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Abstract

From a CAPM-type model the cost of equity is derived for a …rm operating

under various foreign tax systems. The …rm’s shares are traded in a market which is

una¤ected by these systems. The cost of capital depends on the foreign tax system,

even for fully equity …nanced projects. This is neglected in much of the literature.

For a corporate income tax the main factor which reduces the cost of equity is the

depreciation deductions. Compared with a neutral cash ‡ow tax, this reduces the

cost of equity because it acts as a loan from the …rm to the government.
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1 Introduction

One of the most frequently used formulae in corporate …nance is the weighted average cost

of capital, WACC.1 In the standard formulation the cost of debt depends on taxes because

of interest deductibility. But normally2 no tax factor is introduced in connection with the

cost of equity, the other of the costs of which the WACC is a weighted average. This paper

argues that there should be such a factor, re‡ecting the corporate tax system, when the

…rm invests in risky assets subject to tax depreciation. The factor will be more important,

the larger is the diversity of the tax rates and depreciation schedules under which the …rm

operates. This means it is important when di¤erent forms of capital, such as tangibles

versus intangibles, have widely di¤erent depreciation schedules, and also when high tax

rates are imposed, e.g., on natural resource extraction. The factor is crucial for discussions

of corporate tax reforms.

There exist alternative methods of capital budgeting, not relying on the WACC. Two

alternatives3 are the adjusted present value (APV) of Myers (1974) and the ‡ow to equity

(FTE). The points to be made here have the same relevance for the FTE method as for the

WACC. The APV approach, however, is usually applied in a way which is consistent with

this paper, since it is realized that depreciation tax shields have a much lower systematic

risk than pre-tax cash ‡ows.4 Even if …rms adopt the APV method, the points to be made

below are interesting if one wants to interpret and apply market data in capital budgeting.

Since depreciation tax shields have a lower systematic risk, and since they are propor-

tional to investment, it is possible to write down their e¤ect on the after-(corporate-)tax

cost of equity for an unlevered …rm. This is the contribution of the present paper. One

result is that the higher the corporate tax rate, the lower is the after-tax cost of equity for

depreciable assets.

The intuition behind the result is that di¤erent tax systems split the risks in the pre-tax

cash ‡ows di¤erently between …rms and the government. More speci…cally the result can

1According to Brealey and Myers (2000), “In practical capital budgeting, a single discount rate is

usually applied to all future cash ‡ows” (p. 242). The survey of Graham and Harvey (2001) con…rms this.
2Brealey and Myers (2000), p. 543, Ross, Wester…eld, and Ja¤e (1999), p. 305.
3This follows Ross, Wester…eld, and Ja¤e (1999), ch. 17.
4See, e.g., Lessard (1979), Summers (1987), and Brealey and Myers (2000, p. 566).
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be explained with reference to two well-known facts. One is that leverage increases the

cost of equity. The other is that the tax on non-…nancial cash ‡ows (immediate expensing,

no interest deductions) proposed by Brown (1948), with immediate, full loss o¤set and

no depreciation schedule, does not a¤ect the cost of equity. In fact, it does not a¤ect

investment decisions at all when there is value additivity, since the tax acts cash-‡ow-wise

as just another shareholder.

With the Brown tax as a reference point, the introduction of depreciation schedules

instead of immediate expensing is analogous in terms of risk to a loan from the …rm to the

tax authorities. There may be no interest paid, but the loan analogy shows the direction of

the e¤ect on the systematic risk of equity. Depreciation has the opposite e¤ect of leverage,

and thus reduces the systematic risk of equity.

The paper uses the Capital Asset Pricing Model (CAPM) to determine after-tax valu-

ation when the tax position is certain, and an option pricing model when the position is

uncertain. The valuation parameters (such as the interest rate, the market price of risk)

are exogenous. This is realistic when the …rm’s shares are mainly held by investors in one

large economy, and the valuation parameters are not in‡uenced by foreign tax systems. In

the model below, the …rm’s after-tax cost of equity is determined endogenously, while the

systematic risk of the …rm’s pre-tax cash ‡ows is exogenous.

The model extends to a CAPM setting the method for tax-determination of required

rates of return which is well-known in tax research, starting with Hall and Jorgenson

(1967).5 For given market valuation parameters it is determined what pre-tax rate of

return must be expected in order for a project to be exactly marginal. This paper goes a

step further, and shows how the tax system a¤ects the after-tax required expected rate of

return.

Most of the previous literature has neglected the e¤ects of a corporate income tax on

the systematic risk of equity. While the e¤ect of interest deductibility in reducing the cost

of debt is well known, it is most often neglected that even in a fully equity …nanced …rm,

5That literature uses the term “cost of capital” for the required rate of return before any taxes. The

terminology in the present paper is taken from corporate …nance, so the weighted average cost of capital,

and its components, the cost of equity and the cost of debt, are after corporate income tax, cf. Modigliani

and Miller (1963).
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the required after-tax expected rate of return is a¤ected by taxes. If one considers a closed

economy with the same corporate income tax applied (and e¤ective) everywhere, the point

is irrelevant, as the market already re‡ects the tax which applies.

Levy and Arditti (1973) observe that taxes with depreciation schedules a¤ect the re-

quired expected rate of return after tax. Their model is an extension of Modigliani and

Miller (M&M) (1963), introducing depreciable assets in the M&M model, but maintaining

their assumption of perpetual projects. The relationship with the present paper will be

discussed in section 5 below. Their result is quite di¤erent, and it is argued that the present

paper’s assumptions are more realistic in many situations.

Galai (1988) (very brie‡y, p. 81) and Derrig (1994) both discuss the e¤ect of a corporate

tax on the systematic risk of equity based on the CAPM.6 They do not observe the necessity

of solving for the expected rate of return of an after-tax marginal project. This is dicusssed

in section 2.3 below.

Both Levy and Arditti (1973) and Derrig (1994) consider only one simple tax system,

and assume that the …rm is certain to be in tax position. This paper is an extension in

both respects. Galai (1988) considers both risky debt and a risky tax position, but only

one tax system.

Section 2 presents a two-period model in which the …rm pays taxes with certainty.

Section 3 introduces uncertainty about whether taxes are paid. Section 4 extends to

a multi-period model, but without the uncertainty about taxes being paid. Section 5

compares with the alternative multi-period model of Levy and Arditti (1973). Section 6

illustrates some results with a numerical example. Section 7 gives some further discussion,

and section 8 concludes.

2 The model

A …rm invests in period 0 and produces in period 1, only. (A multi-period extension follows

in section 4.) We consider a marginal investment project, i.e., one with an APV equal to

zero. This is the standard method in an analysis of the e¤ects of taxation on investment

6The CAPM is presented in Assumption 1 and footnote 7 below.
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when there are non-increasing returns to scale. Which project is marginal, is endogenous,

determined by the tax system and other parameters in each case below. In this way we

also characterize the minimum required expected return to equity in each case.

Assumption 1: The …rm maximizes its market value according to a tax-adjusted Cap-

ital Asset Pricing Model,

E(ri) = rfµ + ¯i[E(rm)¡ rfµ]; (1)

where rf > 0 and µ 2 (0; 1].7

This allows for di¤erences in the tax treatment on the hands of the …rm’s owners of

income from equity and income from riskless bonds, re‡ected in the tax parameter µ.8 In

a discussion of taxation and the CAPM it seems reasonable to allow for this, but it has no

consequences for the results which follow. The standard CAPM with µ = 1 is all that is

needed.

When various tax systems are considered below, these are assumed not to a¤ect the

capital market equilibrium. This will be a good approximation if they apply in small

sectors of the economy (e.g., resource extraction), or abroad in economies which are small in

relation to the domestic one. This is thus a partial equilibrium analysis.9 For concreteness
7Of course, ri is the rate of return of shares in …rm i, rf is the riskless interest rate, rm is the rate of

return on the market portfolio, ¯i ´ cov(ri; rm)=var(rm), and E is the expectation operator. The original
model is derived in Sharpe (1964), Lintner (1965), and Mossin (1966).

All variables are nominal. As long as the tax system is based on nominal values, the model is only

consistent with a rate of in‡ation which is known with certainty, and …xed exchange rates. The underlying

real CAPM would then be

1 +E(ri)

1 + ¼
=
1 + rfµ

1 + ¼
+ ¯i

·
1 +E(rm)

1 + ¼
¡ 1 + rfµ

1 + ¼

¸
;

where ¼ is the rate of in‡ation.
8A tax-adjusted CAPM appears, e.g., in Sick (1990) or Benninga and Sarig (1997, 1999). Rather strict

assumptions are needed for Benninga and Sarig’s Extended Miller Equilibrium, in which µ equals one

minus the home country’s corporate tax rate. While this is perhaps the most sophisticated tax-adjusted

CAPM available, the more general formulation in Assumption 1 also covers other interesting situations.

Under an imputation system one could have µ equal to one minus the corporate tax rate without any

Miller equilibrium. This was the situation in Norway 1992–2000, cf. Sørensen (1994).
9The existing literature, Levy and Arditti (1973), Galai (1988), and Derrig (1994), is not explicit at this

point, but neglects general equilibrium e¤ects. As soon as one wants to examine the e¤ects of changes in
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we use “home” and “domestic” about the economy where the …rm’s shares are traded. This

economy may have a tax system, which is exogenously given in the analysis, and re‡ected

in µ. This will be called a “personal” tax system, even though the owners may be …rms or

other institutions. For concreteness we use “abroad” and “foreign” about the sector whose

corporate income tax we analyse.

