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Abstract

Prediction markets are a promising tool to improve decision-making: they

incentivize information-seeking and truthful information revelation, and nat-

urally aggregate information. However, using prediction markets is funda-

mentally limited by the fact that events traded in the market need to be

resolvable. In this paper, we propose a mechanism that incentivizes accuracy

and aggregates information for unresolvable events. Market participants de-

cide whether to endorse a statement and trade an asset whose value depends

on the endorsement rate. The respective payoffs of buyers and sellers indi-

cate whose endorsement to trust. We demonstrate theoretically and illustrate

empirically that “following the money” outperforms selecting the majority

opinion.
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1. Introduction

A centerpiece of economic theory is the idea that markets are efficient aggregators

of information (Hayek, 1945; Hurwicz, 1960; Fama, 1970). Historically, this idea has

been a descriptive one, explaining the success of market institutions as we encounter

them in the real world. In line with an ongoing shift from mere description towards

applying economic theory to also create institutions (Roth, 2002, 2018), economists

have more recently argued for the use of artificially designed markets (“prediction

markets”) with information aggregation as a designated goal (Arrow et al., 2008;

Hanson, 2003; Ottaviani and Sørensen, 2007; Hanson, 2013). Successful applications

range from forecasts of political elections (Forsythe et al., 1992; Berg et al., 2008) to

business sales (Cowgill and Zitzewitz, 2015; Gillen et al., 2017) and the replicability

of experiments in social science (Dreber et al., 2015; Camerer et al., 2016, 2018).

For prediction markets to be successful it is however necessary that the true

answer to the question they are applied to can be determined within a relatively

short time frame. This poses a challenge when we wish to apply them to questions

such as what the best policy to address a problem is. For such questions, not only is

the answer presently unknown, but it is also uncertain when and how the answer will

be known, if at all. If a central bank runs a quantitative-easing policy, we may never

be able to assess counterfactual policies (e.g. only using conventional instruments).

Furthermore, the best policy may depend on an unobservable state of nature. This

creates what we call the “incentive problem”: When relying on experts (or on a

crowd of laypeople) to provide an answer, how can we incentivize their truth-telling

if we do not know whether or when the correct answer will be known?

Besides the incentive problem, we furthermore face an “aggregation problem”:

which opinion to select if experts disagree? The obvious candidate is the majority

opinion, but there is no guarantee that it is the best approach.1 Some opinions,

1For instance, imagine each expert can design and run an experiment to test whether a statement

is true. Running an experiment can be seen as drawing a binary signal (“support” or “falsify”)
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based on signals that are more difficult to get, should drive the conclusion even if

they are a minority.

In this paper, we show that a market mechanism proposed to address the in-

centive problem can be modified to simultaneously solve the aggregation problem,

essentially allowing us to extend prediction markets to unverifiable events. Baillon

(2017) designed a “Bayesian market” where experts report their opinions about a

statement (endorse it or not) and trade an asset whose value is determined by the

total endorsements. Those who endorse the statement are offered to buy the asset

from a center at price p, where p is randomly drawn. Essentially, buying the asset

is betting that more than p% of others will endorse the statement. Those not en-

dorsing the statement can sell the asset to the center. Baillon (2017) showed that

such a “Bayesian market” provides incentives to report opinions truthfully, avoiding

the no-trade theorem (Milgrom and Stokey, 1982) through the intermediary role of

the center. By modifying this mechanism—making the price individualized, inde-

pendently drawn for each market participant—we show that Bayesian markets have

desirable properties with respect to aggregation while keeping the incentive property

intact. With sufficiently many participants, experts with the signal that indicates

the actual state of nature, and only them, will make a profit. Hence, by “following

the money”, we can infer the state of nature without relying on what the majority

thinks.

The intuition of our result is based on an argument put forward by Prelec et al.

(2017). If signals are correlated with the states of nature, there will be more signals

supporting a state of nature when this state is the actual one than when it is not, and

about the state of nature (whether the statement is true or not). In some extreme cases, a single

falsification among many attempts should lead to the rejection of the statement. This would be

the case under a strictly Popperian scientific methodology (Popper, 1959) or when validating a

mathematical statement, where a single counterexample would be sufficient to establish its falsity.

Obviously, in most scientific endeavours, especially in the social sciences, experiments can be noisy

and one may expect some experiments falsifying a statement even if it is true. However, the main

argument remains.
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therefore, than we would have expected ex ante. Prelec et al. (2017) proposed the

surprisingly popular algorithm (SPA) in which people are asked to endorse a state

and predict the rate of endorsement. The algorithm picks the state that is more often

endorsed than people predicted. Prelec et al. (2017) demonstrated theoretically

and experimentally that this approach improves upon following the majority and

confidence-weighted aggregation.2

In this paper, we combine the ideas behind Bayesian markets and the SPA and

show that in equilibrium, “following the money” in a Bayesian market offers the

same aggregation benefits as the SPA does under truthful reporting. In contrast

to the SPA, however, Bayesian markets provide monetary incentives for accuracy,

a crucial feature for high-stakes domains in which information acquisition is costly.

Moreover, Bayesian markets require less information than the SPA. Experts only

reveal their signal and make a binary trading decision. It is known in the literature

that the incentives challenge requires asking more than signals (e.g., Radanovic and

Faltings, 2013, Theorem 1) when the state of nature is unobservable. Virtually all

alternative methods ask predictions on top of signals (Prelec, 2004; Witkowski and

Parkes, 2012; Radanovic and Faltings, 2013, 2014; Cvitanić et al., 2019). Bayesian

markets uses trades to incentivize truthful revelation of signals. With this little

extra information, we can recover experts’ predictions by fitting supply and demand

curves for the asset, and even infer the whole signal technology, thereby solving the

aggregation challenge. In addition to requiring less information than the method of

Prelec et al. (2017), our market approach also opens up the possibility of continuous

markets, extending prediction markets to unverifiable events.

The next section of the paper introduces the theoretical setting and the market.

We analyze payoffs at the equilibrium and show how the endorsement of those with

positive payoffs indicates the actual state of nature. If the statement is true, those

endorsing it can make a profit from betting on others’ endorsement rate. If it is not

2See Wilkening et al. (2022), Peker (2022), and Palley and Satopää (2023) for follow-up methods

adapted to probabilistic forecasts.
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true, those rejecting it can make a profit. The profits realize even in the absence

of verification of the actual state of nature, because bets are based on endorsement

rates, not on states.

Section 3 describes an experiment we ran on a large sample of US students.

We used a task developed by Tereick (2020) that ensures that the informational

assumptions of the model are satisfied. Under these assumptions, homo economicus

would behave exactly as our model predicts. Our experiment allowed us to test

whether our method also worked for homo sapiens, without having to worry whether

the informational part of the model perfectly described the reality. We compared our

method to the majority opinion and to the SPA. Despite using less information than

the SPA, our method had comparable accuracy rates. Both methods substantially

improved upon majority.

2. Theory

2.1. Setting

Let {Y,N} be the state space, with Y and N the two possible states of nature. For

instance, these two states can represent whether a statement is true or not. Which

state S we are in is assumed to be unobservable.

A group of n expert agents, however, has private information about the state.

The common prior of the agents is that the probability of state Y is r. Each agent

gets a private signal si ∈ {0, 1}, with sampling probabilities P (si = 1 |Y ) = ωY

and P (si = 1 |N) = ωN . Signals are independent conditionally on the state, i.e.

P (si = 1 |S, sj) = ωS for all S ∈ {Y,N} and j 6= i.3 We assume ωY > ωN . This

implies that signals are informative about the state of nature, si = 1 providing

support for Y and si = 0 for N . We do not require ωY > 0.5 > ωN , which would be

3In other words, signals are independent and identically distributed given the state, but the

latter is uncertain. The absence of correlation between signals implies that agents will not exhibit

correlation neglect, unlike studied by Enke and Zimmermann (2019).
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necessary for the majority of signals to be correct (in an infinite group of agents).

The assumption ωY > ωN is as mild as can be. Equality would mean that si is non

informative and therefore, all agents would stick to the prior belief r. The opposite

inequality would simply change the interpretation of the signal (si = 0 providing

support for Y and si = 1 for N). Together, we call the triplet 〈ωY , ωN , r〉 a signal

technology.

Using Bayesian updating, agents form posterior beliefs about the actual state

according to

r1 ≡ P (Y | si = 1) =
rωY

rωY + (1− r)ωN

; (1)

r0 ≡ P (Y | si = 0) =
r(1− ωY )

r(1− ωY ) + (1− r)(1− ωN)
. (2)

For simplicity, we assume that ωY , ωN , and r are such that r1 > 0.5 and r0 < 0.5. It

allows us to equate an agent’s signal with the state the agent believes more likely to

be the actual state (the state they endorse, if they are honest). If this assumption

is not satisfied, signals would be informative but a single signal would not suffice

to reverse one’s belief. A sufficient condition for this assumption is r = 0.5, as

used in our experiment. The reason we focus on endorsements rather than signals

in this paper is because in many practical applications, it will be much easier for

respondents to identify which state of the world they deem more likely, rather than

to articulate the source of this belief.4

Apart from the agents’ posterior beliefs about states, we can also infer posterior

expectations about the proportion of agents who received signal 1 in the population.

4Sometimes, one may however be interested in eliciting beliefs where there is agreement about

the most likely state. This may be for instance, when predicting catastrophic events, where a

probability of, say 5% instead of 0.01%, makes a huge difference. There are two ways of using

Bayesian markets in such situations. First, the market can ask about the signal directly. In this

case, the assumption r0 < 0.5 < r1 can be dropped, and all results of this paper still hold - at the

cost of the practical difficulty of asking respondents about their information sources. Alternatively,

one can replace endorsements by the question “Do you think state Y is more likely than the average

person in our sample thinks?”. Again, in this case, it is not needed that r0 < 0.5 < r1.
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We denote the actual value of this proportion by ω. Since the expectation of a

proportion under random sampling equals the sampling probabilities, agents who

received signal 1 expect ω to be

ω1 ≡ E [ω | si = 1] = r1 ωY + (1− r1)ωN , (3)

whereas agents with signal 0 expect

ω0 ≡ E [ω | si = 0] = r0 ωY + (1− r0)ωN . (4)

A center wants to find out which state we are in (the actual state). This center

can be a policy maker consulting experts, but could just as well be an employer

querying employees or a scientific association surveying its members. We make the

usual assumption that the signal technology is common knowledge among the agents.

However, as in Prelec (2004), Baillon (2017), Prelec et al. (2017), and Cvitanić

et al. (2019), the center does not know the signal technology. This setting has two

implications. First, the center cannot only ask signals. Observing a proportion of

signals 1 would not suffice to infer the actual state. Second, the center cannot only

ask the signal technology. Even the agents who know the signal technology and their

own signal cannot infer the actual state with certainty.

The problem faced by the center is a mechanism design problem, i.e., creating

an institution to recover the state of nature given these information constraints.

Expressed in the terms of our model, the incentive and aggregation problem can be

stated as follows. Each agent will report an endorsement ei, where ei = 1 denotes

that agent i endorses state Y and ei = 0 that i endorses state N . The center wants

to reward the agents in such a way that it becomes profitable for them to endorse

a state if and only if they believe it more likely to be the actual one. Furthermore,

upon learning the endorsements e1, . . . , en, the center selects one of the two states,

and wishes to maximize the probability that it is the actual one. Since the state

S is unobservable and the signal technology is unknown to the center, it is not

possible to make the payments or selection of a state dependent on the actual state,
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nor the selection of the state dependent on the parameters ωY and ωN . Thus, it

is impossible to use traditional methods to elicit agents’ signals or beliefs because

the signals are private (impossible to directly reward truth-telling) and the beliefs

are about unverifiable states Y and N (bets and scoring rules cannot be applied).

Second, even knowing signals or beliefs would not enable the center to determine

the state of nature because the center does not know the values for ωY and ωN . In

other words, for anyone unaware of the signal technology, observing 20% of signal 1

does not say which state we are in.

The next subsection introduces the mechanism, called a Bayesian market.

2.2. Bayesian market

The center and each agent i trade an asset whose settlement value v is defined as

the share of agents endorsing state Y , i.e.,

v =

∑n
j=1 ej

n
.

The center organizes a Bayesian market for these assets:

1. Agents simultaneously report ei to the center only.

2. For each agent i, the center draws a price pi from a uniform distribution over

(0, 1) and proposes the following trade to the agent, and the agent can decide

to take up the offer (di = 1) or not (di = 0):

(a) If ei = 1, agent i can buy the asset at price pi from the center;

(b) If ei = 0, agent i can sell the asset at price pi to the center.

3. All endorsements ei and buying/selling decisions di are revealed.

4. (a) If an agent decided to buy at price pi, then the trade occurs if there exists

another agent j selling at pj ≤ pi.

(b) If an agent decided to sell at price pi, then the trade occurs if there exists

another agent j buying at pj ≥ pi.
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5. Those agents who bought the asset collect v and pay pi; those who sold it

collect pi and pay v.

Step 2 differs slightly from the mechanism proposed in Baillon (2017) in which

a single price p is drawn for all agents. The motivation for the change is to learn

as much as possible from the decisions of different agents. When only a single price

is drawn and, e.g., all potential buyers reject the trade, the center only learns that

the price was larger than the buyers’ reservation price, but not by how much. An

alternative would be to directly ask agents for their reservation prices. The center

could then draw only one random price p for all agents. This would correspond to

the Becker-DeGroot-Marshak mechanism (Becker et al., 1964), but with the trading

rule (step 4) in place. The advantage of binary decisions in step 2 is that they require

less information from the agents, and therefore less cognitive effort. It is easier to

buy/sell at a given price (equivalently, to take/reject a bet on the asset value) than

to report a reservation price.5

Our mechanism as stated induces a game played among the agents. In this game,

a strategy profile is a collection (e, d) = ((e1, d1) , ..., (en, dn)), where ei determines

which state individual i is going to endorse depending on the signal si, and the

trading strategy di assigns to each possible signal a range of prices in the (0, 1)-

interval which i is going to accept when receiving a buy or sell offer from the center.

Note that this definition of strategies precludes mixed strategies and the existence

of an external coordination device among agents, so that the actual endorsements

made by agents are fully determined by their signal and strategy. In Section 5, we

discuss this strategy restriction in light of our empirical results.

The mechanism assigns a payoff Ui(e, d) to each agent. Importantly, these payoffs

5Asking for reservation prices, however, has advantages regarding the logistical aspects of prac-

tical implementation: In our design, a random price must be drawn for every respondent. When

asking for reservation prices, respondents can be contacted by a pen and paper survey in which

they submit their reservation prices and a public price is later credibly drawn. Whether these

practical considerations outweigh the cognitive simplicity of a binary decision, will depend on the

application.
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cannot depend on the actual state of nature S or its ωS. A Bayesian Nash equilibrium

of the induced game means that, conditioning on their signal, no agent expects a

higher payoff by moving to another strategy, i.e.,

E [Ui (e, d) | si] ≥ E [Ui ((e1, d1) , ..., (e
′
i, d
′
i) , ..., (en, dn)) | si]

for any (e′i, d
′
i) 6= (ei, di) and all signal realizations si ∈ {0, 1}. We further say that

a strategy profile is truthful or, equivalently, that there is truth-telling, if ei(1) = 1

and ei(0) = 0 for any agent i.

