic regression plane in (xl, x2, X3), but where this plane 
contains the x3-axis. In this case it would obviously have no sense to 
express X3 as a linear combination of x1 and x2. In this case neither 
the multiple coefficients of correlation of Xk on the set of the other 
variables nor the partial coefficient of correlation between Xk and any 
particular one of the other variables should be computed. All of these 
parameters will now be without a meaning. In the rigorous case they 

depend on an expression of the indeterminate ? form and in the statis- 0 
tical case their values are determined by the ratio between two small 
quantities due to accidental errors of observation. It is even easy to 
construct cases where the limiting process S(12 . . .. . . n. -.0 O iS 
carried out in such a way that the value of the partial r may have any 
value between plus one and minus one (these extreme values included). 
Or the value of the multiple r may be made to assume any value 
between zero and one. 

And that is not all. The standard error of these correlation param- 
eters will also become meaningless for a similar reason. Neither the 
multiple nor the partial correlation parameters considered nor the 
standard error of these will consequently furnish the slightest indica- 
tion of the cluster type or of the fact that Xk is a superfluous variable. 

But in the collective alienation coefficients we have a system of 
criteria that can never be subject to this kind of meaninglessness, 
because the collective alienation coefficients, as already mentioned, are 
polynomials in the simple correlation coefficients. An inspection of the 
(n -1)-dimensional collective alienation coefficients would immediately 
tell which of the variables should be ousted from the regression system. 

Now consider the case where none of the (n - 1)-dimensional collective 
alienation coefficients is significantly different from zero, that is, the 
case where the set is multiply collinear. There now exist at least two 
independent regressions of the form (4.8). The situation is now such 
that whatever variable in the set (xl, x2 . . . xn) be selected, the result 
would always be meaningless if the regression were determined of this 
variable on the others. Still worse, the standard errors of the regres- 
sion coefficients computed by the orthodox formulae would also lose 



388 American Statistical Association [14 

their meaning, so that there would be no warning signal telling us to 
keep away from this sort of regression. 

Looking back on the various cases discussed it is clear that the 
trouble always comes in those cases where there exists (rigorously or 
approximately) a linear dependency between those variables that are 
written in the right member of the orthodox regression equation, that is, 
between those variables that are considered as independent in the least 
square fitting procedure. 

In order to get back to a basis where the regressions have a meaning, 
it is necessary to find those subsets that are simply collinear, and then to 
treat each of these subsets separately by reducing it to a closed set and 
to determine the linear regression in it. A general scheme for perform- 
ing this analysis by means of the collective alienation coefficients is the 
following: Determine the rank p as above explained. Then select that 
p-dimensional subset for which the p-dimensional collective alienation 
coefficient is largest. Call this set the basis set. This is the p-dimen- 
sional subset that comes closest to being an uncorrelated (orthogonal) 
set. Then form p subsets by combining the basis set with each of the 
remaining variables. Each of these (p+ 1) sets may be considered as 
simply collinear and treated separately. That is to say, each such 
(p+1)-dimensional set should be reduced to a closed set by omitting 
these variables xk that are superfluous in the set according to the collec- 
tive alienation coefficient criterion, as applied to this subset. 

The above analysis may be illustrated by an artificially constructed 
problem. Ten observations were selected on four variables, x1, x2, x3 
and x4, the values being written down arbitrarily except for the re- 
quirement that the sum of the variables x2, x3 and x4 for each observa- 
tion should equal one hundred. (When measured as deviations from 
their means, therefore, x2+ x+x4=0). For convenience the set of ten 
values for each variable was made to total to even hundreds so that 
means and deviations from means would not involve decimal values. 
Using capital X to denote the absolute value of a variable and small x 
to denote the corresponding deviation from the mean, the data, as 
above defined, are: 

Xl X2 X3 X4 
25 18 29 53 
14 27 43 30 
37 31 51 18 
17 19 34 47 
24 12 46 42 
29 15 35 50 
41 21 28 51 
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39 28 41 31 
52 17 57 26 
22 12 36 52 

300 200 400 400 

The correlation coefficients for these observations which enter into the 
correlation matrix (R(1234)) are: 

r12= -+.169678 r13= +.408675 r14= - .392790 
r23= +.218931 r24=-.689427 r34=-.857719 

ril = r22 = r33 = r44 = 1.00 

That x2, x3 and X4 form a closed set is shown by the values of the coeffi- 
cients S(234), S(23), S(24) and 8(34) for 5(234) = 0, S(23) = .98, S(24) = .72 and S(34) = .51. 
None of the last three quantities are close to zero, hence the conclusion 
that (X2, X3, X4) form a closed set. The partial correlation coefficients 
in this set are all equal to minus one and multiple correlation coefficients 
are all equal to plus one. This is easily checked, as has been done, by 
actual computation. So far everything is all right. When, however, 
variable xi is included in the system trouble arises. If one tries to 
compute the partial correlations, r12.34, r13.24 or r14.23 it is found that they 

are all of the form 0 and similar results hold for the multiple coeffi- 0 
cient r1.234 and for the regression coefficients b12.34, b13.24 and b14.23. 