A consequence of the CAPM is that the claim to any uncertain cash ‡ow X, to be

received in period 1, has a period-0 value of

'(X) =
1

1 + rfµ
[E(X)¡ ¸µ cov(X; rm)]; (2)

where ¸µ = [E(rm) ¡ rfµ]= var(rm). Equation (2) de…nes a valuation function ' to be
applied below.

A product price, P , will most likely not have an expected rate of price increase which

satis…es the CAPM.10 A claim on one unit of the product will satisfy the CAPM, however,

so that the beta value of P should be11 de…ned in relation to the return P='(P ),

¯P =
cov( P

'(P )
; rm)

var(rm)
: (3)

It is possible to express this more explicitly, without the detour via '(P ), namely as

¯P =
1 + rfµ

E(P ) var(rm)
cov(P;rm)

¡ [E(rm)¡ rfµ]
: (4)

Assumption 2: In period 0 the …rm invests an amount I > 0 in a project. In period

1 the project produces a quantity Q > 0 to be sold at an uncertain price P . The joint

probability distribution of (P; rm) is exogenous to the …rm, and cov(P; rm) > 0. There is

no production ‡exibility; Q is …xed after the project has been initiated.

The market value in period 0 of a claim to the revenue in period 1 isQ'(P ) in case there

are no taxes. There is no need to specify a “production function” relationship between

tax rates, a general equilibrium analysis would be interesting. Alternatively one can explicitly concentrate

on tax rates abroad or in a small sector, as in the present paper.
10The product price has what McDonald and Siegel (1984) call an (expected-)rate-of-return shortfall.
11It is certainly possible to de…ne ¯i = cov(ri; rm)= var(rm) for any rate of return ri. But the de…nition

has little relevance for non-equilibrium rates of return, i.e., those for which (1) does not hold. (In the

CAPM jargon, those which are not on the Security Market Line.) The formula for linear combination of

betas is only true when the betas relate to equilibrium returns.
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I and this market value. We shall only be concerned with the marginal project, which

will be solved for in each case below. Of course, with no taxes the marginal project has

I = Q'(P ).

In the background there may be a “production function” specifying Q'(P ) as a linear

or concave function of I. It would be a problem, however, to use this method to analyze

tax distortions in a general equilibrium framework. One would want to analyze distortions

in production, while we shall only be able to analyze distortions in the ratio of Q'(P ) to

I. In a general equilibrium analysis, if taxes are changed in the home economy so that

the market valuation function ' is a¤ected (e.g., through changes in µ and/or the joint

probability distribution of (P; rm)), then '(P ) will change, and this model is not able to

detect the underlying production distortions.

In the present version of the model no explicit costs are speci…ed in period 1. If P > 0

with full certainty, there can never be any reason for the …rm to cancel production after

P has become known.12 A more complicated extension would include a cost and a real

option, the option to shut down if the net after-tax cash ‡ow becomes negative in period

1. The assumption of cov(P; rm) > 0 can easily be relaxed. It is only a convenience in

order to simplify the verbal discussions below.

De…nition: The relative distortion parameter is de…ned as that ratio

°i ´ Q'(P )

I
(5)

which makes the net after-(corporate-)tax market value of the project equal to zero in case

i below.13

The parameter is a useful summary measure of how the tax system in a particular case

distorts the pre-tax productivity of the marginal project. It compares with a …rst-best (or

no-tax) situation, and one should not use it to draw any conclusions about opimal taxation.

Observe that °i is not one plus an expected rate of return. The numerator is already

expressed as a market value in period 0. Instead °i measures the relative distortion from
12Assume that PQ is replaced by PQ¡WL, where W is a stochastic factor price, and L is the input

quantity. The easy extension is based on the ratio Q'(P )=L'(W ) being a constant, say, · > 1. Then ¯P

is replaced by (·=(·¡ 1))¯P ¡ (1=(·¡ 1))¯W .
13Equation (36) gives a multi-period extension of this de…nition.
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the tax system in “one plus the required expected rate of return,” with °i = 1 indicating

the no-tax situation. One could call °i¡1 the tax wedge in “one plus the required expected
rate of return.”

Assumption 3: A fraction (1¡´) 2 [0; 1) of the …nancing need in period 0 is borrowed.
This fraction is independent of the investment decision and of the tax system. The loan B

is repaid with interest with full certainty in period 1.

The …nancing need is equal to I minus the immediate tax relief for investment, if any.14

Debt is introduced only because of the prominence of debt in the traditional literature

on taxes and the cost of capital. In the present paper the results can be derived with zero

debt. The assumptions of independence between …nancing and investment, and between

(after-tax) …nancing and taxes, are those underlying the standard derivation of the WACC,

and therefore the appropriate set of assumptions here.15

It should be kept in mind that Assumption 3 concerns the formal project-related bor-

rowing by the …rm. When applied to the subsidiary of a multinational, this may be tax

motivated and di¤er from the net project-related borrowing undertaken by the multina-

tional and its subsidiaries taken together. The lender to one subsidiary is often another

subsidiary of the same multinational. Also, the possibility of transfer pricing is neglected

here.

The assumption of default-free debt is also a common simpli…cation, and should be

acceptable for the purposes of this paper. Galai (1988) focuses on risky debt in a similar

model.

2.1 Case 1: Tax position known with certainty

Assumption 4: A tax at rate t 2 [0; 1) will be paid with certainty in the production period.
The tax base is operating revenue less (grfB+cI). There is also a tax relief of taI in period

0. The constants g; c; and a are in the interval [0; 1].

14´ is in this sense the ratio of equity to assets after tax, as will become clear below.
15Another defence for not introducing a more sophisticated theory of debt …nancing is that the survey

by Graham and Harvey (2001) shows that most …rms have a …xed target debt ratio.
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This general formulation allows for accelerated depreciation with, e.g., a > 0 and

a + c = 1, or a standard depreciation interpreted (since there is only one period with

production) as a = 0; c = 1. There is usually full interest deduction, i.e., g = 1, but the

Brown (1948) cash ‡ow tax has g = 0, and some transfer pricing regulations might require

0 < g < 1.

The cash ‡ow to equity in period 1 is

X(1) = PQ(1¡ t)¡ (1 + rf)B + rfBgt+ tcI: (6)

The market value of this is

'(X(1)) = Q'(P )(1¡ t)¡ 1 + rf (1¡ tg)
1 + rfµ

B +
tcI

1 + rfµ
: (7)

For a marginal project the expression must be equal to the …nancing need after bor-

rowing and taxes, ´I(1¡ ta), and by de…nition Q'(P ) = °1I, so that

´I(1¡ ta) = '(X(1)) = °1I(1¡ t)¡ 1 + rf(1¡ tg)
1 + rfµ

B +
tcI

1 + rfµ

= °1I(1¡ t)¡ 1 + rf (1¡ tg)
1 + rfµ

(1¡ ta)(1¡ ´)I + tcI

1 + rfµ
; (8)

which implies

°1 =
1

1¡ t
(
(1¡ ta)

"
´ +

1 + rf(1¡ tg)
1 + rfµ

(1¡ ´)
#
¡ tc

1 + rfµ

)
: (9)

The proof of the following proposition is in the appendix.

Proposition 1: Under Assumptions 1–4: The relative distortion is given by (9). It is

increasing in t for a = 0, and decreasing in t for a = 1. For each vector of parameters

(´; rf ; µ; g; c), one has @°1=@t = 0 for one intermediate value a 2 (0; 1], which also depends
on the tax rate t if ´ < 1 and g > 0.

In the most clear-cut case depreciation is allowed without any immediate deduction,

i.e., a = 0. As long as cI is less than I in present value, the tax system clearly entails a

distortion compared with a no-tax situation, and more, the higher is t.

It is instructive …rst to consider the special cases of t = 0 and of a Brown (1948) cash

‡ow tax. Setting t = 0 in (9) yields

°1 = ´ +
1 + rf
1 + rfµ

(1¡ ´): (10)
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The corollary follows directly:

Corollary 1.1: Under Assumptions 1–4: If t = 0, the relative distortion is given

by (10), which strictly exceeds unity if ´ < 1 and µ < 1. The same relative distortion

occurs, independently of the tax rate, under a tax on non-…nancial cash ‡ows, i.e., if

t > 0; a = 1; c = 0; g = 0.

As long as the capital market re‡ects a personal tax system which discriminates against

interest income (µ < 1), borrowing (´ < 1) implies that less is invested (°1 > 1) than under

no borrowing if there is no corporate tax. There is no additional distortion from a corporate

cash ‡ow tax.16

More generally, however, there is a distortion which depends on the tax rate, but which

is independent of ¯P .

For a standard corporate income tax without accelerated depreciation, we …nd

°1 =
1

1¡ t
"
´ + (1¡ ´)1 + rf(1¡ t)

1 + rfµ

#
¡ t

(1¡ t)(1 + rfµ) : (11)

The corollary follows directly, cf. equation (A1) in the appendix.

Corollary 1.2: Under Assumptions 1–4: If a = 0, c = 1, g = 1, the relative distortion

is given by (11). It is strictly increasing in the tax rate and exceeds the value given in (10)

as long as t > 0.

