
\qquad
\qquad 2 of 15 \qquad $30111 / 2018$
P_{1}
Continuation of (b)
(1) $2 a^{2} d L+\frac{a}{4} d k+2 b^{2} d c+\frac{b}{4} d k=h+2(a+b) d L+r 2(a+b)$
(2) $(a+b) d L=\frac{d k}{4}+2 r$
from (2) $\quad d k=4(a+b) d L-8 r$
reeplacing in (1)

$$
\begin{gathered}
\rightarrow\left(2 a^{2}+2 b^{2}\right) d L+a((a+b) d L-2 r)+b((a+b) d L-2 r)=h+2(a+b) d L+ \\
r 2(a+b) \\
\left(\left(2 a^{2}+2 b^{2}\right)+a(a+b)+b(a+b)-2 a-2 b\right) d L=2 r(a+b)+h+2 r(a+b) \\
\left(2 a^{2}+2 b^{2}+a^{2}+a b+b^{2}+b a-2 a-2 b\right) d L=4 r(a+b)+h \\
d L=\frac{4 r(a+b)+h}{\left(3 a^{2}+3 b^{2}+2 a b-2(a+b)\right)}
\end{gathered}
$$

\qquad
\qquad 3 of 15 Dato/Date: $\quad 30 / 11 / 2018$

PD
a) $\quad k \neq 0$ (positive or negative)

$$
\text { i) } \lim _{x \rightarrow 0^{+}} \frac{1}{x^{k} \ln x}=\frac{1}{0^{k} \ln 0}\left\{\begin{array}{l}
k>0 \frac{1}{0 .-\infty} \\
k<0 \frac{1}{\infty .-\infty}=0
\end{array}\right.
$$

\Rightarrow for $k>0$;

$$
\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x^{k}}}{\ln x}=-\infty \stackrel{\operatorname{loh}}{\Longrightarrow} \frac{-k x^{-k-1}}{x}=-k x^{-k}=\cdot
$$

$$
\lim _{x \rightarrow 0^{+}} \Rightarrow-k \frac{1}{x^{k}}=-\frac{k}{0}=-\infty
$$

ii) $\lim _{x \rightarrow{ }^{+} \infty} \frac{1}{x^{k} \ln x}\left\{\begin{array}{l}k>0 \frac{1}{\infty, \infty} \\ k<0 \frac{1}{0, \infty}\end{array}\right.$
for $k<0$: $\quad \operatorname{from}(i)$

$$
\lim _{x \rightarrow+\infty} \frac{x^{-k}}{\ln x} \stackrel{2 \cdot H}{\longrightarrow}-k \cdot \frac{1}{x^{k}}=-\frac{k_{0} x^{-k}}{=}={ }^{+} d
$$

UiO : Universitetet i Oslo
\qquad 4 of is

$$
\begin{array}{c|c}
\begin{array}{c}
\text { Skriv ikke her } \\
\text { Do not write here }
\end{array} & \\
& i i i) \lim _{x \rightarrow 0^{+}}^{x^{k}(\ln x)^{2018}}
\end{array}\left\{\begin{array}{l}
\frac{k>0}{} \frac{1}{0 .+\infty} \\
k<0 \\
0 .+\infty \\
\infty, 0
\end{array}\right.
$$

for $k>0$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{x^{-k}}{(\ln x)^{2018}}=\frac{\infty}{\infty} \xrightarrow{\text { L.H. }} \frac{-k x^{-k-1}}{\frac{2018(\ln x)^{2017}}{x}} \\
& \lim _{x \rightarrow 0^{+}} \Rightarrow \frac{-k x^{-k}}{2018(\ln x)^{2017}} \stackrel{\text { L.H. }}{\Longrightarrow} \frac{k^{2} x^{-k-1}}{(2018)(2017)(\ln x)^{2016}} \\
& \operatorname{Lim}_{x \rightarrow 0^{+}} \Rightarrow \frac{k^{2} x^{-k}}{(2018)(2017)(n x)^{2016}} \quad 0000
\end{aligned}
$$