Mr. H. I. Richards, writing in the March, 1931, number of this 
JOURNAL on "Analysis of the Spurious Effect of High Intercorrelation 
of Independent Variables on Regression and Correlation Coefficients," 
says "that accurate coefficients of multiple correlation and regression 
can be obtained when the independent variables are perfectly intercor- 
related, if there are no errors in the calculations." This is fundamen- 
tally wrong and is due to certain slips in Mr. Richards' mathematics. 
He quotes the formulae for multiple and partial correlation, as given 
by Yule, as: 

(7 .1) 1 - 21 .234 . . . n =1 (-r 212) (1 - '13.2) (7'214.23) . (-21n.23 n- .1) 

l- r1.23r4.23 
(7.2) r14.23 = 

r14 
r2l23r423 

The latter is not correct, the correct formula being: 

(7.3) r14.23 = (1-r21243)J2(1-r224.3)H 

However, this is of minor importance in this connection. Mr. Rich- 
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ards' fundamental error is of a different nature and independent of 
whether we start from (7.2) or (7.3). He maintains that if x2, x3 and X4 
are perfectly correlated, for instance, by the fact that their sum is equal 
to one hundred, the result of computing R1.234 by (7.1) would be the 
same whether all three variables X2, X3 and X4 are included or one of them 
omitted; for example, X4. This must be so, he claims, because 

A. Factors (1- r212) and (1- r213.2) are the same in each case. 
B. Factor (1-r214.23) = 1 whenever r4.23 = 1. 

His attempt to prove proposition B is as follows: 
1. Factor (1 -r24.23) in the denominator of (7.2) equals zero whenever 

there is perfect correlation between X2, X3 and X4. This makes the 
denominator of (7.2) equal zero. 

2. The numerator in (7.2) also equals zero since: 
(a) r4.23= 1 

(b) r1.23=rl4 

3. The form ri4.23= ? must however be equal to zero since the limit 

of r14.23 is zero when r4.23 tends toward unity. 
Proposition (A) is obviously correct, and (B 1), which is the same as 
(B 2 a) is also correct as is seen from the formula 

r4.23? 1 = 

R(23) 

since, in the case under consideration, R(234) = 0, and it may be assumed 
that R(23) ,40 inasmuch as the case where x2 and x3 are perfectly cor- 
related is of no interest in the present connection. 

But proposition (B 2 b) is not correct. The correlation rl.23 is the 
correlation between xi and the value of the variable xi calculated from 
the regression: 

(7.4) bl2.3x2+b13.2x3 

where the coefficients are determined so as to make the correlation a 
maximum. On the other hand, if x2+x3+x4=0 (the x's here being 
deviations from means) then r14 can be looked upon as the correlation 
between xi and the variable: 

(7.5) - X2 - X3. 

It is quite obvious that the correlation between xi and (7.4) need not be 
the same as the correlation between xi and (7.5). The only thing that 
can be said is that 

r214< r21.23 
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The proposition (B 3), namely that in the case considered r14.23 = 0, is 
not correct either. There is even a double reason for its falsity. First 
of all, where X2+X3+X4=0 there is no question of a limiting process at 
all. The value of r4.23 is not approaching as a limit the value unity, but 
is exactly equal to unity all the time and can equal nothing else. In the 
second place, even if there were a valid case for considering a limiting 
process at all, it is possible to show that this limiting process can be 
carried out in such a way as to obtain for the limiting value of r14.23 any 
result whatever between + 1 and -1. The error which Mr. Richards 
makes on this point is that he lets r4.23 tend toward zero while all the 
other parameters involved, r14, r1.23, etc., are kept constant. This is, 
however, only a very special way of performing the limiting process that 
has as its final result a situation where x2+x3+x4=0 (or where there 
exists some other exact linear relation between these variables). In 
general, such a limiting process can be performed by varying certain 
observational values in x2 or x3 or X4. These observational values must 
be considered as the independent variables during the limiting process. 
If that is done, we see that the numerator and the denominator in the 
ratio defined by (7.2), (or by the correct formula (7.3)), are not func- 
tions of a single variable but of several and the limiting value of a ratio 
whose numerator and denominator depend on more than one variable, 
depends not only on the final situation toward which the system tends 
but also on the path followed in order to reach the final situation. We can 

illustrate this by the case of a ratio AXy) between two functions of 
g(x,y) 

two independent variables x and y. Suppose that both f and g vanish 
at the origin; i.e.,f(0,0) =g(0,0) =0. What is the limiting value of the 

ratio g(x'y) when x and y tend toward zero? That will depend on the 
g(x,y) 

path which the representative point in (x,y) co6rdinates follows on its 
way toward the origin. For simplicity it may be assumed that f and g 
have continuous partial deviates in the vicinity of origin. The ratio 
considered will, therefore, in the vicinity of origin be equal to 

(7.5) fxdx+fydy 
g,dx+gydy 

where fx,y,g.,gy denote the partial deviations at the origin and dx,dy 
denote the co6rdinates of the path along which the representative point 
tends toward the origin. It is quite obvious that in general the limit- 

ing value of (7.5) will depend on the ratio dy, that is, it will depend on 
dx 

the direction from which the point (x,y) tends toward origin. 
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What Mr. Richards has proved by his limiting process is, therefore, 
only that it is possible to approach to a linear dependency between 
X2, X3 and X4 in such a particular way that the limiting value for r14.23 
becomes 0. But he has by no means proved that this limiting value 
must be zero because there exists a linear dependency between x2, X3 and 
X4. In Frisch's paper, already referred to, there are given examples of 
limiting processes that will bring the partial correlation coefficients in 
three variables as close as may be desired to any magnitude between 
-1 and + 1 (where the limiting process tends toward representing a 
linear dependency between two of the variables) and it would not be 
difficult to give similar examples with one more variable, which is the 
situation here discussed. 

One further comment might be to the point: Mr. Richards gives some 
numerical computations intended to verify the theoretical proof of his 
contention that one will get the same value of R1.234 whether X4 is in- 
cluded or not. However, these numerical computations cannot con- 
tain any such "verification." Either the computations must be 
wrong, or he must in some point or another in the computations have 
made use of that fact which should be proved, namely that r14.23 =0. 
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