Going back to the general formulation of case 1 (without specifying a; c; g; µ; ´), the

beta value of equity is a value-weighted average of the beta values of the elements of the

cash ‡ow. From (6) this is

¯X1 =
Q'(P )(1¡ t)
'(X(1))

¯P =
°1(1¡ t)
´(1¡ ta)¯P : (12)

The following is shown in the appendix:

16When applied to …rms facing µ < 1 in their home capital markets, one could replace tg with a (perhaps

partial) interest deductibility at a rate 1¡ µ to obtain °1 = 1. One can obtain an e¤ect similar to the cash
‡ow tax from a “Resource Rent Tax” (RRT), as proposed by Garnaut and Clunies Ross (1975). This has

a = 0 and c = 1 + rfµ, so that the postponed deduction for investment costs is compensated by interest

accumulation.
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Proposition 2: Under Assumptions 1–4: The beta value of equity is given by (12). It

is decreasing in the tax rate, and strictly so when c > 0 or (1¡ ´)g > 0 (or both).

The various e¤ects are nicely separated: ¯P=´ is roughly the beta value corrected for

the e¤ect of leverage17 (and exactly so when µ = 1¡tg). Then the beta is multiplied by the
distortion factor °1, and also by a factor (1¡ t)=(1¡ ta) which re‡ects the deviation from
a cash ‡ow tax. The latter is related to the basic intuition mentioned in the introduction,

that a depreciation deduction acts as a loan from the …rm to the tax authorities, when

compared with a cash ‡ow tax. Any depreciation deduction would be su¢cient to make

¯X1 decreasing in the tax rate. But some interest deductibility (g > 0) is also su¢cient,

given that there is some leverage (´ < 1). The e¤ect of a cash ‡ow tax is summarized as

follows:18

Corollary 2.1: Under Assumptions 1–4: For a = 1, c = 0, g = 0, the beta of equity is

independent of the tax rate t, and is given by ¯X1 = ¯P°1=´, where °1 is given by (10).

Since (12) contains tax parameters in °1, but also separately, there is clearly no mono-

tonic relation between ¯X1 and °1 as tax systems change. As is seen from (9), a simulta-

neous change in t and c may leave °1 unchanged, but it will then change ¯X1.

If a higher tax rate is introduced, e.g., to capture rent from natural resource extraction,

this is often partly compensated by higher deductions (“uplift”) in order to avoid a too

high distortion.19 The following corollary shows that the e¤ects of this on the beta of

equity depend on the method of compensation. The result follows directly from equation

(12).

Corollary 2.2: Under Assumptions 1–4: Consider a tax reform with t > 0; a = 0 and

°1 > 1 at the outset. If an increase in t is compensated by a higher c so that °1 is kept

constant, then also ¯X1 is reduced in proportion with (1¡ t).
17“Leverage” refers to borrowing as a fraction of I(1¡ ta), not as a fraction of I.
18While it is often stated that a RRT (see footnote 16) and a Brown cash ‡ow tax have the same e¤ects

when tax positions are certain, this is not true for e¤ects on the systematic risk of equity. For instance,

when the project is fully equity …nanced (´ = 1), the RRT has ¯X1 = ¯P (1¡ t), while the cash ‡ow tax
has ¯X1 = ¯P .
19Such deductions are well known, e.g., from petroleum taxation in the U.K., Denmark and Norway.
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If instead an increase in t is compensated by a higher a, there will also be a reduction

in ¯X1 if g(1 ¡ ´) > 0 or c > 0 (or both). (The proof is a bit tedious, and is left out.)

These e¤ects are illustrated in section 6 below.

Equation (12) (with (9) inserted) could be compared with the text book version. For

instance, in Brealey and Myers (2000) p. 483 one …nds ¯X = ¯P=´ when the debt is riskless

and the “beta of assets” is interpreted as ¯P . Using equation (12) instead, we …nd

¯X1 <
¯P
´
, (1¡ ´)rf(1¡ tg ¡ µ) < tc

1¡ ta: (13)

Except for the case of a cash ‡ow tax (c = 0), or other cases with very small c values, this

inequality is likely to be satis…ed, since the right-hand side is greater than or equal to tc,

while the left-hand side is less than rf . Thus ¯X1 here is lower than the text book version

when ¯P is interpreted as the text books’ “beta of assets.”

A more reasonable interpretation is that the “beta of assets” already includes a cor-

porate income tax in some sector. In that case the correct beta of equity is lower (ceteris

paribus) the higher is the tax rate for the project to be evaluated.

2.2 The weighted average cost of capital

Based on case 1, we can calculate the cost of equity and the WACC. The CAPM formula

gives the cost of equity,

E(X(1))

'(X(1))
¡ 1 = rfµ + ¯X1[E(rm)¡ rfµ]; (14)

where ¯X1 is taken from (12), and E(X(1))='(X(1)) represents a marginal project.

As a control we may calculate the WACC directly. By standard de…nition the WACC is

the expected rate of return for the marginal project after tax. More speci…cally, it is based

on the after-tax cash ‡ow in period 1 calculated as if there is no borrowing. The return

should be calculated in relation to the total of debt and equity, and the tax advantage of

borrowing shows up in the cost of debt. Thus,

1 +WACC1 =
E(X(1)) +B(1 + rf)¡ rfBgt

'(X(1)) +B
: (15)

The following corollary is shown in the appendix:
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Corollary 2.3: Under Assumptions 1–4: The weighted average cost of capital as de-

…ned by (15) can be expressed as in (16), with ¯X1 taken from (12).

The WACC is given by:

1 +WACC1 = 1 + ´ frfµ + ¯X1[E(rm)¡ rfµ]g+ (1¡ ´)rf (1¡ tg): (16)

On an abstract level this is consistent with the standard expression, one plus a value-

weighted average of the costs of equity and debt, where the cost of debt is rf(1¡ tg). Case
1 has shown, however, how the cost of equity is a¤ected by the corporate tax applied in

the sector. Equation (16) shows that this only happens when the cash ‡ow has systematic

risk. If ¯P = 0, then also ¯X1 = 0, and the equity element in the WACC formula is not

a¤ected by the tax rate t.

2.3 A comparison with Derrig (1994)

Derrig’s model can be compared with case 1 above by setting µ = 1, g = 1, a = 0, and

´ = 1. The most obvious interpretation includes setting c = 1, but we shall see below that

there exists another possibility.

Derrig does not consider an after-tax marginal project, and thus arrives at a somewhat

di¤erent expression from that of case 1 above. The after-tax beta of Derrig’s model can be

reproduced with the present paper’s notation as follows:

An amount I = Q'(P ) is invested, and yields an after-tax income one period later of

QP ¡ t[QP ¡ I] = QP ¡ t[QP ¡Q'(P )]; (17)

i.e., only the net nominal income is taxed. This tax is paid with certainty, or received (if

the expression in square brackets is negative). The value one period earlier of the after-tax

income is

Q'(P )(1¡ t) + tQ'(P )
1 + rf

= Q'(P )
1 + rf ¡ rf t
1 + rf

: (18)

The beta of this is
Q'(P )(1¡ t)
Q'(P )

1+rf¡rf t
1+rf

¯P =
(1¡ t)(1 + rf)
1 + rf(1¡ t) ¯P ; (19)

decreasing in t, which is equation (17) in Derrig (1994).
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But observe that the relation between the investment in period 0 and the market value

in period 0 of the after-tax income in period 1 was not determined endogenously in this

derivation. In fact, the only role of the statement “An amount I = Q'(P ) is invested,”

is to determine the deduction granted in the tax base in period 1. This deduction has a

di¤erent relation to the tax base than in case 1 above. Following the same exposition, case

1 goes like this:

An amount I = Q'(P )=°1 is invested, and yields an after-tax income one period later

of

QP ¡ t[QP ¡ I] = QP ¡ t[QP ¡Q'(P )=°1]; (20)

i.e., only the net nominal income is taxed. This tax is paid with certainty, or received (if

the expression in square brackets is negative). The value one period earlier of the after-tax

income is

Q'(P )(1¡ t) + tQ'(P )

°1(1 + rf )
= Q'(P )

(1¡ t)°1(1 + rf) + t
°1(1 + rf)

: (21)

The beta of this is

Q'(P )(1¡ t)
Q'(P )

°1(1¡t)(1+rf )+t
°1(1+rf )

¯P =
°1(1¡ t)(1 + rf)

°1(1¡ t)(1 + rf ) + t¯P : (22)

The solution for °1 which ensures that the project is marginal is shown in (9), which yields

°1 =
1 + rf ¡ t

(1¡ t)(1 + rf) : (23)

Inserting this gives

¯X1 =
1 + rf ¡ t
1 + rf

¯P : (24)

For t > 0; rf > 0, this is strictly greater than the value in (19) found by Derrig (1994).

It is, however, possible to reproduce Derrig’s result as a special case of case 1 by

considering a contrived tax system with c = °1. This reintroduces a relationship for period

1 between the pre-tax income and the deduction in the tax base which is the same as in

Derrig’s model. Preserving the other parameter values of this section yields (from (9))

°1 =
1

1¡ t
Ã
1¡ tc

1 + rf

!
=

1 + rf ¡ tc
(1¡ t)(1 + rf) : (25)

Introduce c = °1, and then solve for °1:

°1 =
1 + rf

1 + rf ¡ rf t : (26)
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From (12) we now …nd

¯X1 =
(1¡ t)(1 + rf)
1 + rf ¡ rf t ; (27)

which is Derrig’s result. This shows that the e¤ect of Derrig’s not solving for a marginal

project shows up through the ratio of the before-tax income to the deduction.

3 Extending the model: Uncertain tax position

The results for case 1 above are based on the assumption that the …rm is certain to be

in tax position in period 1. While the tax element tPQ is perfectly correlated with the

operating revenue, the values of the depreciation deduction and interest deduction were

assumed to be certain, relying on the …rm being in a certain tax position.

Most corporate income taxes have imperfect loss o¤set. If the tax base is negative one

year, there is no immediate refund. The loss may under some systems be carried back or

forward, but there are usually limitations to this, and the present value is not maintained.20

In a two-period model the loss carry-forward cannot be modeled in detail. 21 An extreme

assumption which yields an analytical solution, is that in these cases, there is no loss o¤set

at all.22 The cash ‡ow to equity in period 1 is then

PQ¡B(1 + rf )¡ tÂ(PQ¡ gBrf ¡ cI); (28)

where Â is an indicator variable, Â = 1 when the …rm is in tax position in period 1, Â = 0

if not. We shall consider an even more extreme version, Assumption 5, which replaces

Assumption 4.

Assumption 5: The tax base in period 1 is operating revenue less (grfB+ cI). When

this is positive, there is a tax paid at a rate t. When it is negative, the tax system gives no

20There are exceptions, such as the system proposed by Garnaut and Clunies Ross (1975).
21For a numerical, multi-period approach, see Lund (1991).
22Observe that for a su¢ciently small project, there is no such thing as a partial loss o¤set within one

period. Since we are only interested in identifying the borderline case, the after-tax marginal project, it

would be quite arbitrary to introduce a large loss project of which one part exhausts a tax liability from

other activity, while the remaining part has no loss o¤set. While this is certainly possible in practice, we

concentrate on the extremes.
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loss o¤set at all. There is also a tax relief of taI in period 0. The constants g; c; and a are

in the interval [0; 1].

The assumption is extreme, exaggerating the probability of a negative tax base. The

marginal project is supposed to make up the whole tax base, which will not be the case

if there are decreasing returns to scale. The average rate of return from the project is

likely to be substantially higher than the marginal rate of return, in particular in natural

resource extraction. The marginal project is more realistically seen as a sub-project within

a larger project, “the last amount to be invested.”

More generally, the …rm (i.e., the subsidiary) is likely to consist of several projects.

Under Assumption 2, these would just be more projects with infra-marginal rates of return.

Outside the model there are also sunk costs from periods before period 0, and there is

‡exibility, so there may be a variety of projects. Some of these could contribute negatively

to the tax base, but in those cases, there may be ‡exibility which allows the …rm to cancel

that contribution. Flexibility would increase the probability of being in tax position.

Nevertheless we will consider Assumption 5 because it leads to an analytical solution,

and because it gives an upper bound on the distortion. The case may be called the constant-

returns-to-scale (CRS), stand-alone case. The solution is found using option valuation

methods, …rst applied to tax analysis by Ball and Bowers (1983).23

Assumption 6: A claim to a period-1 cash ‡ow max(P ¡ K; 0), where K is any

positive constant, has a period-0 market value according to the model in McDonald and

Siegel (1984). The value can be written as

'(P )N(x1)¡ K

1 + rfµ
N(x2); (29)

where

x1 =
ln('(P ))¡ ln(K=(1 + rfµ))

¾
+ ¾=2; x2 = x1 ¡ ¾; (30)

23The application of option valuation does not imply that there is a real option, i.e., some ‡exibility

in the project. It is simply the tax cash ‡ow which resembles that from a European call option at the

option’s expiration date. Other applications of the method are Majd and Myers (1987) and Lund (1991).

MacKie-Mason (1990) combines real options and tax options.
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N is the standard normal distribution function, and ¾ is the instantaneous standard de-

viation of the price. The formula is modi…ed here with rfµ as the risk free interest rate.

If µ < 1, this must rely on an assumption that anyone who trades in securities is more

heavily taxed on their interest income than on their equity income.

As pointed out by McDonald and Siegel, there are two alternative derivations of their

valuation formula, one based on absence of arbitrage, the other on an intertemporal version

of the CAPM.24 N(x2) can be interpreted as the probability that P > K, but with an

adjustment. The drift of the price process must be adjusted to what it would have been if

all investors had been risk neutral.25 When ¯P > 0, this means that N(x2) < Pr(P > K).

N(x1) exceeds N(x2), re‡ecting that E(P jP > K) > E(P ), so that the whole formula is
the present value of E[max(0; P ¡K)] under the adjusted price process.26
Equations (30) originate from the geometric Brownian motion price process which un-

derlies the original Black and Scholes (1973) option theory. Equation (29) is much more

general, however, and holds for any price process which does not allow arbitrage, with its

adjusted probabilities replacing N(x1) and N(x2).27 This more general interpretation is

su¢cient here.

3.1 Case 2: CRS, stand-alone, uncertain tax position

Based on Assumptions 1, 2, 3, 5, and 6, the beta and distortion can be derived as follows.

The cash ‡ow to equity in period 1 is a special case of (28),

X(2) = PQ¡B(1+rf )¡tmax(0; PQ¡gBrf¡cI) = PQ¡B(1+rf )¡tQmax(0; P¡gBrf + cI
Q

);

(31)

with (gBrf + cI)=Q replacing K. The valuation in period 0 of a claim to this is

'(X(2)) = Q'(P )¡ B(1 + rf)
1 + rfµ

¡ tQ
"
'(P )N(x1)¡ gBrf + cI

Q(1 + rfµ)
N(x2)

#
24The …rst requires spanning, i.e., the existence of forward contracts for the output, or the ability

to create these from other securities. The second places more restrictions on preferences and the joint

distribution of asset returns.
25See, e.g., Cox and Ross (1976), Constantinides (1978), or any text book in option theory.
26It is possible that N(x1) > Pr(P > K), which happens when ¯P is small and ¾ is large.
27This was realized by Cox and Ross (1976), and is elaborated upon in advanced text books in …nance

theory, e.g., in Björk (1998).
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= Q'(P )(1¡ tN(x1))¡ B

1 + rfµ
(1 + rf (1¡ tgN(x2))) + tcIN(x2)

1 + rfµ
: (32)

For a marginal project the market value must be equal to the …nancing need after

borrowing and taxes, and by de…nition Q'(P ) = °2I, so that

´I(1¡ ta) = '(X(2)) = °2I(1¡ tN(x1))¡ 1 + rf(1¡ tgN(x2))
1 + rfµ

(1¡ ta)(1¡´)I+ tcIN(x2)
1 + rfµ

;

(33)

which implies

°2 =
1

1¡ tN(x1)
(
(1¡ ta)

"
´ +

1 + rf(1¡ tgN(x2))
1 + rfµ

(1¡ ´)
#
¡ tcN(x2)
1 + rfµ

)
: (34)

The e¤ect of the uncertain tax position shows up only through the multiplication of the

(period-1) tax rate with N(x1) orN(x2). One could say that this is similar to a reduced tax

rate in period 1, but the di¤erence between the two probabilities is crucial. If uncertainty

goes to zero, so that both probabilities go to unity, °2 approaches °1.

The beta value of equity is equal to the beta value of a portfolio with value '(X(2)),

with Q(1¡ tN(x1)) claims on P and the rest in risk free assets,

¯X2 =
Q'(P )(1¡ tN(x1))

'(X(2))
¯P =

°2(1¡ tN(x1))
´(1¡ ta) ¯P : (35)

The results can be summarized as follows:

Proposition 3: Under Assumptions 1–3, 5, 6: The relative distortion is given by (34).

The beta of equity is given by (35), and is decreasing in N(x2).

The product °2(1¡ tN(x1)), which appears in (35), is equal to the expression in curly
brackets in (34), which does not contain N(x1). It is easily seen from this that as N(x2) is

reduced (from unity, which is its implicit value in (12)), ¯X2 is increased. The possibility

of being out of tax position increases the systematic risk of the equity position, whether

there is borrowing (´ < 1) or not.

The e¤ect on °2 is less transparent, since (1¡ tN(x1)) appears in the denominator, and
this is increased as uncertainty increases. This counteracts the increase in the expression

in curly brackets in (34). For those two terms which contain N(x2)=(1¡ tN(x1)), however,
it is possible to show that this fraction decreases with uncertainty.28 The two terms have
28From the fact that t < 1 < (1¡N(x2))=(N(x1)¡N(x2)), one can conclude that the fractionN(x2)=(1¡

tN(x1)) is less than 1=(1¡ t), which is its value when the tax position is certain.
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negative sign, so this contributes to increasing °2. But if ´ is large and/or µ is small, the

e¤ect of uncertainty is di¢cult to determine without considering numerical examples.

4 Extending the model: Many periods, certain tax

position

A multi-period extension without production ‡exibility and with the …rm always in tax

position can be derived from the following assumptions:

Assumption 7: In period 0 the …rm invests an amount I > 0 in a project. In period T

the project produces a quantity QT ¸ 0 to be sold at an uncertain price PT , for all periods
T ¸ 1. The joint probability distribution of all prices and all rates of return on the market
portfolio is exogenous to the …rm. There is no production ‡exibility; fQTg1T=1 is …xed after
the project has been initiated.

It will be apparent below that there is no need to specify any particular production

pro…le. At this point it is not speci…ed whether the pro…le ends in …nite time or continues

inde…nitely.

Assumption 8: The tax system and the risk free interest rate are constant over time.

As seen from period 0, claims to one unit of output to be delivered in di¤erent future periods

all have the same beta, ¯P , irrespective of the period of delivery. Such claims are valued in

period 0 by some well de…ned, linear valuation function, '(PT ). The valuation sums with

in…nitely many terms have …nite values.

This formulation is su¢cient to solve the model, and avoids any speci…cation of, e.g.,

the output price process or the term structure of convenience yields. Only valuation as of

period 0 is of interest. The assumption of …nite values implies, i.a., a positive after-tax

riskless interest rate, and it restricts the possible growth in the QT sequence.

Assumption 9: A fraction (1¡´) 2 [0; 1) of the …nancing need in period 0 is borrowed.
This fraction is independent of the investment decision and of the tax system. In each
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subsequent period, a fraction ¹ 2 (¡rfµ; 1) of the remaining loan is repaid, and interest is
paid.

Since the product price is likely to have autocorrelation, the market value of the …rm’s

remaining production will be stochastic and change over time. Thus it would be compli-

cated to assume that the leverage is a constant fraction of this value. Instead an exponen-

tially decreasing loan is assumed for simplicity. If µ = 1¡ tg, the assumption will have no
importance, since the net after-tax value of the loan will be zero. There is no assumption

that ¹ ¸ 0, so the loan may be increasing in nominal terms, as will be apparent below.

The after-tax present value should be …nite, however, requiring ¹ > ¡rfµ.

Assumption 10: A tax at rate t 2 [0; 1) will be paid with certainty in all production
periods. The tax base in period T is operating revenue less (grfBT¡1 + cT I), where BT¡1

is the loan remaining from the previous period. There is also a tax relief of taI in period

0. The constants g; a; and all cT (for T ¸ 1) are in the interval [0; 1].

The schedule of tax depreciation allowances is the rather general fc1I; c2I; : : :g, and it
turns out that only the present value of this will be important.

The models of M&M (1963) and Levy and Arditti (1973) assume continuous reinvest-

ment and a stochastic revenue which has the same probability distribution every period.

The present model can be extended to accomodate such assumptions. This will be case 4.

The realism and relevance of the models will be considered thereafter.

4.1 Case 3: Many periods, certain tax position

Based on Assumptions 1, 7, 8, 9, and 10, the beta and distortion can be derived as follows.

De…ne the relative distortion as

°3 ´
P1
T=1QT'(PT )

I
: (36)

when the project is exactly marginal after tax.

The cash ‡ow to equity in any period T (for T ¸ 1) is

XT = PTQT (1¡ t)¡ rf(1¡ tg)B0(1¡ ¹)T¡1 ¡B0(1¡ ¹)T¡1¹+ tcT I: (37)
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The market value in period 0 of this sequence is

1X
T=1

'(XT ) = (1¡ t)
1X
T=1

QT'(PT )¡B0
1X
T=1

[rf(1¡ tg) + ¹](1¡ ¹)T¡1
(1 + rfµ)T

+ tI
1X
T=1

cT
(1 + rfµ)T

:

(38)

Writing the last of these sums, the present value of (the tax value of) the depreciation

schedule, as tIA, the whole expression can be rewritten as

1X
T=1

'(XT ) = (1¡ t)
1X
T=1

QT'(PT )¡B0¹+ rf(1¡ tg)
¹+ rfµ

+ tIA: (39)

For a marginal project, this must be equal to a fraction ´ of the after-tax …nancing need

I(1¡ ta), while B0 = (1¡ ´)I(1¡ ta), which yields

´I(1¡ ta) = °3I(1¡ t)¡ (1¡ ´)I(1¡ ta)¹+ rf (1¡ tg)
¹+ rfµ

+ tIA: (40)

This gives

°3 =
1

1¡ t
(
(1¡ ta)

"
´ +

¹+ rf(1¡ tg)
¹+ rfµ

(1¡ ´)
#
¡ tA

)
: (41)

The structure of the solution (9) is easily recognized. Obviously, for many existing

depreciation schedules, the distortion due to A < 1 is substantial, and higher than in the

two-period model. The e¤ect of any di¤erence between 1 ¡ tg and µ is strengthened by
¹ < 1, as compared with the two-period model.

The following proposition is proved in the appendix:

Proposition 4: Under Assumptions 1, 7–10: Let A be the de…ned as in (39) above.

The relative distortion is given by (41). If A(1 + rfµ=¹) · 1, then this distortion is

increasing in the tax rate for a = 0, decreasing for a = 1. The beta of equity is given by

(42). It is decreasing in the tax rate, and strictly so when A > 0 or (1¡ ´)g > 0 (or both).

The condition on ¹ and A which is made in order to sign @°1=@t, means that the results

from case 1 carry over if there is a su¢ciently fast repayment of the loan and a su¢ciently

low present value of depreciation deductions. Case 1 would correspond to ¹ = 1 and

A(1 + rfµ) = c.

Due to Assumption 8, the beta is found as

¯X3 =
(1¡ t)P1

T=1QT'(PT )P1
T=1 '(XT )

¯P =
°3(1¡ t)
´(1¡ ta)¯P : (42)
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The structure of the solution is the same as in case 1, but the two multi-period e¤ects

on the distortion (which were mentioned above) show up through °3. A stronger distortion

due to the depreciation schedule implies an increased ¯X3.

4.2 Case 4: Perpetual reinvestment, certain tax position

The next assumption is introduced in addition to those de…nining case 3. It modi…es

Assumption 7 by introducing reinvestment as a necessary means to maintain the given

production sequence, so case 4 is not a special case of case 3.

Assumption 11: The in‡ation rate is ¼ 2 [0; rfµ). The real value of the loan is

maintained, so that ¹ = ¡¼. Output is a constant, QT = Q > 0, for all periods T ¸ 1.

In order to maintain this output pro…le, the …rm must commit to reinvesting »(1 + ¼)T¡1I

in each period T ¸ 1. The tax depreciation schedule is cT = º(1 + ¼)T¡1, i.e., a fraction
º of the nominal value of the invested capital, which is maintained in real value due to

reinvestment equal to the physical depreciation. The constants » and º are in the interval

(0; 1).

The important extension is that the …rm commits to reinvestment. This is interpreted

as maintaining the real value of the capital equipment. Without reinvestment this would

depreciate at a rate », which may or may not coincide with the tax depreciation rate º.

The assumption about maintaining the loan in real terms is not essential, as will become

clear. There is also an assumption of a positive after-tax real interest rate, rfµ > ¼.

The reinvestment is a non-stochastic sequence, …xed after the project has been initiated.

This is in line with Levy and Arditti (1973).

Based on Assumptions 1, 7, 8, 9, 10, and 11, the beta and distortion can be derived.

The de…nition of a relative distortion is not obvious anymore, unfortunately. (Should

the present value of the pre-tax reinvestment sequence be subtracted in the numerator

or added in the denominator?) For this reason and for notational simplicity, ignore that

present value for the moment, and de…ne

°4p ´ Q
P1
T=1 '(PT )

I
: (43)
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when the project is exactly marginal after tax. The subscript “p” means pseudo, since °4p

does not measure the relative distortion.

The cash ‡ow to equity in any period T (for T ¸ 1) is

XT = PTQ(1¡t)¡rf (1¡tg)B0(1+¼)T¡1+B0(1+¼)T¡1¼+tº(1+¼)T¡1I¡»(1+¼)T¡1I(1¡ta):
(44)

The immediate tax refund fraction a is assumed to be applied in all periods.

The market value in period 0 of this sequence is

1X
T=1

'(XT ) = (1¡ t)Q
1X
T=1

'(PT )¡B0 rf(1¡ tg)¡ ¼
rfµ ¡ ¼ + I

tº ¡ »(1¡ ta)
rfµ ¡ ¼ : (45)

For a marginal project, this must be equal to a fraction ´ of the after-tax …nancing need

I(1¡ ta), while B0 = (1¡ ´)I(1¡ ta), which yields

´I(1¡ ta) = °4pI(1¡ t)¡ (1¡ ´)I(1¡ ta)rf(1¡ tg)¡ ¼
rfµ ¡ ¼ + I

tº ¡ »(1¡ ta)
rfµ ¡ ¼ : (46)

This gives

°4p =
1

1¡ t
(
(1¡ ta)

"
´ +

rf(1¡ tg)¡ ¼
rfµ ¡ ¼ (1¡ ´)

#
¡ tº ¡ »(1¡ ta)

rfµ ¡ ¼
)
: (47)

The beta of the cash ‡ow to equity is

¯X4 =
°4p(1¡ t)
´(1¡ ta) ¯P : (48)

The …nal term within the curly brackets in (47) is the combined e¤ect of reinvestment

and tax depreciation deductions. Consider the case without immediate tax relief, i.e., with

a = 0. Except if the tax rate is very high and depreciation deductions generous, one will

then have tº < »(1 ¡ ta) = », so that the …nal term represents an addition to °4p and

¯X4, as opposed to cases 1 and 3. This is the consequence of the commitment to a riskless

reinvestment sequence, which increases the risk of the cash ‡ow.

The numerator in the …nal term, tº ¡ »(1¡ ta), shows that when º = », the tax with
depreciation deductions acts as a cash ‡ow tax in periods T ¸ 1. º = 0 and a = 1 will

have the same e¤ect as º = » and a = 0. The important di¤erence is of course in period

0, when a cash ‡ow tax gives the refund taI = tI. Assuming perpetual reinvestment is
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thus equivalent to assuming a cash ‡ow tax without the refund in the initial period, which

illustrates the extreme character of the assumption.

The e¤ect of the tax rate on beta is given by

@¯X4
@t

=
¯P

´(rfµ ¡ ¼)
"
¡(1¡ ´)rfg ¡ º

(1¡ ta)2
#
· 0: (49)

While the reinvestment sequence contributes to increasing beta as compared with case 3,

it is still the case that the tax system contributes to decreasing beta.

The results can be summarized as follows:

Proposition 5: Under Assumptions 1, 7–11: The beta of equity is given by (48). It is

decreasing in the tax rate, and strictly so when º > 0 or (1¡ ´)g > 0 (or both).

5 A comparison with Levy and Arditti (1973)

The model of Levy and Arditti (1973) is obtained as a subcase of case 4 above by letting

a = 0; ¼ = 0; g = 1; µ = 1; º = », and ½ a risk-adjusted discount rate for the output price.

From (47) we can now calculate

½°4p ¡ » = 1¡ t(1¡ ´)
1¡ t ½+ »

Ã
½¡ rf
rf

!
; (50)

where the right-hand side is easily recognized as the right-hand side of equation (10) in

Levy and Arditti (1973). The left-hand side, ½°4p¡», is the di¤erence between the required
rate of expected return from the revenue stream, ½°4p, and the depreciation rate, so it is a

required net-of-depreciation expected rate of return, just as in Levy and Arditti.

A comparison between cases 1 and 3 on one hand, and case 4 and this special subcase on

the other, shows that the assumption of reinvestment is absolutely crucial for the results.

Reinvestment at a rate » more than counterbalances tax deductions at a rate »t (and most

likely also in a more general case, at a rate ºt), so that the e¤ect of assets being depreciable

and reinvested is to increase the risk of the cash ‡ow to equity, not to decrease it.

While both of these alternative assumptions may have practical relevance, there are

reasons to believe that case 3 is at least as relevant as the perpetual reinvestment case,

23



case 4. Case 4 relies on a commitment to reinvestment which is almost unheard of in

practice when it comes to real investment projects.

It may be argued that actual projects will often be of an intermediate kind, with

some non-perpetual commitment to reinvestment. This may be true, but there is often

the possibility in some periods of deciding against reinvestment. At the point in time

of each such reinvestment decision, that period’s reinvestment is a new project. That is

the relevant point in time for choosing the right cost of equity, or WACC, since these

concepts are applied to decisions. If the project initiated by that particular reinvestment

is irreverisble and in‡exible, it may be analyzed along the lines of case 3,29 and case 4

becomes irrelevant.30

Even if some reinvestment is highly likely, because it may be very productive as com-

pared with letting the project deteriorate, this is no argument against viewing reinvestment

as another case-3 type project.

Another observation which modi…es the extreme case 4 result, is that even if there is

perpetual commitment, many investment factor prices will actually have a positive beta,

and few are likely to have negative betas. This is outside the model, as it violates the as-

sumptions, both of case 4 and of Levy and Arditti (1973). The tax depreciation deductions

may still be riskless, while the negative reinvestment stream covaries with revenues, which

reduces the risk of the net cash ‡ows.31

5.1 A …rm with overlapping marginal projects

The discussion so far has clari…ed what determines the required expected rate of return

for an investment decision. Next one might ask what will be the realized rate of return

when a …rm has a sequence of overlapping projects. Will this re‡ect the higher beta values

29As opposed to the analysis of real options, neglected both here and in Levy and Arditti (1973).
30In addition to real options, a further discussion of this could also include capital risk, which is par-

ticularly relevant when there is the possibility of selling the ownership to the project after it has been

initiated.
31This points to the arbitrariness of the distinction between reinvestment and the use of input factors. As

mentioned in footnote 12, one may rewrite the model with (gross revenue minus operating costs) replacing

gross revenue, PTQT .
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of the Levy and Arditti (1973) assumptions or the lower beta values of case 3? We shall

not discuss the possibility that the …rm invests in projects which are not marginal. To

disentangle the marginal from the average rate of return is a more general problem, not

speci…c to the topics raised in this paper.

Consider a …rm which invests in one new marginal project each period. As seen from

its initiation period, each project is of the type denoted case 3 above.

Consider …rst a …rm which invests in the …rst of such a sequence of projects now, and

has the opportunity to invest in new marginal projects in each of the coming years. The

expected rate of return to equity between this period and the next will re‡ect ¯X3 as

derived in (42). The reason is as follows: One plus the expected rate of return is equal to

the ratio of the expected value of equity as evaluated in the next period, to the market

value of a claim to the same as evaluated in this period. In this connection, next period’s

value of equity includes the cash ‡ow from the …rst project to equity in that period. The

value of equity in the next period does not re‡ect any value of the opportunity to invest

in new marginal projects in that period or later. This is because these projects are all

marginal, so their values are zero.

Consider then a …rm which is some years into such a sequence, so that it has a portfolio

of projects, one initiated last year, one the year before, and so on. The expected rate of

return to equity for such a …rm will be a value-weighted average of the expected rates of

return to equity from each project. So far there has been no assumption to determine the

relative sizes of these projects, and any such assumption will be rather arbitrary. Thus it

is di¢cult to give any precise indication of the expected rate of return to equity for the

whole …rm. However, it is possible to say something about the expected rate of return over

the next period for the remaining part of each of the projects, based on some simplifying,

but not quite arbitrary, assumptions.

Assumption 12: Relative changes in the output price are stochastically independent

over time and have a constant expected value of 1 + ® ¸ 1. Their joint probability dis-

tribution with the rate of return on the market portfolio is also the same every period, so

that ET¡1(PT )='T¡1(PT ) is a constant, 1 + ½ > 1 + rfµ, where 'T¡1 is the valuation as of

period T ¡ 1, and ET¡1 is the expectation conditional on PT¡1, for all T . Output from the
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marginal project initiated in period ¡¿ is Q(1¡!)T¡1 in each subsequent period ¡¿+T , for
T ¸ 1. Tax depreciation deductions each period are a fraction ¹ of the nominal remaining
tax-depreciated value of the invested capital. The constants ! and ¹ are in the interval

(0; 1).

We shall be concerned with valuation as of periods 0 and 1. The initiation period for a

project is denoted ¡¿ , with ¿ ¸ 0. Since the scale of a marginal project is not determined
in this model, we arbitrarily …x the project’s output sequence, Q;Q(1¡!); Q(1¡ !)2; : : :,
while the investment in period ¡¿ , I¡¿ , is determined so that the project is marginal.
In period 1, the market value of remaining production in that period and the years to

come from a project initiated in period ¡¿ is
1X
T=1

Q(1¡ !)¿+T¡1P1
Ã
1 + ®

1 + ½

!T¡1
=

QP1(1 + ½)

½¡ ®+ !(1 + ®)(1¡ !)
¿ ; (51)

while one period earlier, in period 0, a claim to this has the market value

QP0(1 + ®)

½¡ ®+ !(1 + ®)(1¡ !)
¿ : (52)

The tax-depreciated value of capital will decrease at the same nominal rate, ¹, as

the loan. This is a simpli…cation in order to have only two di¤erent time paths for the

elements of the project’s cash ‡ow. As seen from period 1, the present value of remaining

depreciation deductions, including the present period’s, is

I¡¿
1X
T=1

¹(1¡ ¹)¿+T¡1
(1 + rfµ)T¡1

= I¡¿¹(1¡ ¹)¿ 1 + rfµ
rfµ + ¹

: (53)

The constant A, de…ned in connection with (39), takes the value

A =
¹

¹+ rfµ
(54)

for this depreciation schedule.

Based on assumptions 1, 7, 8, 9, 10, and 12, the expected rate of return to equity can

be derived. The investment decision which was made in period ¡¿ , determined

I¡¿ =
QP¡¿ (1 + ®)

°3[½¡ ®+ !(1 + ®)] (55)

for the marginal project, cf. (36) and (52).
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The derivation in the appendix shows that the expected rate of return to equity between

periods 0 and 1 for this project depends on the relative values of the remaining output

on one hand and the remaining loan and depreciation deductions on the other. The ratio

of these values will depend partly on the di¤erence between the decline rates of output,

!, and the loan and depreciation deductions, ¹, and partly on the realized rate of output

price increase between period ¡¿ and period 0. If
P0
P¡¿

(1¡ !)¿ = (1¡ ¹)¿ ; (56)

there has been a balanced development of the value elements, so that the expected rate of

return is the same as it was for the …rst period after initiation.

Proposition 6: Under Assumptions 1, 7–10, 12: Assume the value elements of a

project have had a balanced development as given by (56). The beta of equity for the

remainder of a project is then given by ¯J3 = ¯X3, where the latter is given by (42). If

there is an imbalance,
P0
P¡¿

(1¡ !)¿ > (1¡ ¹)¿ ; (57)

and if

Z ´ [¹+ rf(1¡ tg)](1¡ ´)(1¡ ta)¡ t¹
¹+ rfµ

> 0; (58)

then ¯J3 < ¯X3. If one of the two inequalities (57) and (58) is reversed, then ¯J3 > ¯X3,

but if both are reversed, then ¯J3 < ¯X3.

The proof is in the appendix. The intuition behind the result can be explained, e.g.,

by considering the case with Z > 0 and P0(1 ¡ !)¿=P¡¿ > (1 ¡ ¹)¿ . A positive Z means
that the loan repayment dominates the depreciation deductions. When the project was

started in period ¡¿ , this implied an expected rate of return to equity exceeding ½ due to
leverage. But an imbalanced development, where the output has retained a larger fraction

of its absolute value than has the (net negative) non-stochastic cash ‡ow element(s), means

that the expected rate of return for the remainder of the project is reduced and gets closer

to ½.

27



para- t = 0:25 t = 0:5 t = 0:75

meters ¯P (1¡ t) = 0:6 ¯P (1¡ t) = 0:4 ¯P (1¡ t) = 0:2
a = 0 °1 = 1:014 °1 = 1:043 °1 = 1:129

c = 1 ¯X1 = 0:6086 ¯X1 = 0:4172 ¯X1 = 0:2258

a = 0 °1 = 1:014 °1 = 1:014 °1 = 1:014

c = 1 c = 1:197 c = 1:262

¯X1 = 0:6086 ¯X1 = 0:4057 ¯X1 = 0:2029

c = 1 °1 = 1:014 °1 = 1:014 °1 = 1:014

a = 0 a = 0:1882 a = 0:2509

¯X1 = 0:6086 ¯X1 = 0:4479 ¯X1 = 0:2499

Table 1: Distortion and equity beta with no borrowing, various tax parameters

6 A numerical example

This section gives a numerical example which illustrates Corollary 2.2. The example illus-

trates how depreciation deductions or the immediate tax relief may be used to counteract

the distortionary e¤ect of high tax rates in, e.g., resource extraction, and what e¤ect this

could have on the equity beta.

The example has rf = 0:06; E(rm) = 0:09; and ¯P = 0:8. The equilibrium in the home

country has µ = 0:75. The …rst set of calculations has ´ = 1.

Three di¤erent values of the tax rate t will be considered, t = 0:25; t = 0:5; and

t = 0:75. With c = 1 the lower tax rate gives °1 = 1:014, and ¯X1 = 0:6086. Increasing the

tax rate will increase the distortion and reduce the equity beta. The numbers are given in

the …rst lines of table 1.

The …rst lines of the table give values for the case a = 0; c = 1. Even when the high

tax rate of t = 0:75 gives a distortion of 13 percent in the required expected one plus

rate of return, the equity beta is quite close to ¯P (1 ¡ t). The subsequent lines consider
two di¤erent cases for which the distortionary e¤ect of high tax rates are counteracted by

adjusting either a or c, while the other of these two parameters is kept at its initial level.
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para- t = 0:25 t = 0:5 t = 0:75

meters ¯P
(1¡t)
´
= 1:2 ¯P

(1¡t)
´
= 0:8 ¯P

(1¡t)
´
= 0:4

a = 0 °1 = 1:014 °1 = 1:029 °1 = 1:072

c = 1 ¯X1 = 1:217 ¯X1 = 0:8230 ¯X1 = 0:4287

a = 0 °1 = 1:014 °1 = 1:014 °1 = 1:014

c = 1 c = 1:182 c = 1:242

¯X1 = 1:217 ¯X1 = 0:8115 ¯X1 = 0:4056

c = 1 °1 = 1:014 °1 = 1:014 °1 = 1:014

a = 0 a = 0:1751 a = 0:2352

¯X1 = 1:217 ¯X1 = 0:8893 ¯X1 = 0:4926

Table 2: Distortion and equity beta with 50% borrowing, various tax parameters

To avoid distortionary e¤ects, rent tax systems typically admit extra depreciation-type

allowances (“uplift”) or accelerated depreciation, or both. The two alternative ways of

doing this in the table are just the extreme possibilities, relying on only one of the two.

The parameters are adjusted so that the distortion is as in the upper left corner, °1 = 1:014.

The table shows that ¯X1 is close to ¯P (1 ¡ t), and that none of the two alternative
parameter adjustments alters this very much. For t = 0:75 an immediate tax relief, a =

0; 25, goes in the direction of a cash ‡ow tax with a higher ¯X1, while c > 1 goes in the

opposite direction. The distortion is the same by construction.

Table 2 shows the same experiments for a …rm which borrows 50 percent of its …nancing

need. The same qualitative results hold: The beta of equity is roughly proportional to

(1¡ t)=´.

7 Discussion

The concept of a cost of equity, or a weighted-average cost of capital, is used for capital

budgeting, and may also be used for valuation of the equity in a …rm. In both cases expected

after-tax cash ‡ows are used. Some of the well-known weaknesses of this approach have not
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been considered here. The approach is known to be misleading when taxes are non-linear

functions of pre-tax cash ‡ows,32 or when there are real options.33

Instead this paper demonstrates another weakness, that the application of the same

cost of equity across di¤erent tax systems is misleading. Since the cost of equity is one

component in the WACC, the application of the same WACC is also misleading. This is of

interest for a …rm considering projects under various tax systems. It is also of interest for

tax authorities considering tax reforms. In forecasting the …rms’ behavior under di¤erent

hypothetical tax systems, one should not apply the same cost of equity under all of them.

Much of the literature considers only the case of a …rm which will be in tax position

with certainty in all future periods. While it is commonplace in this literature to include

the e¤ect of interest deductibility in the cost of debt, as in equation (16), it is not common

to include the e¤ect of depreciation deductions in the cost of equity. This is surprising

since depreciation deductions are proportional to investment, while it is much less obvious

that borrowing is proportional to investment. There are other arguments for not using a

constant cost of equity or WACC. But if such constant discount rates are used, there seem

to be good reasons to include the e¤ect of depreciation deductions, better than those for

interest deductions.

A constant cost of equity or WACC may be consistent with the more general APT

method, given that all elements of a cash ‡ow stay in the same relation to each other

through time. This was illustrated by the overlapping-projects case above. In general

there are good reasons to try to use the more general method. But there are reasons to

consider the cost of equity or WACC in some situations. In particular, it is important to

know how to use market data as input in valuation procedures. In addition to the standard

method for “unlevering” beta values,34 this paper has shown the need to “untax” them.

A well-known textbook in …nance, Brealey and Myers (2000), gives a detailed discussion

of the e¤ects of interest deductibility on the WACC. There is also a discussion of the

valuation of depreciation deductions, consistent with the present paper, but there is no

recommendation to tie this value to the WACC:
32See, e.g., Bradley (1998).
33See, e.g., Laughton (1998).
34See, e.g., Brealey and Myers (2000), p. 231, or Ross, Wester…eld, and Ja¤e (1999), sect. 17.7.
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Capital projects are normally valued by discounting the total after-tax cash

‡ows they are expected to generate. Depreciation tax shields contribute to

project cash ‡ow, but they are not valued separately; they are just folded into

project cash ‡ows along with dozens, or hundreds, of other speci…c in‡ows and

out‡ows. The project’s opportunity cost of capital re‡ects the average risk of

the resulting aggregate. (P. 566.)

This may be a true description of practice in many …rms. Since the depreciation

deductions are proportional to investment, there are good reasons to revise this practice.

Summers (1987) discusses this, argues that depreciation deductions are practically risk

free, and discusses optimal taxation given that …rms’ behavior is inconsistent with …nance

theory.

The practical relevance of this paper depends on the diversity of the tax rates and/or

deduction parameters a …rm is facing. If the …rm is subject to the same e¤ective tax rates

everywhere, and the same deduction parameters, these will be re‡ected in the observed cost

of equity in the market for shares in the …rm. This may be applied without considering

the tax e¤ects. If there is diversity, the observed cost of equity will be some average, and

is less useful. Even when the same tax e¤ective rate applies to all activities in a …rm, one

can easily make mistakes, e.g., in disentangling the leverage e¤ect from the cost of equity.

This may lead to the wrong conclusion that ¯P = ´¯X1, with the right-hand side being

observable.

The model has given analytical results for some simple cases. A more realistic model

will be more complicated, and it may be impossible to solve analytically. Then one may

use Monte Carlo simulation to estimate the values of the various elements of the cash ‡ow.

It is important to realize that future tax payments have unique risk characteristics, which

may be related to the risks of the pre-tax cash ‡ows in complicated ways.

Tax analysis has mainly focused on the wedge between pre-tax and after-tax required

expected rates of return. Under full certainty the required after-tax rate of return is often

taken as given, and the tax system results in another required pre-tax rate of return.

Under uncertainty this is more complex, since the after-tax required expected rate of

return depends on the risk characteristics of the return. These characteristics depend on

31



the taxes. Thus the tax system a¤ects the after-tax required expected rate of return. This

happens even if general-equilibrium e¤ects are ignored, i.e., even if rf ; E(rm); cov(rm; P )

are assumed to be una¤ected by the taxes.

The papers by Levy and Arditti (1973) and Derrig (1994) do not explicitly assume

partial equilibrium. But in their discussions of the e¤ects of taxes, they clearly make the

same assumptions at this point as does the present paper. They do not have the reference

to a multinational …rm, as does the title of the present paper. There are two distinct

reasons for this reference. One is the partial character of the model. No conclusions can be

drawn here about tax systems’ e¤ects on the equilibrium in the capital market. The other

is the existence of many di¤erent tax systems, in di¤erent countries (or sectors), which

makes the analysis relevant as a good approximation for multinationals.

The model assumes that only the foreign tax system applies at the margin. Whether

this is true, will depend on double taxation treaties, tax rates, and the …rm’s activities at

home and abroad. The foreign system is more likely to apply at the margin when it has

higher rates than the home system.

Required expected rates of return after tax in various tax regimes are typically observed

as (averages of) realized rates of return after tax, or realized beta values. In addition to

the problems we have shown so far in the use of these under other tax regimes, there is the

problem that they may include realized rent. Unless all after-tax rents have already been

capitalized in the market value of shares, this is typically the case in resource extraction

in countries where the …rms do not pay any up-front fee to re‡ect the resource value. In

that case the realized rates of return are average rates of return, while the required rate of

return is a marginal rate.

8 Conclusion

From a CAPM-type model of investment under uncertainty, the paper derives the cost of

equity, i.e., the required after-tax expected rate of return to equity for a …rm operating

under various foreign tax systems. When the …rm’s shares are traded in a capital market

which is una¤ected by the foreign tax systems, analytical expressions for the cost of equity
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are found. When the …rm is in a certain tax position, a tax-adjusted CAPM is used. When

the tax position is uncertain, an option valuation method is used.

It is clearly demonstrated that the cost of equity depends on the tax system, even for

fully equity …nanced projects. This is neglected in much of the literature. It is argued here

that the most relevant model for project investment decisions does not involve perpetual

reinvestment. In such a model it is shown that for a standard corporate income tax the main

factor which reduces the cost of equity is the depreciation deduction system. Compared

with a neutral cash ‡ow tax, this reduces the systematic risk of equity because it acts as a

loan from the …rm to the tax authorities. Thus the e¤ect is the opposite of leverage. The

possibility of being out of tax position counteracts this e¤ect.

Tax analysis has mainly focused on the tax system’s in‡uence on the required expected

pre-tax return from a project, taking the after-tax required expected return as given. This

paper shows that also the after-tax required expected return is a¤ected by the tax system.

This is crucial for the analysis of e¤ects of changes in tax systems.

Appendix

Proof of Proposition 1

From (9) we …nd

@°1
@t

=
[1 + ´rfµ + (1¡ ´)rf(1¡ g)¡ c]¡ a[1 + ´rfµ + (1¡ ´)rf(1¡ g + g(1¡ t)2)]

(1¡ t)2(1 + rfµ) :

(A1)

The denominator is positive. When a = 0, the remaining terms in the numerator are

positive by assumption (since c · 1 and ´ > 0). When a = 1, the numerator simpli…es to
¡c¡ (1¡ ´)rfg(1¡ t)2, which is non-positive. The value of a which makes @°1=@t = 0 is
the ratio of the …rst term in square brackets to the second term in square brackets. This

is clearly in [0; 1]. It contains the tax rate t only in one place, and will depend on t if

(1¡ ´) 6= 0 and g 6= 0 (rf > 0 is already assumed), Q.E.D.

33



Proof of Proposition 2

From insertion of (9) into (12) we …nd

@¯X1
@t

=
¯P

´(1 + rfµ)

"
¡(1¡ ´)rfg ¡ c

(1¡ ta)2
#
< 0: (A2)

The …rst fraction is strictly positive (and …nite) by assumption. The terms in square

brackets (minus signs included) are non-positive, and the result follows, Q.E.D.

Proof of Corollary 2.3

This shows how to derive (16) from (15), using (6) and (9). The numerator in (15) is

E(X(1))+B(1+rf(1¡tg)) = Q'(P )E(P )
'(P )

(1¡t)¡B(1+rf(1¡tg))+tcI+B(1+rf (1¡tg))

= °1I(1¡ t) f1 + rfµ + ¯P [E(rm)¡ rfµ]g+ tcI; (A3)

where °1 = Q'(P )=I has been introduced. The denominator is '(X(1)) + B = I(1¡ ta),
so that

1 +WACC1 =
°1(1¡ t)
1¡ ta f1 + rfµ + ¯P [E(rm)¡ rfµ]g+ tc

1¡ ta
=
°1(1¡ t)
1¡ ta (1 + rfµ) + ´

°1(1¡ t)
´(1¡ ta)¯P [E(rm)¡ rfµ] +

tc

1¡ ta: (A4)

The second of these three terms goes directly into (16). The …rst and third can be rewritten

as

°1(1¡ t)
1¡ ta (1+rfµ)+

tc

1¡ ta = (1+rfµ)
"
´ +

1 + rf (1¡ tg)
1 + rfµ

(1¡ ´)¡ tc

(1 + rfµ)(1¡ ta)
#
+

tc

1¡ ta
= ´(1 + rfµ) + (1¡ ´)(1 + rf(1¡ tg)) = 1 + ´rfµ + (1¡ ´)rf(1¡ tg); (A5)

which comprises the remaining terms of (16), Q.E.D.

Proof of Proposition 4

From (41) we …nd

@°1
@t

=
[¹+ ´rfµ + (1¡ ´)rf (1¡ g)¡A(¹+ rfµ)]¡ a[¹+ ´rfµ + (1¡ ´)rf(1¡ g + g(1¡ t)2)]

(1¡ t)2(¹+ rfµ) :

(A6)
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The denominator is positive. When a = 0, we must show that the remaining terms in the

numerator are non-negative. The factors (1¡ g)(1¡´) may be positive or zero, and ´ may
be close to zero. It is thus su¢cient that ¹¡A(¹+ rfµ) ¸ 0, which is the condition given
in the Proposition.

When a = 1, the numerator simpli…es to ¡A(¹ + rfµ) ¡ (1 ¡ ´)rfg(1 ¡ t)2, which is
non-positive, and the …rst part of the Proposition is proved.

From (42) we …nd

@¯X3
@t

=
¯P

´(¹+ rfµ)

"
¡(1¡ ´)rfg ¡ A(¹+ rfµ)

(1¡ ta)2
#
· 0; (A7)

Q.E.D.

Proof of Proposition 6

Under Assumption 12, de…ne J¡¿;T as the market valuation as of period T of cash ‡ows to

equity in period T and all subsequent periods from a project initiated in period¡¿ < 0 < T .
We need the ratio of E0(J¡¿;1) to '0(J¡¿;1), i.e., one plus the expected rate of return to

equity from the remainder of the project. From this we also derive the beta of equity.

Solve (55) for Q and insert into (51) to …nd

J¡¿;1 =
I¡¿°3P1(1 + ½)(1¡ !)¿ (1¡ t)

P¡¿ (1 + ®)

¡ (1¡ ´)I¡¿ (1¡ ¹)
¿ (1¡ ta)[¹+ rf(1¡ tg)](1 + rfµ)

¹+ rfµ
+
tI¡¿ (1¡ ¹)¿¹(1 + rfµ)

¹+ rfµ
; (A8)

where the third term is taken from (53). The second term, the value of remaining loan

repayments, is as in (39), with I¡¿ (1¡¹)¿ replacing B0 as the loan remaining after period
0, and with an additional factor (1 + rfµ), since (A8) gives the valuation in period 1.

Introduce °3 from (41), and …nd

J¡¿;1 = I¡¿

("
(1¡ ta)

Ã
´ +

¹+ rf (1¡ tg)
¹+ rfµ

(1¡ ´)
!
¡ t¹

¹+ rfµ

#
P1(1 + ½)(1¡ !)¿
P¡¿ (1 + ®)

¡ (1¡ ¹)
¿ (1 + rfµ)

¹+ rfµ
[(1¡ ´)(1¡ ta)[¹+ rf(1¡ tg)]¡ t¹]

)
(A9)

In order to simplify the expression, de…ne

Z ´ [¹+ rf(1¡ tg)](1¡ ´)(1¡ ta)¡ t¹
¹+ rfµ

; (A10)
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and observe that for this depreciation schedule, (41) and (54) give

°3 =
1

1¡ t [(1¡ ta)´ + Z] : (A11)

The constant Z is positive if the repayment of the project’s loan exceeds the tax value of

the depreciation deductions in present value terms, but negative otherwise.

We can rewrite J¡¿;1 as

J¡¿;1 = I¡¿ (1¡ !)¿
(
P1(1 + ½)

P¡¿ (1 + ®)
(1¡ ta)´ +

"
P1(1 + ½)

P¡¿ (1 + ®)
¡
µ
1¡ ¹
1¡ !

¶¿
(1 + rfµ)

#
Z

)
:

(A12)

This gives

E0(J¡¿;1) = I¡¿ (1¡ !)¿
(
P0(1 + ½)

P¡¿
(1¡ ta)´ +

"
P0(1 + ½)

P¡¿
¡
µ
1¡ ¹
1¡ !

¶¿
(1 + rfµ)

#
Z

)
;

(A13)

and

'0(J¡¿;1) = I¡¿ (1¡ !)¿
(
P0
P¡¿

(1¡ ta)´ +
"
P0
P¡¿

¡
µ
1¡ ¹
1¡ !

¶¿#
Z

)
: (A14)

If the two elements of the cash ‡ow have had a balanced development between periods

¡¿ and 0, so that P0(1¡!)¿=P¡¿ = (1¡¹)¿ , then it is easy to solve for the expected rate
of return and for beta. One plus the expected rate of return becomes

E0(J¡¿;1)
'0(J¡¿;1)

= 1 + ½+
½¡ rfµ
(1¡ ta)´Z: (A15)

Observe that

¯P =
½¡ rfµ

E(rm)¡ rfµ ; (A16)

and use this to …nd the beta of J¡¿;1 between periods 0 and 1,

¯J3 =

E0(J¡¿;1)
'0(J¡¿;1)

¡ 1¡ rfµ
E(rm)¡ rfµ =

½¡ rfµ
E(rm)¡ rfµ

"
1 +

1

(1¡ ta)´Z
#
=

(½¡ rfµ)(1¡ t)°3
[E(rm)¡ rfµ](1¡ ta)´ = ¯X3;

(A17)

thus the equation for the balanced case is proved.

With the balanced case as a point of departure, we consider the unbalanced case with

P0(1¡ !)¿=P¡¿ 6= (1¡ ¹)¿ . It can be shown that

@
h
E0(J¡¿;1)
'0(J¡¿;1)

i
@
h³
1¡¹
1¡!

´¿ P¡¿
P0

i > 0 (A18)
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if and only if Z > 0. This implies that if

Z[P0(1¡ !)¿=P¡¿ ¡ (1¡ ¹)¿ ] > 0; (A19)

then the equations (A15) and (A17) are replaced by

E0(J¡¿;1)
'0(J¡¿;1)

< 1 + ½+
½¡ rfµ
(1¡ ta)´Z (A20)

and

¯J3 < ¯X3: (A21)

If the inequality in (A19) is reversed, then the inequalities in (A20) and (A21) are also

reversed, Q.E.D.
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