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1. Introduction

In the general linear errors-in-variables model the main results have been derived under
the assumption that the measurement errors are uncorrelated. However, as recognized by
Bekker, Kapteyn and Wansbeek (BKW) (1987) and Lach (1993) this is often a problematic
assumption to maintain in empirical applications since quite trivial variable transformations
will often create correlation between the errors. BKW (op.cit.) derived parameter bounds
without assuming a diagonal covariance-matrix of the errors. Instead they derived their
results by supposing that the econometricians are able to impose an a priori upper bound
on the covariance-matrix of the measurements errors. Lach (op.cit.) examined various
implications of correlated errors introduced by one particular variable transformation.

However, the more succinct study on the bounds of the structural parameters when the
errors are correlated is given by an interesting study by Erickson (1993). Erickson deduces
his result by studying the covariance equations of the observable variables. Although,
he doesn’t give a complete solution to the problem he poses, his analysis turns out to be
extremely difficult. Indeed, Erickson shows a remarkable amount of skill and ingeniuity by
being able to clarify parts of this problem by this approach. However, reading his paper one
gets a strong feeling that one should face this problem by quite a different approach. An
approach which can also be generalized to more complicated models. This is the purpose
of the present paper.

By an apporach initiated by Frisch (1934) and elaborated an extended by Reiersøl
(1941) and (1945) we shall show the complete solution to Erickson’s model. By appealing
to the basic structure of the model the necessary analysis proves to be quite simple and
transparent.

The plan of the paper is the following: In section 2 we specify the model to be studied
and list results from matrix theory which we will use repeatedly. In section 3 we prove
the mathmatical results which prepare the ground for deducing the bounds on the structural
vector. As regards these bounds it turns out that there are four separate cases to consider.
These cases are studied in sections 4–7. Finally, in Appendix A we illustrate important
concepts in this problem.

2. Specification of the model together with definitions and useful results from matrix theory

The observable variables are denoted by a(n×1) column vectorX, which we conveniently
write in partitioned form:

X =
(
X(1)

X(2)

)
(2.1)

whereX(1) denotes the(2 × 1) vector of error distorted variables, whileX(2) denotes the
((n− 2)× 1) vector of exactly observable variables.

Let ξ (1) denote the(2 × 1) vector of unobservable systematic variables which are
related to their observable counterparts by the equation:

X(1) = ξ (1) + ε(1) (2.2)

whereε(1) denotes the(2 × 1) vector of measurement errors.
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As regardesε(1) we assume:

The random vectorsξ (1) andε(1) are uncorrelated. (2.3)

The entries ofε(1) have zero means and the covariance-matrixL11 is given by: (2.4)

E(ε(1)ε(1)
′
) = L11 =

(
σ 2

1 ρσ1σ2

· σ 2
2

)
(2.5)

whereσ 2
1 , σ 2

2 denote the variances ofε1 andε2 respectively, andρ denotes the correlation
coefficient betweenε1 andε2.

SinceX(2) = ξ2 the general form of the covariance-matrix of the errors are given by:

L =
(
L11 O

O O

)
(2.6)

where the O’s denote the zero submatrices of appropriate dimensions.
The covariance-matrix of the observable variables is supposed to be positive definite,

and is denoted by:

M =



µ11 µ12 . . . µ1n
· µ22 . . . µ2n
...

...
. . .

...

· · . . . µnn


 (2.7)

Below we shall by the notationL = L(σ1, σ2, ρ,O) repeatedly refer to the matrix function
given by (2.6). The determinant and cofactors ofM are denoted by|M| andMij (i, j =
1,2, . . . , n).

Let (ξ (1))′ = (ξ1, ξ2) then we suppose that the structural variables(ξ1, ξ2, X3, . . . , Xn)

satisfy the linear relation:

γ1ξ1 + γ2ξ2 + γ3ξ3 + · · · + γnξn + γ0 = 0 (2.8)

From the assumption (2.3)–(2.5) and the specification (2.8) it follows immediately:

(M − L)γ = 0 (2.9)

where(M − L) is the covariance-matrix of the structural variables(ξ1, ξ2, X3, . . . , Xn),
γ ′ = (γ1, γ2, . . . , γn) denotes the vector of structural parameters, and, finally, 0 denotes a
(n× 1) vector of zeros.