Apply 2.H rule 2018 times:

$$
\lim _{x \rightarrow 0^{+}} \frac{k^{2018} x^{-k}}{2018!(\ln x)^{0}}=\frac{k^{2018}}{2018!} \frac{1}{x^{k}}=+\infty \quad d
$$

UiO : Universitetet i Oslo
\qquad 5 of is

Eksamen iUExamination in:_ 4120
Kandidatru/Candidate no: 171737
\qquad Datoloate: $30 / 11 / 2018$
\qquad

$-\ln |1-v|$, which equals $-\ln (1-v)$ since the limits for v are $\ln x(<\ln =1)$
back to the origral value: and 0 .
${ }^{*}$ The answer ends up correct.

$$
\begin{aligned}
& \int_{x}^{1} \frac{1}{u(1-\ln u)} d u=\left.\right|_{x} ^{1}-\ln (1-\ln u) \\
&=\frac{-\underbrace{\ln \left(1-\frac{\ln 1}{0}\right)}_{0}+\operatorname{Ln}(1-\ln x)}{0} d u \\
& \int_{x}^{1} \frac{1}{u(1-\ln u)} d
\end{aligned}
$$

(4i) UiO: Universitetet il Oslo
Eksamen i/Examination in: 4120

(b)
ii) $\frac{1}{2} \int e^{v} \ln \left(\left(1+e^{v}\right)^{2}\right) d v=\left(1+e^{v}\right)\left(\ln \left(1+e^{v}\right)-1\right)+C$

By substitution:

$$
\begin{aligned}
& 1+e^{v}=u \\
& e^{v} d v=d u \frac{1}{2} \int \ln (u)^{2} d u \\
& =\frac{x^{1}}{2} \int \ln (u) d u=u \ln u-u+c \\
& =u(\ln u-1)+c
\end{aligned}
$$

Back the original value:

$$
\frac{1}{2} \int e^{v} \ln \left(\left(1+e^{v}\right)^{2}\right) d v=\left(1+e^{v}\right)\left(\ln \left(1+e^{v}\right)-1\right)+c
$$

Kandidatnr./Candidate no.: 171737
Side/Page: 8 of 15
Dato/Date: $\quad 30 / 11 / 2018$

Skriv ikke her / Do not write here

UiO \& Universitetet i Oslo

Side/Page:_ $90 f 15$

Eksamen i/Examination in: 4120
Kandidatnr./Candidate no.:_171737
Dato/Date: $30 / 11 / 2018$

from (a) part (i)
$A_{t}^{2}=\left(\begin{array}{cccc}-3 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -3\end{array}\right)=-3\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 4 & I & 1\end{array}\right)$
then
$\left(\begin{array}{ll}A_{t} \cdot A_{t}=-3 I\end{array} A^{\prime \prime} \quad \begin{array}{ll}\text { Multiply } & A^{\prime}(\text { when } \text { it exists) } \\ \text { by the } & \text { right hand }\end{array}\right.$ $A_{t}=-3 A_{t}^{\prime}$
$\Rightarrow \quad A^{-1}=\left(-\frac{\pi}{3}\right) \Delta t=s \Delta t$
(c) $A_{t} x=1$ for one solution to exist at

$$
A_{t}^{-1}\left(A_{t} x=1\right) \Rightarrow x=A_{t}^{1} 1
$$

$$
\text { from }(b): \quad x=-\frac{1}{3} \frac{\sqrt{t} \cdot 1}{\text { from } a) ~ i v)}
$$

$$
x=-\frac{1}{3}\left(\begin{array}{c}
3+t \\
1 \\
-\frac{1}{-3} \\
-(t)
\end{array}\right)
$$

Dato/Date: $\quad 30 / 11 / 2018$

Kandidatnr/Candidate no.: $\quad 171737$

SidelPage: $120+15$

Dato/Date: $\quad 30 / 11 / 2018$

Skriv ike her / Do not write here

$$
\begin{array}{r}
\frac{14}{-L e t} c>0 \quad u \text { is continuosly differentiable. } \\
\qquad \operatorname{Max}(x, y) \quad \text { sit } C-u(1-x, 1-y)=0 \quad(L)
\end{array}
$$