We assume that all agents are risk-neutral6 and care only about their own mon-

etary payoff, so that Ui(e, d) is just i’s monetary payoff. If ei = 1, agent i is

potentially a buyer, and we denote by π1(v, pi) agent i’s monetary payoff if deciding

to buy (di = 1), as a function of the asset value v and individualized buying price

pi. Then

π1(v, pi) =

v − pi if trade happens;

0 otherwise.

(5)

Symmetrically, π0(v, pi) denotes agent i’s monetary payoff as a potential seller if

deciding to sell (di = 0):

π0(v, pi) =

pi − v if trade happens;

0 otherwise.

(6)

2.3. Equilibrium behavior

From here, we assume that n is infinite. Three simplifications come with an infinite

group of expert agents, which together, imply that the asset value is simply ωY or

ωN at the truth-telling equilibrium. First, with n infinite, the proportion of a signal

in the population naturally equates the probability to get that signal. Second, the

agent’s own signal has no impact on the asset value. The third simplification is

6The assumption of risk neutrality is rather common in the literature on expert belief elicitation;

see, however, Offerman et al. (2009) and Hossain and Okui (2013) for alternatives.
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related to the trading condition in step 4 of the Bayesian market definition. That

someone else is accepting to buy or to sell at the same price is still important but

the information that someone could make such a choice becomes trivial in an infinite

group. There will always be at least one other experts receiving the same signal and

one with the opposite signal. Moreover, for any nondegenerate proportion of agents

endorsing each signal, there will also always be someone being offered any possible

price. Hence, trade happening does not bring more information about the signal

distribution than si does, unlike in a finite group of agents.

With the three simplifications in mind, we first address the incentive problem by

the following proposition.

Proposition 1. Let 〈ωY , ωN , r〉 be a signal technology and n infinite. In the game

induced by the Bayesian market, truth-telling is a Bayesian Nash equilibrium in

which agents’ betting strategies are such that:

(i) agents whose signal is 1 buy the asset if and only if pi ≤ ω̄1;

(ii) agents whose signal is 0 sell the asset if and only if pi ≥ ω̄0.

Proof. The main result in Baillon (2017) is essentially unaffected by the introduction

of individualized prices. To get an intuition for the result, we can inspect Equations

(3) and (4). It is immediate that ω0 < ω1 since r0 < r1 and ωN < ωY . Thus, signal-1

agents expect more signal-1 agents than signal-0 agents do. Consider then agent i

with si = 1 and assume all other agents are telling the truth, such that the asset

value v equals the true share of signal-1 agents in the population. Agent i expects

v to be ω1. For pi less than ω1, agent i will be willing to buy the asset. Agent i

also knows that no one would buy it at a higher price (so i has no reason to pretend

to be a seller) but that some agents will be willing to sell at prices between ω0 and

ω1. For this price range, agent i foresees a profit and has the incentives to endorse

ei = 1 to become a buyer. Outside this range, no trade will go through. The case

si = 0 is symmetric.

The fact that agents trade an asset whose value they disagree on may raise the
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question why the no-trade theorem (Milgrom and Stokey, 1982) is not applicable

here. The reason lies in the role of the center: For a trade to go through, it is

sufficient that there exists a single agent who was willing to take the opposite bet.

The center will verify this condition for each individual bettor, without providing

further information about who the agent with the opposite bet is. Since 0 < ωN <

ωY < 1, agents already know that there must be at least one disagreeing agent and

thus the occurence of trade does not provide further information about the actual

ω. Since trades are facilitated by the center,7 the agents remain uncertain about the

share of other agents disagreeing with them, which makes our setting different to

the settings in Aumann (1976) or Milgrom and Stokey (1982) in which disagreement

is impossible.

In the following proposition, we consider the aggregation problem and derive

what conclusions the center can draw in the truth-telling equilibrium.

Proposition 2. If n is infinite and the Bayesian market is at the truth-telling

equilibrium, at least one agent has a positive payoff, all those with positive payoffs

have endorsed the actual state, and all those with negative payoffs have endorsed the

opposite state.

Proof. At the truth-telling equilibrium, the settlement value v is ωN in state N and

ωY in state Y. And according to Proposition 1, trades only occur for prices in the

range [ω0, ω1]. Hence agents’ payoffs, defined in Equations (5)-(6), can be simplified

as

π1(v, pi) = −π0(v, pi) =

ω − pi if pi ∈ [ω0, ω1];

0 otherwise.

Notice that Equations (3)-(4) imply

0 < ωN < ω0 < ω1 < ωY < 1. (7)

7The center will typically incur a loss from this role. The mechanism is thus not budget-

balanced.
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In state Y , when trade occurs, signal-1 agents pay less than ω1 and therefore less

than the settlement value ωY . They make a profit while sellers (signal-0 agents) sell

the asset at a price too low. The opposite applies in state N . Hence, the center,

seeing that people endorsing Y make a profit, can conclude that we are indeed in

state Y , even though the state itself is not directly observable. Sellers making a

profit indicates state N .

At the truth-telling equilibrium and under the actual state of nature S, the

average payoff for agents with the same signal s is equal to the expected payoff for

agents with that signal:

πY
1 ≡ Ep[π1(v, p) |Y ]

= Ep[π1(ωY , p)] =

∫ ω1

ω0

(ωY − p)dp =
1

2

[
(ωY − ω0)

2 − (ωY − ω1)
2
]

= −πY
0 ≡ −Ep[π0(v, p) |Y ];

(8)

πN
0 ≡ Ep[π0(v, p) |N ]

= Ep[π0(ωN , p)] =

∫ ω1

ω0

(p− ωN)dp =
1

2

[
(ω1 − ωN)2 − (ω0 − ωN)2

]
= −πN

1 ≡ −Ep[π1(v, p) |N ].

(9)

Under state Y , πY
1 > 0 and πY

0 < 0; and under state N , πN
1 < 0 and πN

0 > 0.

The value ωs is the prediction of the proportion of signal 1 in the population by

agents with signal s. Hence, ωS − ωs is the prediction error of signal-s agents when

S is the actual state of nature (note that this error can be positive or negative).

The average payoff of signal-s agents are therefore half the difference between the

squared prediction error of agents with signal 1−s and their own squared prediction

error. Agents endorsing the actual state of nature are better able to guess the

signal distribution in the population, and therefore, the opinions of others. Bayesian

markets favor them and allow them to make a profit.

Figure 1 displays the supply and demand curve of the Bayesian market when

Y is the actual state and when only a minority of agents (ωY < 0.5) endorsed it.

13



Figure 1: Bayesian market equilibrium

Note: Demand and supply curves (thick black and gray lines), settlement value (dotted red line),

and average payoff of signal-1 agents (shaded area) in state Y when the majority endorses N .

Supply exceeds demand at prices between ω0 and ω1. The settlement value ωY is

also displayed in the graph. Equation (8) applies. The squared prediction error of

signal-0 agents is represented by square ACIG, and the squared prediction error of

signal-1 agents by the smaller square BCFE. The average payoff of signal-1 agents,

πY
1 , hence corresponds to the shaded area (half the difference between ACIG and

BCFE).

We can also provide an interpretation of the graph in terms of surplus. Be-

cause prices are individual and uniformly distributed, the triangle DEG is both the

expected and the average ex ante surplus of buyers (the difference between their

willingness to pay and the price they pay). The (expected and average) ex ante

surplus of sellers is GEH. The total ex ante surplus of trading is DEHG and is

shared equally between buyers and sellers on the Bayesian market. The payoff of an

agent is the sum of the ex ante surplus and of the prediction error. For instance, a

buyer with pi = ω0 gets the maximum ex ante surplus DG, plus the prediction error
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AD. For buyers, prediction errors are lucky surprises if the state is Y . The asset is

worth more than they expected. A seller with pi = ω1 gets the maximum ex ante

surplus (EH) but the prediction error BH is an unlucky surprise in state Y . The

asset is more costly than expected. The polygon ABEG represents the sum of the

ex ante surplus and of the prediction errors. In state Y , both terms are positive for

buyers but only the former is for sellers. The state N is entirely symmetric, with all

statements reversed for buyers and sellers.

From observing endorsements and trades at the truth-telling equilibrium, the

center can infer the whole signal technology and even beliefs. Sellers accept to sell

from ω̄0 onward and buyers to buy up to ω̄1. Moreover, in state Y , ω gives ωY

and ωN is given by the formula ωN = ω0(ωY −ω1)
ωY −((1−ωY )ω0+ωY ω1)

.8 Equations (1) and (2)

then allows us to obtain probabilistic beliefs r1 and r0, without having to ask how

confident agents are about their endorsement.9

2.4. Algorithms for empirical data

Proposition 2 concerns limit behavior of perfectly rational agents. In perfect con-

ditions, all agents endorsing the actual (opposite) state have a nonnegative (non-

positive) payoff, and at least one agent will have a positive payoff. In practical

implementation, a small group may lead to no trade. Furthermore, agents may

make mistakes when endorsing a state or when deciding to trade. In the presence

of noise, agents not endorsing the actual state may still make a profit. We discuss

two algorithms which can be used empirically by the center to find the actual state

8In state N , ω gives ωN and ωY is given by the formula ωY = ω0(ω1−ωN )
((1−ωN )ω0+ωNω1)−ωN

.
9Having r1 and r0 allow us to go beyond binary predictions; we can now aggregate agents’

probabilistic beliefs of the actual state, which is similar to how prediction market prices work. For

example, the simplistic way is to use the average: ωr1 + (1 − ω)r0 = (ωω1+(1−ω)ω0)−ωN

ωY −ωN
. We can

also use more advanced methods in the probability forecast aggregation literature, e.g., various

ways of extremizing the average (Ranjan and Gneiting, 2010; Satopää et al., 2014; Baron et al.,

2014). Methods adapted to probabilistic forecasts have been recently proposed by Wilkening et al.

(2022), Peker (2022), and Palley and Satopää (2023).
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in those non-ideal situations.

The simpler algorithm computes the payoff of each agent and compares the

average payoff of the sellers to that of the buyers. The algorithm picks the side

with the higher average payoff and tosses a coin if no trade occurred. We call

this algorithm the naive follow-the money algorithm (nFTM). nFTM is able to

accommodate some moderate noise in agents’ behavior but does not solve the no-

trade issue.

In pilot studies, we found that the presence of substantial noise hampered the

accuracy of nFTM. We therefore developed a more elaborate algorithm, fitting the

supply and demand curves of Figure 1 with logistic curves. For simplicity, we refer

to this algorithm as the follow-the money algorithm, or FTM.10 With F the logis-

tic function, the FTM first estimates ω̂1 and ω̂0 (which can be interpreted as the

reservation prices for an infinite group at the truth-telling equilibrium) from

Prob(di = 1 | p, ei) =

F (β(p− ω̂1)) if ei = 1

F (β(ω̂0 − p)) if ei = 0

(10)

imposing ω̂0 ≤ ω̂1. The logistic function has the following properties that make

it suitable for our purpose: for prices that are lower for the buyers or higher for

the sellers than their respective reservation prices, the probability of taking the bet

is higher than 0.5 and increasing with the distance to reservation price; for prices

which equal the reservation prices, there is a 0.5 chance of taking the bet; for prices

too high for the buyers or too low for the sellers, the probability of taking the bet

is lower than 0.5 and decreasing with the distance to reservation price. Parameter

β captures the level of noise/imprecision (sensitivity towards the distance between

the price and reservation price) and is assumed to be the same for sellers and buyers

(for parsimony). FTM then computes the expected payoffs for buyers and sellers for

an infinite group using Equations (8) or (9), substituting ω̄1 and ω̄0 with estimated

10In our preregistration, we refer to nFTM and FTM as FTM-A and FTM-L, for “average” and

“logistic”, instead.
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reservation prices ω̂1 and ω̂0, and ω with the proportion of endorsements 1, and picks

the side with a positive expected payoff.

3. Experimental design

3.1. Stimuli

We conducted an experiment with abstract tasks (urns and balls) ensuring that the

theoretical assumptions were satisfied. We considered groups of n = 200 agents.

In each task, the participants of the experiment were presented with two urns, as

depicted in Figure 2. Urns Left and Right represent the two states of nature, N

and Y respectively. Participants were told that one of the two urns was selected

randomly (r = 0.5) and that each of the 200 participants of a group would get one

ball from that urn. Denoting a yellow ball si = 1 and a blue ball si = 0, Urn Left

would give ωN = 0.10 and Urn Right ωY = 0.40 in this particular example. Urn

Right always contains more yellow balls than Urn Left. Thus Urn Right is state of

nature Y and Urn Left is state of nature N .

There were 30 tasks with ωN ranging from 0.05 to 0.75 and ωY from 0.25 to 0.95,

spanning the unit interval in a systematic way. In twelve tasks, both urns had a

minority of yellow balls, i.e., ωN < ωY < 0.5. Another set of twelve tasks mirrored

them such that ωY > ωN > 0.5, and in six tasks the majority would always guess

the correct state of nature (ωY > 0.5 > ωN). Table 3 in Online Appendix A lists all

the task parameters. The number of yellow balls differs across states of nature by a

minimum of 40 and a maximum of 60. Larger differences would mean that the signal

technology discriminates very well between state of nature and the majority (as well

as FTM) would be right most of the time. By contrast, smaller differences would

imply very narrow trading intervals and it could be that none of the 200 participants

of a group gets a price in that range.

In each task, the participants were presented with the urns (as in Figure 2) and
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Figure 2: Experimental task setting (an example of Task 6)

asked to press a button to draw their ball. Once the color of their ball was revealed,

they were asked to guess which urn the ball comes from (i.e. to endorse a state).

The next question differed between two experimental treatments, FTM and SPA.

In the FTM treatment, we implemented the betting mechanism of the Bayesian

markets. In Figure 3 for instance, participants were asked whether they were willing

to bet that the number of participants guessing Urn Right (i.e. endorsing Y ) was

at least 130, i.e., whether they were willing to pay p = 0.65 for v, which is equal

to the sample proportion ω. For the sake of symmetry, participants guessing Urn

Left were asked whether they would bet that the number of participants guessing

Urn Left would be at least 70, i.e. whether they were willing to accept p = 0.65 for

v. Payment was explained in a training preceding the experiment. The participants

were told that the number (130 in this example) was random and that their payment

would be the actual number of Urn Right guesses minus that number if someone
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Figure 3: Screenshot of the FTM treatment

took the opposite bet (betting that at least 70 or more participants would guess Urn

Left). It would be 0 otherwise.

Figure 4: Screenshot of SPA

In the SPA treatment, we followed the approach of Prelec et al. (2017) and asked

participants to predict the number of people who guessed the same urn as they did

(Figure 4). Prelec et al.’s (2017) algorithm first computes the average prediction

across all participants and then selects the state of nature that was endorsed more

often than predicted. Predictions were incentivized using the quadratic scoring rule.

Participants received 400− x2

100
, with x the difference between their prediction and the
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actual number of guesses. There were no incentives for making correct endorsements.

In none of the treatments was payment directly based on the task parameters.

Even though we, the experimenters, knew them, we aimed to mimic situations in

which no one knows the actual state of nature and in which the center (paying the

agents) does not even know the signal technology.

3.2. Deviations from Section 2

The implementation of the Bayesian market in our experiment differs from the

Bayesian market mechanism proposed in section 2 in two ways. First, n is, trivially,

not infinite. Hence, there is no guarantee that the incentive properties established

in Proposition 1 are preserved. We performed extra checks in Online Appendix A

to make sure that truth-telling equilibrium exists for parameter values used in our

experiment and for n = 200. Online Appendix A shows that reservation prices may

differ from ω0 and ω1 (the reservation prices for an infinite sample). Table 3 pro-

vides the reservation prices for n = 200, denoted p∗0 and p∗1 for sellers and buyers

respectively. Second, the draws from the urn (i.e., the signals) were made without

replacement. Beyond simplifying calculations for respondents, it also implies that

the settlement value could only be ωY or ωN if people endorse the state correspond-

ing to their signal. Consequently, if they do follow the strategy of Proposition 1, the

aggregation properties established in Propositions 2 are preserved. Hence, we make

the following two observations:

Observation 1: Given the setup of the experiment, the incentive properties estab-

lished in Proposition 1 are preserved with reservation prices p∗0 and p∗1 instead of ω0

and ω1.

Observation 2: Given the setup of the experiment, the aggregation properties

established in Propositions 2 are preserved.
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3.3. Implementation

The experiment was preregistered (https://osf.io/cf8bk/) and conducted on Prolific

between July 24 and August 9, 2022, with 828 participants in the FTM treatment

and 822 in the SPA treatment. They were all US students. We restricted partici-

pation to students for their probable familiarity with abstract tasks as those used

in our experiment. Participants watched a short video explaining the experimental

tasks and then went through five training rounds where they received feedback about

their payments and how these payments were calculated (see Online Appendix C for

details). We split the 30 tasks into two sets of 15. After the training, each partic-

ipant completed one of the two sets, with the task order being randomized within

that set at the participant level. There was no feedback after the tasks. Payment,

described in the next paragraph, occurred once all participants had completed the

experiment.

Participants received a fixed reward of £1.5 and a bonus of up to £3.11 All

amounts (prices, bets, scores) were presented in tokens. The bonus in pounds was

the number of tokens divided by 2,000. In the FTM treatment, participants could

(in theory) win or lose up to 200 tokens in each task. Hence, they were endowed

with 200 tokens for each task to avoid net losses at the end of the experiment. In the

SPA treatment, the quadratic score was also expressed in tokens. It was equivalent

to endowing them with 400 tokens and imposing a quadratic loss ranging from 0 to

400. In both treatments, the final number of tokens was naturally bounded by 0 and

6,000. This allowed us to recruit participants with the same information about bonus

ranges. However, the average bonus was likely to be lower for the FTM treatment

than for the SPA treatment ex ante and, in fact, it was ex post (SPA £2.86, FTM

£1.64).

To compute the bonus of a participant in a given task after the end of the

experiment, we randomly selected a state of nature12 and 200 participants such

11Prolific required payments in pounds.
12This random selection of a state of nature resulted in 50.1% of state Y selected for bonus calcu-
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that the group (including this particular participant) had the exact combination of

signals shown in the task. In other words, participants were not assigned to a given

group ex ante. Instead, we constructed (random) groups matching the information

provided to the participants.

4. Results

To be consistent, we report data and results in terms of our theoretical setting. In

particular, a yellow ball is signal 1 (si = 1) and a blue ball is signal 0 (si = 0). A

participant guessing Urn Right is endorsing state of nature Y (ei = 1) and guessing

Urn Left is endorsing N (ei = 0).13 We also define truth-telling as reporting ei = si.

We cannot distinguish those who did not tell the truth from those who did not update

their belief correctly. Hence, we also refer to ei = si as reporting a Bayesian guess.

The analysis was pre-registered, with the exception of the exploratory subsection

4.4.

4.1. Raw data - Endorsements

According to the model, truth-telling would be a Bayesian Nash equilibrium in the

FTM treatment. The empirical truth-telling rate was 90.1%.14 About 59% of the

lations of participants in the SPA treatment, and 49.6% for the FTM treatment. Both proportions

are not significantly different from 0.5 (proportion tests: for SPA, Z-statistic= 0.216, p = 0.829;

and for FTM, Z-statistic= −0.969, p = 0.333).
13Predictions elicited in the SPA treatment were about the number of participants guessing the

same urn, but we deduct the predictions of participants endorsing N from 200 to be the predictions

of number of participants endorsing Y . Bets in the FTM treatment were also expressed in terms

of the number of participants guessing the same urn, but we deduct the prices in the bets for

participants endorsing N from 200 to be the the prices to sell the asset whose settlement value is

the number of participant endorsing Y .
14The empirical truth-telling rates were not significantly different for easier questions with ωY >

0.5 > ωN and for other questions with ωY > ωN > 0.5 or 0.5 > ωY > ωN (89.7% and 90.2%

respectively; proportion test Z-statistic= 0.828 and p = 0.408).
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participants told the truth in all 15 tasks they faced. About 23% guessed the opposite

urn (or lied about their guess) 1 to 3 times out of 15. Less than 4% had a majority

of lies / wrong guesses (Table 4 in Online Appendix B). The incentives provided in

the SPA treatment did not make truth-telling a Bayesian Nash equilibrium, but we

observed a very similar truth-telling rate (SPA: 90.0% of the cases, not significantly

different from FTM, with proportion test Z-statistic= −0.254 and p = 0.800).
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Figure 5: Payments in FTM.

The truth-telling rate of the FTM treatment was sufficiently high to reward those

who correctly reported their signal and to penalize those who lied or misreported.

The left panel of Figure 5 displays earnings as a function of the number of times

people told the truth. It shows a positive correlation, with a fitted line slope of

0.014 (p < 0.001). People did not get feedback during the experiment (only in

the five training rounds). The figure illustrates that feedback about payment could

have improved truth-telling rate by allowing participants to learn that correctly

reporting their signal is rewarded. It further shows that in future experiments one

can announce in the instructions that a previous study showed that participants

who tell the truth more often can earn more in such a setting.

So far, we studied what the raw data told us about participants’ strategic be-

havior, illustrating the incentive properties of Bayesian markets (Proposition 1).

To illustrate the aggregation properties (Proposition 2), we can check whether ac-
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curately guessing the selected urn led to higher earnings in our experiment. The

prediction is supported by the right panel of Figure 5, which is a box plot of earn-

ings as a function of the number of times participants guessed the actual state. The

fitted line slope is 0.014 (p < 0.001). Thus, Bayesian markets reward expertise.

While in our experiment, this expertise is artificially created,15 in many applications

one may expect that the number of times someone guesses the actual state of the

world to be influenced by a more natural notion of expertise, i.e. domain knowledge.

4.2. Raw data - Predictions and trades

If participants are Bayesian, they should report the posteriors ω0 and ω1 in the SPA

treatment, at least if they expect everyone else to tell the truth. Figure 6 displays

the average predictions as a function of theoretical posteriors for both type of guess.

Predictions are very close to Bayesianism for ω0 < 0.5 and ω1 > 0.5. Interestingly,

participants seemed to have much more difficulty to predict that a majority of people

would guess Y when they themselves guess N or that only a minority would guess

Y when they themselves guess Y . The SPA uses the average prediction across both

guesses, which mitigates this issue.
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Figure 6: Theoretical ω0 and ω1 vs. average predictions in SPA.

15It consists of receiving informative signals, in combination with a truth-telling strategy.
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We do not have people’s predictions in the FTM treatment but we can compare

the participants’ decisions di to the theoretical predictions. Table 1 compares the

theoretical and empirical proportions of di = 1 (the willingness to buy / to sell)

for five price intervals, defined by ωN , p∗0, p
∗
1, and ωY . Buyers should be willing to

pay at most p∗1 and sellers willing to accept not less than p∗0. If participants do not

compute the Bayesian posterior but use ωY and ωN instead, i.e. the distribution of

balls of the urn they guessed, buyers would be willing to pay at most ωY and sellers

willing to accept not less than ωN . If they were extremely risk averse, buyers would

be willing to pay at most ωN and sellers willing to accept not less than ωY .

Table 1: Theoretical and empirical bet acceptance (in %) and average payoffs (in

tokens) in the FTM treatment by price interval

p ∈ [0, ωN) [ωN , p
∗
0) [p∗0, p

∗
1] (p∗1, ωY ] (ωY , 1]

guessed N (seller)

theo. acceptance 0% 0% 100% 100% 100%

emp. acceptance 29.4% 50.3% 70.1% 77.7% 92.3%

average payoff -53.0 -12.6 5.3 21.7 53.6

guessed Y (buyer)

theo. acceptance 100% 100% 100% 0% 0%

emp. acceptance 91.3% 80.3% 67.9% 48.1% 28.6%

average payoff 53.1 21.4 3.9 -12.0 -51.9

The empirical willingness to sell was increasing with price and the empirical

willingness to buy was decreasing, as predicted in the truth-telling equilibrium.

However, for several participants the acceptance and rejection ranges of bets were

not consistent with the equilibrium prediction. About 30% of bets that are losing

for sure under truth-telling were accepted and about 30% of bets that are winning

for sure under truth-telling were rejected (see leftmost column of the seller row and

rightmost column of the buyer row). In total, there was a clear tendency to bet

much more than predicted by equilibrium play.

Table 1 also reports the average payoffs of the participants for each price inter-

val. The results confirm that participants who accepted bets that would have been
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losing for sure if everyone else had told the truth, still bore a loss on average in

our experiment. Overall, trading decisions were noisy and substantially deviated

from the theoretical predictions. This underlines that the performance of the FTM

algorithms will depend on their ability to recover aggregate reservation prices from

the noisy trades.

4.3. Accuracy comparison

The final part of the analysis aims to compare accuracy of the various methods. We

want to assess the ability of the majority rule, SPA, and FTM algorithms to identify

the actual state of nature using the participants’ answers.

To make full use of the answers of all respondents who provided answers to a task,

we ran 1,000 simulations for each task, state of nature, and treatment, randomly

making groups of 200 participants. For instance, consider one of the simulations

for the task described in Figure 2 with ωY = 0.40 and ωN = 0.10 (Task 6), state

of nature Y , and the FTM treatment. We randomly composed a group of 200

FTM participants, such that exactly 80 of them had gotten si = 1. We then use the

answers from the 200 participants to determine the state using majority rule, nFTM,

and FTM. Similarly, we randomly composed 1,000 groups of 200 SPA participants

in the same way to determine the state using majority rule and SPA. Repeating

the same procedures for each of the 30 tasks and two possible states of nature,

we obtained 60 accuracy rates for each method. Table 2 summarizes the average

accuracy rates for each algorithm and for the majority rule. We conducted Wilcoxon

tests to test for differences.

Table 2 distinguishes two cases. If ωN < 0.5 < ωY (top row), then the majority

rule should determine the actual state all the time. In the other cases (bottom row),

the majority rule finds the actual state 50% of the time, by pure chance. Our results

are consistent with these predictions (see columns ‘majority rule’), both for the data

from the SPA treatment and for the data of the FTM treatment. The SPA, our

benchmark, should always identify the actual state if participants were Bayesian
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Table 2: Average accuracy rates from simulations

cluster of questions
majority rule

SPA
FTM

SPA data FTM data nFTM FTM

ωY > 0.5 > ωN 100.0% 100.0% 100.0% 98.4% 99.7%

ωY > ωN > 0.5 or 0.5 > ωY > ωN 50.0% 50.2% 77.6% 55.1% 73.8%

and reporting truthfully all the time. In spite of non-Bayesian answers and noise,

SPA performed as well as majority when ωN < 0.5 < ωY , and substantially improved

upon majority when following the majority is equivalent to tossing a coin (Wilcoxon

signed rank test p < 0.001). In that case, the average accuracy increased by 27.6

percentage points (pp).

Computing average payoffs on Bayesian markets, as our nFTM algorithm does,

led to worse results than SPA, whether ωN < 0.5 < ωY (Wilcoxon signed rank test

p = 0.016) or not (Wilcoxon signed rank test p < 0.001). nFTM is highly sensitive

to noise and we noticed earlier that our data were clearly noisy. To account for

noise, FTM fits logistic supply and demand curves on the buy and sell decisions and

only then computes expected payoffs. FTM substantially improved upon nFTM

(Wilcoxon signed rank test p < 0.001), especially when ωY > ωN > 0.5 or 0.5 >

ωY > ωN (Wilcoxon signed rank test p < 0.001), with an increase of 18.7pp. It

yielded results that were not significantly different from SPA (Wilcoxon signed rank

tests p = 0.272), especially when ωY > ωN > 0.5 or 0.5 > ωY > ωN (Wilcoxon signed

rank tests p = 0.395). Interestingly, it gave results comparable to SPA with less

information. SPA uses, as input, an endorsement and a prediction (number between

0 and 1), directly asking participants for ω0 and ω1. FTM uses an endorsement and

a trade decision, which is binary. FTM compensates the information loss by using

(simple) econometric techniques to recover reservation prices. FTM significantly

improved upon majority in general (Wilcoxon signed rank tests p < 0.001), especially

when majority rule assumption does not hold (Wilcoxon signed rank tests p < 0.001).
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4.4. Exploratory analysis
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Figure 7: Accuracy comparisons for different group sizes.

The accuracy analysis so far was based on groups of 200 participants. We can

also study how sensitive results are to group sizes. We replicated the analysis (with

1,000 simulations for each combination of method, task, and state of nature) for

various group sizes ranging from 20 to 180. This part of the analysis was not pre-

registered, which is why we call it exploratory. Figure 7 depicts the accuracy rates

as a function of group size. FTM is more sensitive to group size than SPA. This is

because the FTM profits from additional observations in order to better estimate

supply and demand curves. In the left panel, when ωN < 0.5 < ωY , accuracy of

FTM increases from around 78% for groups of 20 to almost 100% for groups of 200.

SPA performs better for small groups. This is in line with the general tendency of

prediction markets to have accuracy increasing with market thickness. In the right

panel (ωY > ωN > 0.5 or 0.5 > ωY > ωN), SPA is very stable, with accuracy rates

between 75% and 78%, while the accuracy of FTM increases from 68% for groups

of 20 to 74% for groups of 200. These results are not surprising, knowing that,

for groups of 20, FTM has to determine reservations prices from very few binary

decisions (buying or selling). There may be as little as one buyer or one seller in
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some groups even if everybody reports truthfully.

5. Discussion

In our experiment, each agent received an endowment to avoid losses. Even without

providing an endowment, agents can expect a strictly positive payoff (Baillon, 2017),

which can motivate them to participate. The center, who plays the role of the market

maker, subsidizes the market and acts as an intermediary between the agents, who

do not trade with each other. Absent this intermediary role of the center, agents

would infer others’ signals from their willingness to buy or sell. Similar to the

classical reasoning in Aumann (1976) and Milgrom and Stokey (1982), they would

then agree on the state, leaving no room for trade based on disagreement.

To communicate the same information to all potential participants, we fixed

the bonus range from £0 to £3. The SPA was more expensive (SPA £2.86, FTM

£1.64). If anything, the SPA participants, with an endowment of 400 tokens and a

quadratic loss should have been more motivated than the FTM participants. The

SPA treatment only incentivized predictions, not truthful endorsement. The latter

could have been done using the Bayesian truth serum of Prelec (2004) but the

payoff rule is difficult to explain to participants. Experiments that have been using

this truth serum did not explain the payoff function in detail, but rather used an

“intimidation method”, telling participants it is in their interest to tell the truth.

We refrained from such an approach, and instead included instructions and training

to explain our payoff rules. An alternative for future research is to incentivize the

SPA using choice-matching (Cvitanić et al., 2019), which elicits predictions and

endorsements with a simpler payment formula.

Regarding our theoretical model, four restrictive assumptions warrant some fur-

ther discussion. First, recall that that we treated strategies as maps from signals

to endorsements, such that agents could not make their endorsements depend on

any other event or randomization device, and did not allow asymmetric strategies.
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Second, we allowed no communication between agents. Third, we only considered a

binary underlying state space and fourth, our market setting is a one-period, static

setting. We discuss each of those in turn.

It is important that agents cannot coordinate on events other than type realiza-

tions. Among the remaining symmetric equilibria, the truth-telling equilibrium is

(ex-ante) Pareto optimal.16 It is behaviorally plausible, as conjectured by Baillon

(2017), that truth-telling is focal and, in our experiment, there was indeed little

evidence of agents trying to find a reverse strategy. More than half of the partic-

ipants consistently told the truth and a negligible share of participants chose to

systematically misstate their type (see Table 4 in Online Appendix B). Without the

aforementioned restriction, agents could try to coordinate on some other signal, in

which the probability of receiving a 0-signal in state Y and a 1-signal in state N

is very low. Then, a small number of agents will make a loss of (almost) 1, and a

large share of agents will make a profit of (almost) 1. In expectation, all agents thus

have a high expected payoff. Note that this coordination does not only require mere

communication among respondents but also some credible randomization device. To

avoid such coordinated attacks, the center should make it an active feature of design

that market participants are (at least partially) anonymous, as is the case in our

experiment.

As suggested by the previous paragraph, our approach cannot be used if there is

public discussion of private signals or if agents can form coalitions. If it is possible to

bring all experts together, other approaches to the aggregation problem have been

proposed in the literature, such as the Delphi method developed in the 1950s at the

Rand Corporation (Okoli and Pawlowski, 2004). These approaches do not solve the

incentive problem though. In our setting, experts do not have other incentives than

those we provide to hide or manipulate their private information. The literature on

16To see this, note first that it is pay-off equivalent to the “reverse” equilibrium in which everyone

endorses the state that they believe to be less likely to be the actual one. The two other equilibria

have universal endorsement of either state Y or of state N and thus obviously lead to a universal

payoff of zero since there is never any trade.
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committee decisions studies how agents may agree to share their private signals with

each other in order to look united if their reputation is at stake (Visser and Swank,

2007; Swank et al., 2008).

We considered a binary state space. If the state space is non-binary, one may

organize several Bayesian markets, with different agents. Consider three states A,

B, and C, and assume agents can choose which state they would like a signal about

(e.g., an agent can design an experiment testing whether we are in state A or not-

A). The center can assign agents to markets, inform them about which state their

market will be about, let them run their experiment for that state, and then organize

the Bayesian markets.

Bayesian markets and their aggregation properties can further be translated to

a setting in which a market is run continuously. Suppose that there are T periods

and that for each t = 1, ..., T , a Bayesian market is set up to trade on an asset vt

that represents the share of buyers in the Bayesian market at time t. All of these

markets are only settled at the final period T , so that in particular agents do not

learn the value of the assets. At each t, the incentive and aggregation properties of

Bayesian markets are not affected by the markets in other periods. A continuous

market can sometimes be advantageous for the center: Suppose for instance that

the signal technology is constant across all periods, but that the actual state S (and

therefore ωS) may vary with t. Once the center has found a market-clearing price

p∗ (i.e. a price at which each agent is willing to either buy or sell the asset), this

price can be chosen for any subsequent period. Since the signal technology is the

same, this price will now lead to trade in each period, thereby reducing the payoff-

uncertainty faced by the agents. Then, the center can make inferences about the

change of the state over time by computing which side would make a profit if the

market was settled. Furthermore, if the signal technology is not fixed, this will be

reflected in the buying and selling decisions of the agents, and henceforth the center

can detect such changes.

The literature on the wisdom of crowds started with the intuition that asking
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many people may be better than relying on a few experts. Some have raised doubts

on the mere possibility to “chase the experts” within a group (Larrick and Soll,

2006). However, there is still value to ask large groups of experts. DellaVigna

and Pope (2017) found that the aggregated opinion of academic experts is closer

to experimental results than estimates based on a meta-analysis of previous empir-

ical findings. In a follow-up study, DellaVigna and Pope (2018) also showed that

academic experts better predict than non-experts, even though degrees of expertise

(among experts) such as academic rank or citations do not correlate with perfor-

mance. Aggregating the opinions of very large group of experts becomes more and

more common, for instance the International Panel on Climate Change or surveys

of economists and financial specialists about future economic indicators.

6. Conclusion

Prediction markets are increasingly used to incentivize and aggregate expert opin-

ions. They are not applicable though if the state of the world is not objectively

observable. In such a case, payoffs cannot be state-contingent, creating an incentive

problem. Furthermore, in many plausible situations, one may prefer not to rely on

the majority opinion, at least if experts themselves, aware of the signal structure,

would not. We demonstrated theoretically and empirically how to solve both the

incentive and the aggregation problem at once. Agents bet on others’ endorsement

and their payoffs reveal the state of nature. When implemented in a large online ex-

periment, our follow-the-money approach performed as well as a recent alternative,

the surprisingly popular algorithm, with less information from participants.

Increasingly in companies, prediction markets are used internally among employ-

ees to forecast short-term company performance and external events for decision

making. Examples include Siemens (Ortner, 1998), Nokia (Hankins and Lee, 2011),

Hewlett-Packard (Plott and Chen, 2002), Intel (Gillen et al., 2017), Google (Cowgill

et al., 2009), and Ford Motor Company (Cowgill and Zitzewitz, 2015). Results are
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promising, showing the potential of markets as an effective information aggregation

tool in practice. For instance, in the case of Ford where weekly auto sales forecasts

are taken extremely seriously for planning procurement and production, forecasts

from the internal prediction markets still outperformed other forecasts available to

management (Cowgill and Zitzewitz, 2015). Since Bayesian markets do not require

the predicted events to be verifiable in the short-term or at all, they expand the

horizon of prediction markets to long-term events or even to counterfactual and

unverifiable events.
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Palley, A. B. and Satopää, V. A. (2023). Boosting the wisdom of crowds within a

single judgment problem: Weighted averaging based on peer predictions. Man-

agement Science, forthcoming.

Peker, C. (2022). Extracting the collective wisdom in probabilistic judgments. The-

36



ory and Decision.

Plott, C. R. and Chen, K.-Y. (2002). Information aggregation mechanisms: Concept,

design and implementation for a sales forecasting problem. Social Science Working

Paper, 1131.

Popper, K. (1959). The Logic of Scientific Discovery. Routledge.

Prelec, D. (2004). A bayesian truth serum for subjective data. Science,

306(5695):462–466.

Prelec, D., Seung, H. S., and McCoy, J. (2017). A solution to the single-question

crowd wisdom problem. Nature, 541(7638):532–535.

Radanovic, G. and Faltings, B. (2013). A robust bayesian truth serum for non-

binary signals. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 27.

Radanovic, G. and Faltings, B. (2014). Incentives for truthful information elicitation

of continuous signals. In AAAI Conference on Artificial Intelligence.

Ranjan, R. and Gneiting, T. (2010). Combining probability forecasts. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 72(1):71–91.

Roth, A. E. (2002). The economist as engineer: Game theory, experimentation, and

computation as tools for design economics. Econometrica, 70(4):1341–1378.

Roth, A. E. (2018). Marketplaces, markets, and market design. American Economic

Review, 108(7):1609–58.
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For Online Publication

A. Parameter values for each task and checking the

incentive properties

In our experimental design, P (S = Y ) = P (S = N) = 1
2
, and group size n =

200. Table 3 lists parameter values ωN and ωY of the 30 tasks in our experi-

ment. They contain all combinations where ωN , ωY ∈ {0.05, 0.1, ..., 0.45}, ωN , ωY ∈

{0.55, 0.6, ..., 0.95}, or ωN ∈ {0.05, 0.1, ..., 0.4} and ωY ∈ {0.6, 0.65, ..., 0.95}, and

where the signal technology satisfies ωY − ωN ∈ {0.2, 0.25, 0.3} and ω̄1 − ω̄0 > 0.04.

We next show that the incentive properties established in Proposition 1 under

an infinite group size are preserved under these parameter values when n = 200.

We achieve this by first deriving the conditions for reservation prices if truth-telling

equilibrium exists, and then showing that these reservation prices exist under our

parameter values when n = 200.

Since the signals are drawn from the urn without replacement, the number of

participants receiving signal 1 is fixed at nωS for S = {Y,N}. Suppose that all

agents are truth-telling, i.e., ei = si for all i. Then the asset value can only be ωS

for S = {Y,N}. Let E1 (p) be the event that there exists an agent j such that sj = 1

and pj ≥ p and let E0 (p) be the corresponding event in which there exists an agent

j such that sj = 0 and pj ≤ p. Agent i after receiving signal 1 has the following

expectation about the asset value given trade:

E [v|E0 (pi) , si = 1]

=ωY P (v = ωY |si = 1, E0 (pi)) + ωNP (v = ωN |si = 1, E0 (pi))

=ωN + (ωY − ωN)P (S = Y |si = 1, E0 (pi)),

(11)
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Using Bayes’ rule, the conditional posterior can be further expressed as:

P (S = Y |si = 1, E0 (pi))

=
ωY

(
1− (1− pi)n(1−ωY )

)
ωY (1− (1− pi)n(1−ωY )) + ωN (1− (1− pi)n(1−ωN ))

,
(12)

where we used P (S = Y ) = P (S = N) = 1
2

and P (si = 1, E0 (pi) |S = Y ) = P (si =

1|S = Y )P (E0 (pi) |S = Y ). Plugging this expression in Equation (11), we define

for each task, a reservation price p∗1 for buyers, such that E [v|si = 1, E0 (pi)] > pi

when pi < p∗1, E [v|si = 1, E0 (p∗1)] = p∗1, and E [v|si = 1, E0 (pi)] < pi when pi > p∗1.

Similarly, we can also define a reservation price p∗0 for sellers. If p∗1 and p∗0 exist, and

are such that p∗1 > p∗0, then signal-1 agents will buy at price p ≤ p∗1 and signal-0 agents

will sell at price p ≥ p∗0. These strategies constitute a truth-telling equilibrium.

We derive p∗0 and p∗1 for all the 30 tasks, which are shown in the last two columns

of Table 3. Note that ω0 and ω1 defined in Equations (3)–(4) yields essentially the

same values as p∗0 and p∗1 when one type of signal is not too rare, as in tasks 25–30.

However, when one type of signal is rare, conditioning on the occurrence of trade

is not negligible. For the parameters chosen in the experiment, a group size of 200

is still big enough for a trade interval to exist and thus preserving the incentive

properties.
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Table 3: Task parameter values

set task ωN ωY ω0 ω1 p∗0 p∗1

1 1 0.05 0.25 0.14 0.22 0.20 0.22

2 2 0.05 0.30 0.16 0.26 0.20 0.26

1 3 0.05 0.35 0.17 0.31 0.20 0.31

2 4 0.10 0.30 0.19 0.25 0.21 0.25

1 5 0.10 0.35 0.20 0.29 0.22 0.29

2 6 0.10 0.40 0.22 0.34 0.23 0.34

1 7 0.15 0.35 0.24 0.29 0.25 0.29

2 8 0.15 0.40 0.25 0.33 0.26 0.33

1 9 0.15 0.45 0.27 0.38 0.27 0.37

2 10 0.20 0.40 0.29 0.33 0.30 0.33

1 11 0.20 0.45 0.30 0.37 0.31 0.37

2 12 0.25 0.45 0.33 0.38 0.34 0.38

2 13 0.75 0.95 0.78 0.86 0.78 0.80

1 14 0.70 0.95 0.74 0.84 0.74 0.80

2 15 0.65 0.95 0.69 0.83 0.69 0.80

1 16 0.70 0.90 0.75 0.81 0.75 0.79

2 17 0.65 0.90 0.71 0.80 0.71 0.78

1 18 0.60 0.90 0.66 0.78 0.66 0.77

2 19 0.65 0.85 0.71 0.76 0.71 0.75

1 20 0.60 0.85 0.67 0.75 0.67 0.74

2 21 0.55 0.85 0.63 0.73 0.63 0.73

1 22 0.60 0.80 0.67 0.71 0.67 0.70

2 23 0.55 0.80 0.63 0.70 0.63 0.69

1 24 0.55 0.75 0.62 0.67 0.62 0.66

1 25 0.30 0.60 0.41 0.50 0.41 0.50

2 26 0.35 0.60 0.45 0.51 0.45 0.51

1 27 0.35 0.65 0.46 0.55 0.46 0.54

2 28 0.40 0.60 0.48 0.52 0.48 0.52

1 29 0.40 0.65 0.49 0.55 0.49 0.55

2 30 0.40 0.70 0.50 0.59 0.50 0.59
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B. Truth-telling at the individual level

Table 4 shows the proportion of participants with at least certain numbers of truth-

telling in both SPA and FTM treatments.

Table 4: Proportion of participants with at least certain numbers of truth-telling

at least SPA FTM

1 100.0% 99.8%

2 100.0% 99.8%

3 100.0% 99.8%

4 99.6% 99.8%

5 99.3% 99.4%

6 98.5% 98.9%

7 97.8% 97.8%

8 96.0% 96.1%

9 92.8% 93.8%

10 90.5% 90.3%

11 86.7% 85.9%

12 81.9% 81.9%

13 77.6% 78.1%

14 71.3% 71.3%

15 58.5% 59.4%
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C. Experimental instructions and training rounds

We acquired IRB approval for our experiment design from Erasmus School of Eco-

nomics, under the approval number ETH2122-0805, on July 7, 2022. The experiment

and analysis plan were also preregistered (https://osf.io/cf8bk/) before the experi-

ment was conducted on July 24, 2022.

We recruited subjects from the experimental platform Prolific using the following

pre-screening crteria: 1) fluent languages include English; 2) nationality is United

States; 3) did not participate in our pilot experiments; 4) student status is yes. We

estimated our experiment to last about 15 minutes, and the maximum allowed time

for subjects was 60 minutes. We informed subjects beforehand in the description

of the study that the fixed reward is £1.50, but they could also earn a bonus (up

to £3) based on their answers. The experiment was conducted during July 24 to

August 9, 2022.

All participants first watched the experimental instruction video (YouTube link)

where the experimental setting of urns and balls was explained. Then they went

through five rounds of training, first facing a task as displayed in 2–4 of the main

text and then receiving feedback about how the payment was calculated. Figure 8

shows an example from the SPA treatment, and Figure 9 shows an example from

the FTM treatment when the bet went through.
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Figure 8: An example of feedback in the training rounds in SPA.
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Figure 9: An example of feedback in the training rounds in FTM.
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Then each subject went through one set of 15 tasks, randomly chosen from the

two sets of tasks with parameter combinations shown in Online Appendix A. Exact

wording of the tasks is shown via screenshots in Figures 2–4 of the main text.

The last part of our experiment elicits some basic information about the subjects

(see Figure 10 for details). The export of the complete survey from Qualtrics is

provided as supplementary material.
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Figure 10: Exit survey.
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