Some useful definitions.

Definition 2.1 For a given symmetric, positive definite matrixM, L will denote the set
of covariance-matricesL such thatL ∈ L implies:

(M − L) is non-negative definite (2.10)

The determinant of(M − L) denoted|M − L| is zero (2.11)

Definition 2.2 (i) A diagonal matrixT is called a sign-matrix if any of its elements are
+1 og−1. (ii) A matrix A is said to have compatible signs if there exists a sign-matrixT

such that(T AT ) has positive elements only.
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Definition 2.3 Let(X(1))′ = (X1, X2) thenr will denote the partial correlation coefficient
betweenX1 andX2. From Cramér ((1946), ch. 23.4) we know:

r = −M12√
M11M22

(2.12)

In the present study we assume:

M12 < 0 H⇒ r > 0. (2.13)

We shall often use the following results from matrix theory.

Result 2.1 LetA be a(n× n)matrix with rankn− 1. Then the rank of adjA (the adjoint
of A) is 1.

Result 2.2 Let A be a(n × n) matrix with rankn − 1, and consider the set of linear
homogeneous equationsAγ = 0. Then the solution vectorγ can be written:

γ ′ = t (Ar1, Ar2, . . . , Arn) (2.14)

wheret is any real parameter and(Ar1, Ar2, . . . , Arn) denotes any non-zero vector of adjA.

Result 2.3 LetA be a square matrix with cofactorsAij . Then from Cramér ((1946), ch.
11) we quote the identities:

AjjAkk − A2
jk = |A|Ajj ·kk (2.15)

A11Aik − Ai1A1k = |A|A11·ik (2.16)

whereA11·ik denotes the cofactor attained by deleting the first and thei’th row and the first
and thek’th column ofA.

Finally, the basic idea of our approach is simple. In general terms it can be described as
follows. For a given, fixed covariance-matrixM, the set of equations given by (2.9) will
determine a mapping fromL into the coefficient space0. Hence, when the covariance-
matrixL of the errors varies over the setL , the structural vectorγ will vary over a subset
of 0 determined by (2.9). SinceL ∈ L the rank of(M − L) is by contruction less thann
which implies thatγ has a non-trivial solution. However, the rank of(M−L) and the entries
of adj(M −L) are sensitive to the value of the correlation coefficientρ. Subsequently, this
will be reflected in the solution set for the structural vectorγ .

Below we shall analyse the different cases which emerge. In all cases the rank of
(M−L) and the zero/non-zero elements of adj(M−L) proved to be important. Therefore,
we shall first consider these questions.

3. The rank of(M − L) and the structure ofadj(M − L) whenL ∈ L

In the following we shall for simplicity use the notation:x = σ1, y = σ2. The following
function turns out to be important:

f (x, y, ρ) = |M−L| = M11·22(1−ρ2)x2y2−M11x
2−M22y

2−2M12ρxy+|M| (3.1)
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where the principal minorsM11·22, M11, M22 and the determinant|M| and finally the
cofactorM12 are defined above. In particular,M11·22 is the principal minor obtained from
M by deleting the first two rows and columns.

Since by assumptionM is positive definiteM11·22 > 0. Also, sincex andy are standard
errors ofε1 andε2, we are only interested in the range off whenx ≥ 0, y ≥ 0.

Proposition 3.1 Let the partial correlation coefficientr > 0 be given by (2.12). Then for
any feasible value ofρ:

(i) the functionf (3.1) has a saddle point at:

x0 =
√

M22(1 − ρr)

M11·22(1 − ρ2)
(3.2)

y0 =
√

M11(1 − ρr)

M11·22(1 − ρ2)
(3.3)

(ii) Whenρ = r we attainf (x0, y0, ρ) = 0.

(iii) When ρ 6= r we attainf (x0, y0, ρ) < 0.

Proof (i) For a given value ofρ the stationary point(x0, y0) of f is determined by eqs.

∂f

∂x
= 0 (3.4)

∂f

∂y
= 0 (3.5)

The Hessian corresponding to this point is given by:

−16(1 − ρr)M11M22 < 0 (3.6)

since(1 − ρr)M11M22 is always positive.

(ii) When ρ = r, x0 andy0 become:x0 = √
M22/

√
M11·22 , y0 = √

M11/
√
M11·22. By

direct calculation we attain:

f = −M11M22(1 − ρ2)

M11·22
+ |M| (3.7)

SinceM11·22|M| = (M11M22−M2
12) by (2.14) and sinceρ2 = M2

12

M11M22
whenρ = r

we attain:
f (x0, y0, ρ) = 0

(iii) By direct calculation we attain:

∂f (x0, y0, ρ)

∂ρ
= 2M11M22(1 − ρr)(r − ρ)

1 − ρ2
(3.9)

Hence,(∂f/∂ρ) > 0 whenr > ρ and(∂f/∂ρ) < 0 whenr < ρ. Sincef (x0, y0, ρ) =
0 whenr = ρ, the conclusion follows.
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Remark 3.1 The saddle-point (3.2)–(3.3) has an interesting implication for the covariance-
matrix (M − L). Since(M − L) is non-negative definite, all its principal minors must be
non-negative. In particular,(M−L)11 ≥ 0 and(M−L)22 ≥ 0 imply thatx2 ≤ M22/M11·22
andy2 ≤ M11/M11·22. Whenr = ρ the saddle-point(x0, y0) corresponds exactly to these
values ofx andy. Hence, whenρ = r the matrix(M − L) evaluated at the saddle-point
(x0, y0)will imply |M−L|11 = |M−L|22 = 0. The fact thatf (x0, y0, ρ) = |M−L| = 0
makes sure thatL ∈ L . This proposition enables us to characterize the rank properties of
(M − L) whenL ∈ L .

Proposition 3.2 Let again the covariance-matrix of the observable variablesM be given,
and assume as always that the partial correlation coefficientr is positive. If we vary the
covariance matrix L of the errors overL , then it follows:

(i) If ρ = r, then the matrixL∗ denoted byL∗ = L
(√
M22/M11·22,

√
M11/M11·22, ρ,O

)
(see (2.6)) is contained inL and the rank of(M − L∗) is not larger than(n− 2).

(ii) If ρ < r, then for allL = L(x, y, ρ,O) ∈ L the rank of(M − L) is (n− 1) and all
elements of the first two rows/columns of(M − L) are non-zero.

(iii) If ρ > r, then there exist matrices̃L andL˜ where respectively the second row/column,
and the first row/column of adj(M − L) consist of zeros only.

Proof (i) SinceM is non-singular we have

(M − L) = (I − LM−1)M (3.10)

Then we partitionM ogM−1 in accordance with the partition (2.6) ofL. That is

M =
(
M(1.1) M(1.2)

M(2.1) M(2.2)

)
(3.11)

whereM(1.1) ∼ (2 × 2), M(1.2) ∼ (2 × (n − 2)), M(2.1) ∼ ((n − 2) × 2), M(2.2) ∼
((n− 2)× (n− 2)).

Furthermore:

M−1 =
(
M11 M12

M21 M22

)
(3.12)

where, in particular,

M11 = (M(1.1)−M(1.2)M(2.2)−1M(2.1))−1 (3.13)

(see f.ex. Anderson ((1984), A.3)).
Then we have:

(I − LM−1) =
(
I2 − L11M11 −L11M12

O In−2

)
(3.14)

whereI2 ∼ (2 × 2) andIn−2 ∼ ((n− 2)× (n− 2)) are identity matrices.
Using the definition (2.12) ofr and the fact thatρ = r we have by evaluatingL11 at

L∗:

L11 =




M22

M11·22
− M12

M11·22

· M11

M11·22


 (3.15)
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Similarly, from (3.12) we have:

M11 =



M11

|M|
M21

|M|

· M22

|M|


 (3.16)

We haveM21 = M12 sinceM is symmetric and by identity (2.15)M11M22 − M2
12 =

|M|M11·22. Using these facts we attain from (3.15)–(3.16) that:

L11M11 = I2 (3.17)

Hence, whenL = L∗ we attain:

(I − L∗M−1) =
(
O −L11M12

O In−2

)
(3.18)

Since the first two columns of(I − L∗M−1) consist of zero elements only, we conclude
that the rank of(I − L∗M−1), to be denoted rank(I − L∗M−1), is n− 2.

Finally, since:

rank((I − LM−1)M) ≤ min(rank(I − LM−1), rankM−1) (3.19)

it follows from (3.10) and (3.19) that

rank(M − L) ≤ n− 2 (3.20)

proving (i).

(ii) ρ < r. For a givenρ we solve the eq. (3.1), i.e. the equationf (x, y, ρ) = |M −L| = 0
w.r.t. y, attaining:

y =
M12ρx ±

√
M2

12ρ
2x2 − (M11·22(1 − ρ2)x2 −M22)(|M| −M11x2)

(M11·22(1 − ρ2)x2 −M22)
(3.21)

Sincex andy are standard errors only real, non-negative values ofx, y are feasible. Since
the denominator of (3.21) is negative we shall obviously use the negative “root” for small
values ofx. However, by increasingx from x = 0 we observe that the expression in the
square root of (3.21) will sooner or later become negative. Simple calculations show that
the discriminant of (3.21) will be zero for:

(x2)1 = M11·22|M|
M11·22(1 − ρ2)M11

= (1 − r2)M11M22

M11·22(1 − ρ2)M11
= (1 − r2)M22

(1 − ρ2)M11·22
(3.22)

(x2)2 = M22

M11·22
(3.23)

In deducing (3.22) we have used the fact thatM11·22|M| = (M11M22 − M2
12) (identity

(2.15)), and the expression (2.12) forr. Sinceρ < r implies((1 − r2)/(1 − ρ2)) < 1 we
observe by comparing (3.22) and (3.23) that

x2 = (x2)1 < (x2)2 (3.24)
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whenρ < r. Hence whenρ < r, (x2)1 is the largest value ofx2 which is consistent with
the requirement that the corresponding covariance-matrixL is contained inL . The value
of y or y2 corresponding tõx2 is calculated from (3.21) giving:

y2 = (1 − r2)ρ2M11

(1 − ρ2)r2M11·22
<

M11

M11·22
(3.25)

whenρ < r.
Hence, whenρ < r we havex2 < M22/M11·22 andy2 < M11/M11·22 which implies

(Remark 3.1) that the principal minors|M −L|11 and|M −L|22 are always positive in this
case. Similar reasoning implies that also the remaining principal minors of ordern− 1 are
positive whenρ < r, L ∈ L . Hence, in this case the rank of(M − L) is n− 1, and since
|M−L| = 0 it follows from identity (2.15) that all cofactors|M−L|ik (i, k = 1,2, . . . , n)
will be different from zero. This proves (ii).

(iii) ( ρ > r). By repeating the arguments above we shall now choose the root (3.23), i.e.

x̃ =
√

M22

M11·22
(3.26)

The corresponding value ofy is again obtained from (3.21), giving:

ỹ = r

ρ

√
M11

M11·22
(3.27)

Again, by Remark 3.1 the principal minor|M−L|22 is zero for this value ofx (3.26). Since
|M − L| = 0, it follows again from identity (2.15) that all the cofactors|M − L|12, |M −
L|23, . . . , |M − L|2n will also be zero. Hence, the second row/column of adj(M − L) will
consist of zeros only forL = L̃whereL̃ = L(x̃, ỹ, ρ,O) ∈ L . By symmetry, it is evident
that the matrix corresponding toL = L˜ , whereL˜ = L(x˜ , y˜

, ρ,O) andx˜ , y
˜

are given by:

x˜ = r

ρ

√
M22

M11·22
(3.28)

y
˜

=
√

M11

M11·22
(3.29)

will be contained inL . Repeating the above arguments now imply that the first row/column
of adj(M − L) consist of zeros only. This proves (iii).

Remark 3.2 Proposition 3.1 enables us to give instructive pictures of the setL . The
proposition indicates that we shall separate four different cases: (i)ρ ≤ 0, (ii) 0 < ρ < r,
(iii) ρ = r, (iv) ρ > r. It is also evident from this proposition that the level curves
determined byf (x, y, ρ) = |M − L| = 0 have two branches. These branches are disjoint
whenρ 6= r, whenρ = r they have a common point at the saddle-point(x0, y0). At this
point, as we know from proposition 3.2, the rank of(M −L) drops from(n− 1) to a value
not greater than(n − 2). In order to show whatL looks like, we have carried out the
necessary calculation for a particularM in appendix A.
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Propositions 3.1–3.2 prepare the ground for deducing the bounds on the structural parame-
ters. Below we shall study the four cases in succession. We always supposeM12 < 0.

4. Bounds onγ whenρ ≤ 0

We start with the equations (2.9) or:

(M − L)γ = 0, L ∈ L (4.1)

Suppose thatγ1 6= 0 and let us define:

γ−1
1 (γ ) =

(
1
g

)
(4.2)

Then, sinceM is non-singular we can write (4.1):

(I − LM−1)M

(
1
g

)
= 0 (4.3)

Let us define:

ψ =
(
ψ(1)

ψ(2)

)
= M

(
1
g

)
(4.4)

where(ψ(1))′ = (ψ1, ψ2) and(ψ(2))′ = (ψ3, . . . , ψn). Then, using the partition (3.14),
(4.3) can be written: (

I2 − L11M11 −L11M12

0 In−2

)(
ψ(1)

ψ(2)

)
= 0 (4.5)

The following observations are immediate from (4.3) and (4.5). Firstly, it follows from (4.5)
that:

ψ(2) = 0 (4.6)

so that (4.5) reduces to:
(I2 − L11M11)ψ(1) = 0 (4.7)

Secondly, we observe that|M − L| = 0 implies:

|I2 − L11M11| = 0 (4.8)

so that with the present specification of the model,LM−1 andL11M11 have the same
eigenvalues. SinceL ∈ L it can be proved (Klette and Willassen (1996), th. 2.2) that 1 is
the largest eigenvalues ofLM−1. Since(LM−1) and(L11M11) have the same eigenvalues,
1 is also the largest eigenvalue of(L11M11).

Whenρ < 0 andM12 < 0 it follows from the definition (2.5) ofL11 and (3.12) that
L11 andM11 have the same sign-pattern:(+ −

− +
)

(4.9)
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which implies thatL11M11 has compatible signs. That is, if we define the sign-matrixT

by:

T =
(

1 0
0 −1

)
(4.10)

then the matrix(T (L11M11)T ) has positive entries only. SinceT T = I2 it is evident that
L11M11 and (T L11M11T ) have the same eigenvalues. Since(T L11M11T ) has positive
elements only and its largest eigenvalue is 1, it follows by applying Frobenious’ matrix
theory that we can choose the eigenvector(T ψ(1)) in (4.7) so that it has only positive
elements.

Combining (3.12), (4.4), (4.6) we observe:

(
1
g

)
= M−1

(
ψ(1)

0

)
=
(
M11

M21

)
ψ(1) (4.11)

where 0 denotes the((n− 2)× 1) zero-vector.
Let us define the sign-corrected(n× 2) matrix

�−1 =
(
M11

M21

)
T (4.12)

whereT is the sign-matrix (4.10).
Hence, the first column of�−1 is identical to the first column of(M−1), while the

second one is equal to second column ofM−1 multiplied by −1. Since, by assumption
M12 < 0, it follows that the first row of�−1 consists of two positive entries. Then let us
define:

`′ = (1,1) (4.13)

D = the diagonal matrix with elements consisting of the first row of�−1 (4.14)(
`′
P

)
= (�−1D−1) (4.15)

whereP consists of the two columns

P ′
j = (M2j /M1j ,M3j /M1j , . . . ,Mnj /M1j ), j = 1,2 (4.16)

P = the convex combination ofP1 andP2 (4.17)

Then we summarize all the details for this case in the following proposition.

Proposition 4.1 Suppose the model is specified by eqs. (2.1)–(2.9). Suppose also that
M12 < 0 andρ ≤ 0. Then the eqs.

(M − L)

(
1
g

)
= 0, L ∈ L (4.18)

determines a mapping fromL to the convex setP (4.17), such that for everyL ∈ L there
corresponds one and only oneg ∈ P .
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Proof Most of the details have been given above, so it is sufficient to start with (4.11). Let
T be the sign-matrix (4.10). SinceT T = I2 we have:

(
1
g

)
=
(
M11

M21

)
T (T ψ(1)) = �−1(T ψ(1)) (4.19)

where(T ψ(1)) is the positive eigenvector satisfying:

(I2 − T L11M11T )(T ψ(1)) = 0 (4.20)

(see (4.7)). Then by (4.14) we obtain:

(
1
g

)
= (�−1D−1)D(T ψ(1)) =

(
`′
P

)
w (4.21)

where:
w = D(Tψ(1)) (4.22)

The elements of the diagonal matrixD and the eigenvector(T ψ(i)) are all positive. There-
fore, the elements of the column-vectorw will also be positive. Then it follows from (4.21)
that:

1 = `′w = (w1 + w2) (4.23)

g = Pw = w1P1 + w2P2 (4.24)

Eqs. (4.23)–(4.24) show that the structural vectorg is a convex combination ofP1 andP2.

Remark 4.1 We note thatP1 is the regression vector obtained by taking ordinary least
square regression ofX1 on X2, . . . , Xn, while P2 is the regression vector obtained by
taking the regression ofX2 onX1, X3, . . . , Xn and then solve wrt.X1.

5. Bounds onγ when0< ρ < r

In this case the submatrixL11 has the sign-pattern:

(+ +
+ +

)
(5.1)

whileM11 still has the pattern: (+ −
− +

)
(5.2)

Hence, in this case the matrixL11M11doesn’t have compatible signs. Therefore, proposition
4.1 is not applicable, and we conclude that the structural vectorγ is not restricted to the
convex combinationP .
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According to proposition 3.2 (ii) we can in this case always supposeγ1 6= 0. Then we
can write (2.9):

(M − L)

(
1
g

)
= 0 (5.3)

(
1
g

)
= γ−1

1 (γ ) (5.4)

By proposition 3.2 (ii) and matrix Result 2.2 we can take the first row of adj(M −L) as the
solution of the structural vectorγ . Hence, the structural equation becomes:

ξ1 + g2ξ2 + g3X3 + · · · + gnXn + g0 = 0 (5.5)

whereg0 denotes an inessential constant and the structural parameters are given by:

gj = (M − L)1j

(M − L)11
, j = 2,3, . . . , n (5.6)

In order to study the range of the structural parameters whenL varies overL , it is enough
to consider one of them in detail, f.ex.g2, since the remainingg’s can be handled in exactly
the same way.

For a given value ofρ ∈ (0, r) we know from proposition 3.2 (ii) that the largest value
of σ 2

1 (= x2) consistent withL ∈ L is given by:

x2 = (1 − r2)M22

(1 − ρ2)M11·22
(5.7)

The value ofσ 2
2 (= y2) is then given by:

y2 = (1 − r2)ρ2M11

(1 − ρ2)r2M11·22
(5.8)

By the symmetry of this problem we observe that the largest value ofσ 2
2 and the corre-

sponding value ofσ 2
1 are given by:

y2 = (1 − r2)M11

(1 − ρ2)M11·22
(5.9)

x2 = (1 − r2)ρ2M22

(1 − ρ2)r2M11·22
(5.10)

Hence, for a givenρ ∈ (0, r) (3.21) becomes

y(x) = M12ρx − h(x)

M11·22(1 − ρ2)x2 −M22
for x ∈


0,

√
(1 − r2)M22

(1 − ρ2)M11·22


 (5.11)

y(x) = M12ρx + h(x)

M11·22(1 − ρ2)x2 −M22
for x ∈



√

|M|
M11

,

√
(1 − r2)M22

(1 − ρ2)M11·22


 (5.12)
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where:

h(x) =
√
M2

12ρ
2x2 − (M11·22(1 − ρ2)x2 −M22)(|M| −M11x2) (5.13)

Forρ ∈ (0, r) the values ofy andx given by (5.11)–(5.12) constitute the nonzero values of
L ∈ L . These are the feasible values ofx andy for the present problem.

By (5.6) we know that:

g2 = M21 +M11·22ρxy

M11 −M11·22y2
(5.14)

By proposition 3.2 (ii) the numerator and denominator of (5.14) are non-zero for all
feasible values ofx andy. SinceM21 < 0 if follows from the continuity that the numerator
is negative. Similarly, it follows that the denominator is positive for all feasiblex, y.

The set of values given by (5.11)–(5.12) is closed and bounded and hence compact.
Sinceg2 is continuous it follows from a well-known mathematical result thatg2 will attain
both its supremum and infimum onL whenρ ∈ (0, r). Using the quantity:

R =
(
r −

√
(r2 − ρ2)(1 − ρ2)

)
ρ2

(5.15)

we summarize the details in the following proposition.

Proposition 5.1 Fix ρ ∈ (0, r) and let(x, y) vary over the feasible region given by
(5.11)–(5.12). Then we attain:

maxg2 = −
√
M22

M11

(
R −

√
R2 − 1

)
(5.16)

ming2 = −
√
M22

M11

(
R +

√
R2 − 1

)
(5.17)

Proof Direct evaluation. (Omitted).

The bounds (5.16) and (5.17) agree with those given by Erickson (op.cit. p. 961) in his
theorem 1 (b).

6. Bounds onγ whenρ = r

Consider the covariance-matrixL of the errors given by:

L = L∗ =
(
L∗11 O

O O

)
(6.1)
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where:

L∗11 =




M22

M11·22
− M12

M11·22

− M12

M11·22

M11

M11·22


 (6.2)

Whenρ = r = −M12/
√
M11M22 we know from proposition 3.2 (i) thatL∗ ∈ L . We also

know from this proposition that the rank of(M − L∗) is not larger thann− 2.

Proposition 6.1 Suppose thatγ1 6= 0 and letL∗ be given by (6.1)–(6.2). Then the solution
of

(M − L∗)
(

1
g

)
= 0 (6.3)

has one degree of freedom at least.

Proof Since the conclusion of proposition 5.1 follows directly from proposition 3.2 (i), we
omit the proof.

Prop. 5.1 tells us that the possible range of each of the structural parametersg2, g3, . . . , gn
are from−∞ to +∞ by proper choice of the free parameter(s). Therefore, we can makeg

outside any bounded set.

7. Bounds onγ whenρ > r

Repeating the analysis of section 5 we know that the structural equation can be written:

ξ1 + g2ξ2 + g3X3 + · · · + gnXn + g0 = 0 (7.1)

where

gj = (M − L)1j

(M − L)11
, j = 2,3, . . . , n (7.2)

Again it is enough to study one of theg’s in detail, f.ex.g2, since the remainingg’s can be
handled in exactly the same way. By (7.2) we know that:

g2 = M21 +M11·22ρxy

M11 −M11·22y2
(7.3)

Where:

L = L˜ =
(
L˜

11 O

O O

)
(7.4)

where:

L˜
11 =




r2M22

ρ2M11·22

r
√
M11M22

M11·22

r
√
M11M22

M11·22

M11

M11·22


 (7.5)

13



we know from prop. 3.2 (iii) thatL˜ ∈ L and that the principal minor|M − L˜ |11 and the
cofactors|M − L˜ |1j (j = 2,3, . . . , n) are all zero.

In the analysis to come we also need the derivative ofy(x) (3.21). For a fixed value of
ρ we attain:

y′(x) = −((M11 −M11·22(1 − ρ2)y2)x +M12ρy)

h(x)
(7.6)

It is evident from our proof of prop. 3.2 (iii) and easily verified directly thaty′(x) = 0 when

x˜ = r

ρ

√
M22

M11·22
(7.7)

y
˜

=
√

M11

M11·22
(7.8)

Proposition 7.1 (i) At the two edges ofL , i.e. at
(
0,

√|M|/M22
)

and
(√|M|/M11,0

)
g attains the valuesg2(0) = M22/M21 andg2

(√|M|/M11
) = M21/M11. (ii) g2 doesn’t

have a limit whenx → x˜ (7.7) andy → y
˜

(7.8). (iii) g2 → −∞ whenx → x˜ from the
left andg2 → +∞ whenx → x˜ from the right.

Proof (i) The two values ofg2 are attained by direct calculations using (7.3). Both values
are negative sinceM21 = M12 by the symmetry ofM and sinceM12 < 0 by assumption.
(ii) By prop. 3.2 (iii) the minors|M−L|1j (j = 1,2, . . . , n). are all zero at(x, y) = (x˜ , y˜

).
This implies thatg2 = 0/0 atL = L˜ . By applying L’Hôspital’s rule tog2 at this point we
observe that the derivative of the numerator tends toM11·22ρy > 0, and the derivative of
the denominator tends to−2M11·22yy

′(x) = 0 atx = x˜ . This proves (ii). Finally, since
y′(x) is positive to the left and negative to the right ofx = x˜ statement (iii) also follows
from L’Hôspital’s rule.

Remark 7.1 Prop. 7.1 has an interesting implication. First we note that the identity:

M11M22 −M2
12 = |M|M11·22 > 0 (7.9)

implies:

g2
(√|M|/M11

)
> g2(0) (7.10)

We also note that the derivative ofg2 (7.3) as a function ofx is negative to the left and
positive to the right ofx = x˜ . This fact together with prop. 7.1 (iii) imply:

g2 ∈ [g2(0),−∞) for x ∈ [0, x˜ ) (7.11)

g2 ∈ [g2
(√|M|/M11

)
,+∞) for x ∈

(
x˜ ,
√

M22

M11·22

]
(7.12)

Hence, except for the open interval
(
g2(0), g2

(√|M|/M11
))
g2 can take any real number

whenρ > r.
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Finally, it is evident that we can apply the same analysis to the remainig structural parameters
g3, g4, . . . , gn and the corresponding conclusion will follow.

8. Conclusion

In the bivariate case with uncorrelated errors the bounds on the slope parameter is given by
Gini (1921). For the generalization of this result to the multivariate case Erickson (op.cit.)
refers to Kalman (1982) and Klepper and Leamer (1984). These references appear to be
standard in econometric literature. However, this generalization is certainly contained in
Koopmans (1937) and Reiersøl (1941). Regarding this theorem we quote from Reiersøl
(op.cit. p. 4): “The general formulation of the theorem and the proof of it is given by
Koopmans (op.cit. p. 101).” The theorem is also explicitly stated and given an elegant proof
in Reiersøl (op.cit. Theorem 1, p. 3).

Above we have given the complete solution to the multivariate version of the model
considered by Erickson by an elaboration of Reiersøl’s approach. This approach enables us
to consider all structural parameters simultaneously and the results emerge quite easily.

Our results deduced in sections 4–7 demonstrate that applying regression theory to this
type of models when the structural parameters are not identifiable can be very hazardous.

Finally, there can be no doubt that the present approach is much more powerfull and
general that the procedure based on solving covariance equation which is applied by Erickson
(op.cit.) and many others, for instance Moran (1971). Hence, the old scholars should not
be overlooked.

Appendix A

The four figures below illustrate the setL defined by (2.10)–(2.11). For a given correlation
coefficient (ρ) L is the branch of the level curve determined byf (x, y, ρ) = |M −L| = 0
which is lying nearest to the origin in thex, y plane. The branch of the level curve lying
further away from the origin is part of the indefinite region of(M − L).

Our figures, which have been drawn by use of proper software, illustrate the four cases:
(i) ρ ≤ 0, (ii) 0 < ρ < r, (iii) ρ = r and (iv)ρ > r for the particular covariance-matrix:

M =

2 1 1

1 2 1
1 1 2




For this matrix the partial correlation coefficientr = 1
3 (2.12), and the functionf (3.1)

defined in thexy-plane becomes:

f (x, y) = 2(1 − ρ2)x2y2 − 3x2 − 3y2 + 2ρxy + 4 (A.1)

The white and grey regions in thexy-plane indicate wheref is positive and negative re-
spectively. Figure (iii) illustrates the caseρ = r, and indicates that the two branches of the
level curve off (x, y, 1

3) = 0 have a common point at the saddle-point
(√

3/2,
√

3/2
)
.
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