And:

$$
\text { Max } U(x, y) s+. \quad(-2(1-x, 1-y) \leq 0 \quad 0 \leq x<10 \leq y \leq 1(k)
$$

$$
\text { a) } \quad * \quad 4(1-x, 1-y)=g(x, y)
$$

MISSING: The on s strait in
of the "Lagrange. conditions
i) D Lagrange Conditions of (L)

$$
I: u(x, y)-h_{1}(c-g(x, y))
$$

F.O.C:

The " -1 " is inaccurate, $22=u_{x}^{\prime}+\mu_{1} g_{x}^{\prime} \cdot-1=0 \Rightarrow u_{x}^{\prime}=A_{1} य^{\prime}\left(1-x, v_{1-y}\right)$ the way g is define. ∂x The rightmost equality

Preferably write

(x, y) and

$(1-x, 1-y)$
$\frac{\partial L}{\partial x}=u_{x}^{\prime}+h_{1} u_{x}^{\prime} \cdot-1+h_{2}-h_{3}=0$
as it matters in
this problem.
Thee op of the
next page
$\frac{\partial z}{2 y}=u_{y}^{\prime}+h \cdot u_{y}^{\prime}-1+h_{4}-h_{5}=0$
Slackness: $\quad \begin{array}{lllll}h_{1} \geq 0, & h_{1}=0 & \text { if } c-u(1-k, 1-y)<0 \\ h_{2} \geq 0, & h_{2}=0 & \text { if } & 0<x \\ h_{3} \geq 0, & h_{3}=0 & \text { if } & & x<1 \\ L_{4} \geq 0 & h_{4}=0 & \text { it } & 0<y \\ h_{5} \geq 0, & h_{5}=0, & \text { it } & y<1\end{array}$
ii)

$$
\begin{gathered}
\text { \#8p/f1t because the \#. O.C hold and the } \\
\hline \text { constraint should also hold. } \\
\hline
\end{gathered}
$$

$$
\text { It is false that the point }\left(\frac{1}{2} \frac{1}{2}\right) \text { win satysfy }
$$

the lagrange conditions as cons as the Constraint balds, it will sates ty the point if it al\$0 satisfies the F.O.C. we can have points that satisty the constrain, but not the t.O.C.

$$
\text { In this case }\left(\frac{1}{2}, \frac{1}{2}\right) \text { satisfies both. }
$$

So this answer i a bit "unexpected" and must be read with caution:

* Likely the firs part is intended to address the general theory, while the last sentence ("In this case
[...]|') addresses his particular case.
* Without that last sentence, it would be quite a flaw.

$$
\begin{aligned}
& \text { F.O.C of L: replace }(x, y)=\left(\frac{1}{2}, \frac{1}{2}\right) \\
& \text { - } u_{x}^{\prime}(x, y)=M_{1} U_{x}(1-x,-y) \\
& U_{1}^{\prime}\left(\frac{1}{2}, \frac{1}{2}\right)=h_{1} u_{1}^{\prime}\left(1-\frac{1}{2}, 1-\frac{1}{2}\right) \\
& u_{x}^{1}\left(\frac{1}{2}, \frac{1}{2}\right)-A_{1} \mathcal{U}_{2}\left(\frac{1}{2}, \frac{1}{2}\right) \quad A_{1}=1 \\
& \text { the same for } \\
& \mathcal{U}_{y}^{\prime}(x, y)=h_{1} u_{y}^{\prime}(1-x, 1-y) \quad h_{1}=1 \\
& \operatorname{Ul}_{y}\left(\frac{1}{2}, \frac{1}{2}\right)=h, x_{y}\left(\frac{1}{2}, \frac{1}{2}\right)
\end{aligned}
$$

Eksamen i/Examination in: $\quad 4120$
Kandidatnr./Candidate no.: 171737 Side/Page: 14 of 15

Dato/Date: $\quad 30 / 11 / 2018$

Eksamen i/Examination in: $\quad 4120$
Kandidatnr./Candidate no.: $\quad 171737$
Side/Page: 15 of 15
Dato/Date:

