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Abstract

We derive an optimal test when cheating is possible in the form of type falsification.
Optimal design exploits the following trade-off: while cheating may lead to better grades,
it devalues their meaning. We show that optimal tests can be derived among cheating-
proof ones. Our optimal test has a single ‘failing’ grade, and a continuum of ‘passing’
grades. It makes the agent indifferent across all moderate levels of cheating. Good types
never fail, but bad types may pass. An optimal test delivers at least half of the full
information value. A three-grade optimal test also performs well.
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1 Introduction

Tests are prevalent, and stakes are often high for all concerned parties. Teachers prepare their

students to pass tests in order to gain admission to selective schools and universities. Issuers

seek to obtain a good rating for their assets. Pharmaceutical companies seek FDA’s approval

for new drugs. Car manufacturers need to have their vehicles pass emission tests. The list

is suggestive of how wide-ranging and relevant tests are, and why it is important that test

results are reliable: Fairness, inadequacy, financial distraught, and environmental pollution are

at stake when tests are compromised.

However, cheating is equally prevalent, and often successful. It is common in standardised

graduate admission tests. Pharmaceuticals have come under scrutiny for using sub-standard

clinical trial designs in order to obtain FDA’s approval as in Sarepta’s case (The Economist,

October 15, 2016).1 Car manufacturers sometimes cheat on pollution emission tests and have

been subjected to substantial fines as a result.

This paper studies optimal test design in the presence of cheating. We model the situation

as a three-player interaction between a principal, an agent, and a decision maker. The agent—a

professor, a school, an asset issuer, or a car manufacturer—is endowed with multiple items—

students, assets, or car models—to be tested in order to gain approval by the decision maker.

The decision maker wishes to approve items selectively, depending on their hidden type, whereas

the agent would like all items to be approved unconditionally. To uncover the types of the items,

the principal, whose interests are aligned with those of the decision maker, designs a test to

which each item is subjected. This test is modelled as a Blackwell experiment: a probability

distribution over signals (test results, grades) as a function of the type of an item.

The agent has a cheating technology at his disposal. He can, possibly at a cost, falsify the

type of some of his items for testing purposes, so that, for example, ‘bad’ items generate the

same signal distribution as ‘good’ items. By doing so, he garbles the information generated by

the test for the decision maker.

The decision maker can learn about the cheating strategy of the agent from the realized

cross-sectional distribution of test results.2 As a consequence, the decision maker can respond

1http://www.economist.com/news/leaders/21708726-approving-unproven-drug-sets-worrying-precedent-bad-
2More precisely, we assume a continuum of items with independently and identically distributed types, so, by

the law of large numbers, this cross-sectional distribution is deterministic and it partially reveals the falsification
strategy of the agent.
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to on and off-equilibrium path cheating, by altering the beliefs she associates to different test

results.

Our model captures a key trade-off, which exists even if cheating is completely costless:

cheating can increase the rate of approval, by increasing the chance that “bad” items gener-

ate good test results, but too much of it can make test results so unreliable that it nullifies

approvals. So, even if cheating bears no cost, or punishment, excessive cheating can hurt the

agent, and a rational cheater, therefore, manipulates by not cheating too much.3 Cheating

complicates test design, as one has to take into account how the agent’s cheating strategies

counteract the principal’s information design. Our analysis shows how the principal can exploit

the aforementioned trade-off to design informative tests in spite of cheating.

The optimal test we derive has a number of remarkable features and delivers some practical

insights. First, it is cheating-proof in the sense that it does not give the agent any incentive to

cheat. Second, despite the fact that there are only two actions to take, it is “rich” in the sense

that is generates a continuum of signals, only one of which leads to rejection, while a contin-

uum of signals are associated with approval. Hence, the receiver side revelation principle that

usually holds in Bayesian persuasion (Kamenica and Gentzkow, 2011) and mediation problems

(Myerson, 1991, Chapter 6), which allows to reduce the information design problem to the

problem of designing a recommendation system, does not hold in our environment. Third, all

items that would be approved under full information are approved under our optimal test, but

some items that should be rejected are also approved. That is, our optimal test leads to some

type II errors, but no type I errors. Fourth, it is ex-ante Pareto efficient, and gives the decision

maker at least 50% of the payoff she would get under full information.

In our model, the agent has a continuum of items, each of which is, independently, either

good or bad, with the same probability. The decision maker wishes to approve good items,

and reject bad ones. The prior probability that an item is of the good type, µ0, is below the

decision maker’s approval threshold µ̂. A cheating strategy is a choice of falsification rates pB,

the share of bad items to be masqueraded as good ones, and pG, the share of good items to be

disguised as bad ones.

3Cheaters on standardized tests for graduate admissions (GRE’s) are aware of this trade-
off, and advise each other in online forums to make a strategic number of mistakes: ‘...“We

must follow the score-control strategy,” admonishes one. Test-takers were advised to make

five mistakes to ensure scores aren’t so high that they expose the system. . . . ’ See
http://www.reuters.com/article/us-china-testing-cheating-idUSTRE76Q19R20110727.
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An important thing to note about the cheating technology is that, while it allows the agent

to garble the information generated by the test, and to turn any test completely uninformative,

it does not make all garbles available.4 This limitation of available garbles helps only if the

set of signals generated by the test is sufficiently rich. Indeed, the agent can garble any suffi-

ciently informative binary test (such as the fully informative one) into his optimal information

structure, hence optimal tests must use more than two signals.

The way Volkswagen compromised emission tests5 is a good illustration of such a cheating

technology, as the following quote reveals. On January 11, 2017, “VW agreed to pay a criminal

fine of $4.3bn for selling around 500,000 cars fitted with so-called “defeat devices” that are

designed to reduce emissions of nitrogen oxide (NOx) under test conditions.” Just a day after

that, the US Environmental Protection Agency (EPA) accused Fiat Chrysler Automobile of

using illegal software in conjunction with the engines which, allowed thousand of vehicles to

exceed legal limits of toxic emissions.6, 7, 8 Another example would be schools deciding to teach

their students to the test, thus making bad students appear good.

Our optimal test has the properties we already described: it is cheating-proof, and Pareto

efficient, it has a continuum of signals, only one of which leads to rejection, and a good type is

never rejected. In addition, the distribution of signals generated by the good type first-order

stochastically dominates that generated by the bad type. It is characterized by two conditions:

(i) it generates no belief below the approval threshold µ̂; (ii) it makes the agent indifferent

between no cheating, and any other approval threshold he could induce through cheating.

To see why tests with more signals can be beneficial, it is useful to consider adding a third

“noisy” signal to the fully informative test. One can choose the probabilities that the good and

bad type generate this signal so that, in the absence of cheating, it leads the decision maker to a

belief equal to the approval threshold µ̂. With such a test, any amount of falsification leads the

decision maker to lower the belief associated with the intermediate signal, and thus reject items

that generate this signal. Then the agent has to weigh the benefit of cheating (bad types are

more likely to generate the top signal), with its endogenous cost (losing the mass of items that

4If all garbles were attainable, the agent could garble any sufficiently informative test into his optimal
information structure—the one he would pick if he were the information designer, thus making the principal
useless.

5https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal
6http://www.economist.com/news/briefing/21667918-systematic-fraud-worlds-biggest-carmaker-threatens-
7 http://www.economist.com/news/business-and-finance/21714583-after-volkswagen-agrees-large-criminal-
8 http://www.economist.com/blogs/graphicdetail/2017/01/daily-chart-13
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generate the intermediate signals ). To make such a test as good as possible for the decision

maker, the principal can choose the test so that these two effects compensate each other, thus

making the agent indifferent between his optimal amount of falsification, and no falsification.

The resulting test is cheating-proof, and generates valuable information for the decision maker.

In fact, we establish a general no-falsification principle, which shows that, for any test,

there is an equivalent cheating-proof test that generates the same information and payoffs to all

parties. This result echoes the revelation principle but has some additional subtleties. Combined

with the representation of experiments as convex functions introduced in Kolotilin (2016), and

further studied in Gentzkow and Kamenica (2016b), it allows us to reformulate the optimal

design problem of the principal as a maximization problem over convex functions representing

tests, under a no-cheating incentive constraint. The no-cheating incentive constraint can be

formulated as a condition bearing on the payoff of approval thresholds induced by cheating.

We show that there exists a unique test such that, first, there is a single reject signal generated

by the bad type only, and, second, the agent is indifferent between not cheating, and inducing

any other approval threshold through cheating. This test is characterized by a differential

equation that we can solve in closed form. We then show that this test is in fact optimal.

When falsification is costly, the no-falsification principle holds if the marginal cost of in-

creasing pB does not increase too fast. We show that the fully informative test is optimal

whenever the cost is sufficiently high. When it is not, we derive the optimal test under a linear

cost function, and show that it satisfies the same properties as without cost. Furthermore, our

optimal test becomes more informative as cheating becomes more costly. In Appendix C, we

show how to find an optimal test for a larger class of cost functions.

We first derive optimal tests under two auxiliary conditions that we later relax: The first one

is that (possibly costly) falsification is perfectly observable, and the second is that falsification

rates are constrained so that pB + pG ≤ 1. The latter constraint rules out falsification rates

so high that they would lead to an inversion of the meaning of signals. Both assumptions are

useful in allowing us to focus on the main trade-offs, and can be compelling in some cases but

not always,9 so we relax them in Section 9.

When perfect observability is relaxed, the decision maker can still partially infer cheating

behavior from the cross-sectional distribution of signals. We show that, as long as falsification

9This is particularly true of the perfect observability assumption.
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is costly, among all falsification rates that generate the same information set for the decision

maker, one strictly dominates all the other. Therefore, in a subgame perfect equilibrium,

conditional on reaching a certain information set, the decision maker knows for sure what choice

the agent must have made, and can adopt the same beliefs as in the case of perfect observability.

This is true for information sets both on and off the equilibrium path. Therefore, all results in

the costly case still hold when the auxiliary assumptions are relaxed. For the costless case, they

extend through two arguments. The first one is a selection argument. By taking a falsification

cost that converges to 0, we obtain our optimal test in the costless case. The second argument

relies on the idea that the agent, conditional on attaining any given payoff, should prefer lower

falsification rates. This can be nicely captured by assuming that the agent has lexicographic

preferences, with approval rate as its first dimension, and any decreasing function of pB, and

pG on the second dimension. Under such lexicographic preferences, the dominance argument

holds as well, implying that our optimal test in the costless case is optimal in this relaxed setup

as well.

2 Related Literature

Theoretical work on Bayesian Persuasion. We introduce cheating in the information

design literature. Kamenica and Gentzkow (2011) examine a party (sender) who wishes to

design the best way to disclose information so as to persuade a decision-maker who may have

different objectives.10 In our approach, the information designer acts in the interest of the

receiver, but the persuader may tamper with the chosen experiment by falsifying the state.

This paper is closely related to recent works that study Bayesian persuasion in the presence

of moral hazard. In Boleslavsky and Kim (2017), Rodina (2016), and Rodina and Farragut

(2016), the prior distribution of the state is endogenous and depends of the agent’s effort. The

aforementioned papers differ in the principal’s objective. Related to these works is Hörner and Lambert

(2016), who find the rating system that maximizes the agent’s effort in a dynamic model where

the agent seeks to be promoted. In Rosar (2017) the principal designs a test that the agent

decides whether or not to take. In our paper, participation to the test is not optional, and the

agent cannot alter the distribution of types, but he can tamper with the test itself.

10There are several extensions of this leading paradigm including Gentzkow and Kamenica (2014), who allow
for costly signals and Gentzkow and Kamenica (2016a) where two senders “compete” to persuade.
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We also relate to Bizzotto, Rudiger, and Vigier (2016) and to Cohn, Rajan, and Strobl

(2016), since there, like in our paper, certifiers designing tests need to take into account the fact

that firms are not passive, but react to the certification environment. In Bizzotto et al. (2016)

agents choose what additional information to disclose, whereas we investigate what happens

when firms cheat.

Our analysis is somewhat reminiscent to that of recent papers that study optimal informa-

tion design in specific contexts. Chassang and Ortner (2016) design the optimal wage scheme

to eliminate collusion between an agent and the monitor. The optimal wage scheme is simi-

lar to the buyer-optimal signal in Condorelli and Szentes (2016). In that paper as well as in

Roesler and Szentes (2017), the buyer optimal signal is such that the seller is indifferent across

all prices he can set. Our paper uncovers a similar property, as the optimal test makes the

agent indifferent across all moderate falsification levels.

On the technical side, we represent experiments as convex functions as in Kolotilin (2016)

and Gentzkow and Kamenica (2016b). The latter study costly persuasion in a setup where

the decision-maker cares only about the expectation of the state of the world. In our setup

the principal’s decision also depends on a single-dimensional object: his belief that the state is

good.

Costly state falsification/Hidden income/Hidden Trades. Lacker and Weinberg (1989)

incorporate costly state falsification in a risk-sharing model. Cunningham and Moreno de Barreda

(2015) model cheating as costly state falsification in a context similar to ours, but they study

equilibrium properties under a fixed testing technology, whereas we focus on optimal test design.

Hidden trades can also be viewed as a form of cheating and are studied in Golosov and Tsyvinski

(2007), and references therein. Grochulski (2007) models tax avoidance using a general income

concealment technology analogous to the costly state falsification technology of Lacker and Weinberg

(1989). In Landier and Plantin (2016), agents can hide part of their income which can be in-

terpreted both as tax evasion and as tax avoidance.

7



G

B

1

0

dµ

µ0

1−µ0

HG(dµ)

HB
(dµ

)
µ̂ A

P
P
R
O
V
E

R
E
J
E
C
T

Figure 1: A test is modelled as a Blackwell experiment. We normalize tests by equating signals
to beliefs.

3 Model

There are three players: a principal (she), who designs a test, an agent (he) endowed with a

continuum of ex ante identical items to be tested, and a decision maker (also she), who decides

whether to approve or reject each of the items. Items are indexed by i ∈ [0, 1] and can be either

good or bad, ti ∈ {G,B}. The common prior is that all items are identically and independently

distributed with probability µ0 that any given item is good.

The agent wants each of his items to be approved. We normalize his payoff from an approval

to 1, and that from a rejection to 0. The principal and the decision maker have identical

preferences. They would like to approve only good items. Their payoff is g > 0 for approving

a good item, and −b < 0 for approving a bad one. Without loss of generality, their rejection

payoff is normalized to 0. Then, the decision maker approves an item if she believes that it is

good with probability greater than (or equal to) the threshold µ̂ = b
g+b

. We assume that she

approves an item whenever she is indifferent.

Tests. To learn about the items, the principal designs a test that each item is subjected to.

We describe a test as a Blackwell experiment (Blackwell, 1951, 1953): a measurable space of

signals Σ, and probability measures HG and HB on Σ. Signal realization σi induces a belief µi

through Bayes’ rule, where µi ∈ [0, 1] is the updated probability that i is good. The approval

decision of the decision maker for each item and, hence, the final payoffs of the three players

only depend on the belief µi that the test induces for each item i. We can, therefore, restrict

attention to the belief distribution generated by the experiment, and denote experiments by the
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probability measures HG and HB that both types generate on the space of beliefs [0, 1]. Then,

for any measurable set M ⊆ [0, 1], Ht(M) is the probability that type t ∈ {G,B} generates

beliefs in M .

Falsification. The agent has access to a falsification technology which enables type t items

to generate signals according to H¬t instead of Ht. After the principal announces a test, the

agent chooses the proportion11 pt of type t items to disguise as ¬t. A falsification strategy is

therefore a pair (pG, pB) ∈ [0, 1]2.

For example, if the agent is a car manufacturer, and an item is a car model, the agent may

equip its polluting models with a device that artificially lowers emissions when the vehicle is

submitted to a test. In another example, if the agent is a teacher, and items are students who

must take a standardized test, he may choose to teach the test to some of his bad students.

While it is natural to expect that only bad types are disguised as good types, we do not preclude

good types from being disguised as bad types as part of the technology. However, we later show

that it is never optimal for the agent to do so. Figure 2 depicts the effect of falsification on

test-generated signals.

Timing. First, the principal chooses a test. Second, the agent chooses her falsification rates

pG and pB. Third, the type (state) of each item is realized. Fourth, each item i is subjected

to the test and generates a stochastic signal σi. Fifth, the decision maker observes the realized

signals
{
σi
}

i∈[0,1]
, forms a belief µi about each item i, and takes an approval decision for each

of them.

Remark 1 (Ex-ante versus interim falsification). Under the continuum and independence as-

sumptions, the law of large numbers makes it irrelevant whether the agent chooses her falsifi-

cation strategy before or after observing the realized types of her items. In both cases, we can

view the objective of the agent as maximizing the ex ante probability that an item is approved.

Solution Concept. As in Kamenica and Gentzkow (2011), our equilibrium concept is sub-

game perfect equilibrium. We often single out the choice of the test by the principal, and call

11Alternatively, given the continuum specification, one could think of pt as the probability that each item of
type t is disguised as type ¬t.
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it the optimal design problem, with the understanding that it is made under the assumption

that other players then play according to equilibrium behavior.

Working Assumptions. In the first part of the paper, we derive the optimal test for the

principal under two auxiliary assumptions. These assumptions allow us to capture the relevant

trade-off in a simple way, and to focus on the main technical issues that falsification adds to

the test design problem. In Section 9, we relax both assumptions and show that the optimal

test we derived is still optimal.

Assumption 1 (Perfect Observability). The falsification rates pB and pG are observed by the

decision maker before she makes her approval decisions.

Assumption 2 (Falsification Rates Bound). The agent is restricted to falsification rates such

that pB + pG ≤ 1

Under Assumption 1, because the decision maker can observe falsification rates, she updates

her beliefs accordingly on and off-path. Hence, with falsification, the signal µ generated by the

test can no longer be equated to the belief formed by the decision maker. A test (HG, HB)

together with the agent’s falsification rates (pG, pB) generate a distribution of posterior beliefs

of the decision maker through Bayesian updating. In other words, the falsification rates and

the test jointly generate a new Blackwell experiment. We call this distribution of beliefs an

information structure and denote it by F . By the law of large numbers, this distribution is also

the realized cross-sectional distribution of beliefs generated by the different items.

When Assumption 2 is satisfied, higher signals correspond to higher true beliefs. If the

agent could choose falsification rates that do not satisfy Assumption 2, this would lead to a

reversal of the meaning of signals as higher signals would lead to lower beliefs. This assumption

is important under Assumption 1, as the optimal test we derive in the first part of the paper

under Assumption 1 and Assumption 2 will not be immune to deviations such that pB+pG > 1

(see Appendix B). However, it is irrelevant in the true model, where we relax Assumption 1 as

imperfect observability ensures that such deviations can be discouraged. We elaborate on this

in Section 9. Next, we make several comments about the model that help clarify the role of

these assumptions, and the consequences of our modelling choices.
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Figure 2: The effect of falsification on beliefs under Assumption 1 and Assumption 2.

Discussion of the Model. The first comment is that Assumption 1 is not necessary for the

decision maker to form correct beliefs on the equilibrium path. Its importance is in allowing the

decision maker to punish the agent’s deviations by correctly updating beliefs off the equilibrium

path. In fact, the continuum assumption implies that the decision maker can partially infer

the falsification strategy of the agent by looking at the cross-sectional distribution of signals.

This is the reason why we can relax Assumption 1 in Section 9. As it turns out, the fact that

this inference can only be partial helps the decision maker, which is why we can also relax

Assumption 2.

Second, we comment on the importance of observability, whether perfect, by Assumption 1,

or partial, as granted by the continuum of items. As a benchmark, one can consider the

case where falsification rates are not directly observable, and the decision maker is unable to

infer them from the signal distribution. Then our problem can be formulated as a traditional

mediation problem,12 where the principal is a mediator taking reports from the agent, and

making recommendations to the decision maker. In this case, it is easy to see that the mediator

cannot generate any information. Indeed, to make truthful reporting by the agent incentive

compatible, she must recommend approval with the same probability for good and bad items,

therefore she cannot convey any information to the decision maker, and her recommendation

must be to always reject since µ0 < µ̂.

Our third comment is that falsification can only make the principal less informed, in a

Blackwell sense, but does not make every garble of the test attainable. For example, the

falsification technology allows the agent to render any test uninformative by choosing pB+pG =

1. If µ0 ≥ µ̂, so that the principal approves when her belief is equal to the prior, making the

12See Myerson (1991, Chapter 6).

11



test uninformative is actually the optimal choice of the agent, and there is nothing the principal

can do about it. This is why, in what follows, we focus on the interesting case where µ0 < µ̂.

For a given test, however, the agent cannot generate all the information structures that are less

Blackwell informative than this test. This limitation is what makes the test design problem

interesting. Indeed, if the agent could generate any such garbling, then the optimal design

problem would always result in the optimal information structure of the agent.

Our fourth and last comment is on alternative choices of falsification technologies. As noted

in the second comment above, our choice of technology limits the ways in which the agent can

garble the test designed by the principal. Presumably, any choice of falsification technology

would specify the ways in which tests can be garbled and the cost of doing so. If no restrictions

were put on available garbles, the optimal test design problem would be moot as it would

always result in the agent-optimal information structure, that is the solution of the Bayesian

persuasion problem (Kamenica and Gentzkow, 2011) where the agent is the sender. This is

because any test that is more informative than the agent-optimal one would be garbled back to

it, whereas any other test would result in an even worse information structure for the decision

maker.

Because too much falsification leads the decision maker to beliefs that punish the agent

by lowering approval rates, costs are not needed to create a trade-off for the agent that the

principal can exploit. And studying the problem without costs allows us to understand the

effect of this trade-off more purely. Interestingly, we find that the absence of costs does not

lead the agent to make the test completely uninformative when µ0 < µ̂. However, a natural

extension of our falsification technology is to make it costly. Indeed, costs can capture inherent

technological costs, as well as expected fines that a cheating agent may have to pay if caught,

and/or ethical and emotional discomfort. We study costly falsification in Section 8.

4 Examples and Benchmarking

Binary Tests. The principal would like the decision maker to be perfectly informed about

the type of the agent. But if she chooses her test to be fully informative, the agent has an

incentive to falsify. In fact, faced with a fully informative test, the agent finds herself in the

shoes of the sender in the Bayesian persuasion model of Kamenica and Gentzkow (2011). She

12



chooses pG = 0 and pB = µ0(1−µ̂)
µ̂(1−µ0)

, so that, when the decision maker sees signal µ = 1, the

belief she forms is exactly equal to µ̂. We refer to the resulting information structure as the

KG information structure, and to the associated payoffs as the KG payoffs. The agent’s KG

payoff is µ0 + (1 − µ0)pB = µ0
µ̂
, which is the highest possible payoff she can obtain, whereas

the principal’s and the decision maker’s KG payoff are both 0, the payoff they would get in the

absence of testing.

In many information acquisition/transmission frameworks in which the action is binary, a

revelation-principle result holds which says that one can, without loss of generality, restrict

attention to binary experiments. This is not the case here, but it is interesting to consider

what happens with binary signals. In fact, whenever the principal chooses a binary test that is

more informative than the KG information structure, the agent falsifies so as to garble it into

the KG information structure. Indeed, such a test generates two signals: a low signal µ = 0,

and a high signal µ above the threshold µ̂, where a good type generates the high signal µ with

probability 1, and a bad type generates µ with probability πB < µ0
1−µ̂
1−µ0

. But then the agent

obtains her KG payoff by choosing pB so as to make the probability that a bad type generates

the high signal pB + (1− pB)πB equal to µ0
1−µ̂
1−µ0

, that is pB = 1
1−πB

(

µ0
1−µ̂
1−µ0

− πB

)

. Hence, the

principal and the decision maker get a payoff of 0. If instead the principal chooses a binary test

that is less informative than, or not comparable with the KG information structure, she lowers

the payoff of the agent below her KG payoff, but without increasing her own payoff. Thus, we

have proved the following result.

Proposition 1 (Binary Tests). With binary tests, the principal and the decision maker always

get a payoff of 0. If the test chosen by the principal is more informative than the KG information

structure, the agent gets her KG payoff. Otherwise, the payoff of the agent is strictly below her

KG payoff.

A Better Test. Consider the test described in Figure 3, and recall that signals correspond

to beliefs in the absence of falsification. This test has high signal generated only by G, so this

signal is equal to 1, a low signal only generated by B, so it is equal to 0, and a middle signal

generated by both G and B, with respective probabilities πG and πB, that we chose equal to

µ̂. We pick πG = (1−µ0)µ̂
µ0(1−µ̂)

πB > πB, so that the belief corresponding to the middle signal in

the absence of falsification is indeed equal to µ̂. When the agent falsifies, the decision maker

13
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Figure 3: A Better Test. The signal column corresponds to beliefs in the absence of falsifica-
tion, the belief column gives the belief associated with each signal when there is falsification.

associates new beliefs to each of the three signals. These beliefs are

µ̃h =
µ0(1− pG)

µ0(1− pG) + (1− µ0)pB
,

µ̃m =
µ0πG − µ0(πG − πB)pG

µ0πG + (1− µ0)πB − µ0(πG − πB)pG + (1− µ0)(πG − πB)pB)
,

µ̃ℓ =
µ0pG

µ0pG + (1− µ0)(1− pB)
.

Simple calculations show that µ̃h, and, more importantly, µ̃m, are decreasing in both pG and

pB, whereas µ̃ℓ is increasing in both. Therefore any small amount of falsification implies that

the agent is no longer approved when the decision maker receives the middle signal µ̂, as the

corresponding belief falls below µ̂. The only benefit from falsification is therefore to increase the

probability that a bad type generates the high signal by increasing pB. Increasing pG, however,

is only harmful, so the agent should set pG = 0. The maximum and optimal level of pB is the

one that brings µ̃h down to µ̂, since falsifying more than this would lead the decision maker to

approve none of the items. Let pB = µ0(1−µ̂)
(1−µ0)µ̂

denote this level. The payoff of the agent if she

chooses this maximum falsification level pB is

(
µ0 + (1− µ0)pB

)
(1− πG) =

µ0

µ̂
−

1− µ0

1− µ̂
πB,

while her no-falsification payoff is

µ0 + (1− µ0)πB.
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The principal can discourage falsification by equating the two, which is achieved by choosing

π∗
B = µ0(1−µ̂)2

(1−µ0)µ̂(2−µ̂)
, and π∗

G = 1−µ̂
2−µ̂

. This experiment gives the principal a payoff of

µ0g − (1− µ0)π
∗
Bb = (g + b)

µ0(1− µ̂)

2− µ̂
> 0.

These observations are summarized in the following:

Proposition 2. The experiment described in Figure 3 with π∗
B and π∗

G gives the agent no

incentive to falsify, and yields a strictly positive payoff for the principal and the decision maker.

Intuitively, enriching the set of signals by adding a middle signal µ̂makes the agent unwilling

to falsify, as any falsification would lead the decision maker to devalue the middle signal, and no

longer approve items that generate this signal. This experiment, while not perfectly informative,

allows the principal to generate useful information despite the possibility of costless falsification.

Hence, the curse of falsification can be beaten by a good design. In the remainder of the paper,

we proceed to find an optimal test.

5 Tests and Information Structures

To proceed with the general analysis, we employ a useful representation of experiments as

convex functions that, to our knowledge, first appears in Kolotilin (2016), and is also discussed

at length in Gentzkow and Kamenica (2016b).

Pseudo Cumulative Distribution Functions. If F is a probability measure on the space

of beliefs [0, 1], then it has a cumulative distribution function F̃ : [0, 1] → [0, 1]. Slightly abusing

notations, we then denote the pseudo cdf of a probability measure F by the same letter F , and

define it for µ ∈ (0, 1] by

F (µ) = sup
x<µ

F̃ (x).

Hence, for µ > 0, F (µ) is the probability measure of the set [0, µ).

For example, in a perfectly informative information structure, a good item generates belief

1 with probability 1, and the bad type generates belief 0 with probability 1, that is FG(µ) = 0

and FB(µ) = 1 for all µ ∈ (0, 1]. In a perfectly uninformative experiment, both types generate

belief µ0 with probability 1, that is FG(µ) = FB(µ) = 1µ>µ0 .
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Bayesian Consistency. If we denote by F both a probability measure on [0, 1] and the

corresponding pseudo cdf, it is a posterior belief distribution if and only if
∫ 1

0
µF (dµ) = µ0 (see

Kamenica and Gentzkow, 2011) or, equivalently, integrating by parts,

∫ 1

0

F (µ)dµ = 1− µ0. (BC)

Experiments as Convex Functions. For a belief distribution F that satisfies (BC ), we

can define the function

F(µ) =

∫ µ

0

F (x)dx

from [0, 1] to [0, 1 − µ0]. Let ∆B be the set of increasing convex functions of µ on [0, 1] that

are bounded above by (1 − µ0)µ, and below by (µ − µ0)
+. This set is illustrated in Figure 4.

Then F(·) ∈ ∆B. Reciprocally, any function F ∈ ∆B admits a left derivative that is the

pseudo cdf of a Bayes consistent belief distribution. Therefore, there is a one-to-one relationship

between functions in ∆B and Bayes consistent belief distributions. The upper bound on ∆B

corresponds to the pseudo cdf F (µ) = 1, which is the fully informative experiment. The

lower bound on ∆B corresponds to the pseudo cdf F (µ) = 1µ>µ0 , which corresponds to the

uninformative experiment and puts probability one on the prior µ0. The following lemma

states this characterization, and is proved in Appendix A.

Lemma 1. F ∈ ∆B if and only if there exists a Bayes consistent belief distribution F such

that, for all µ ∈ [0, 1], F(µ) =
∫ µ

0
F (x)dx.

We can re-express the distributions of beliefs induced by good and bad types as functions

of the posterior belief distribution F .

Lemma 2. The belief distributions generated by the good type and the bad type are respectively

FG(µ) =
1

µ0

{

µF (µ)−F(µ)
}

,

FB(µ) =
1

1− µ0

{

(1− µ)F (µ) + F(µ)
}

.

In the absence of falsification a test H induces an information structure, and thus satisfies

Lemma 2 with the representation H. In the presence of falsification, the test H still satisfies
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1− µ0

µ0 µ̂

NI
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KG

Figure 4: ∆B is the set of increasing convex functions in the grey triangle– the green curve
is an example of a function in ∆B, the brown dashed kinked line corresponds to the KG infor-
mation structure which obtains when the principal uses a fully informative experiment, the top
dotted blue line corresponds to full information (FI), the bottom kinked line corresponds to no
information (NI). In this and all subsequent figures, we take µ0 = 0.3 and µ̂ = 0.5.

these relationships, That is, we have, for each signal µ ∈ (0, 1],

HG(µ) =
1

µ0

{

µH(µ)−H(µ)
}

,

and

HB(µ) =
1

1− µ0

{

(1− µ)H(µ) +H(µ)
}

.

However, as already explained, the signals generated by H are no longer beliefs when there is

falsification.

Modified Payoffs. We can obtain convenient expressions of the players’ payoffs using F . The

payoff of the agent is given by the probability that she generates a belief above the threshold,

1−F (µ̂). Graphically, the agent would like the left derivative F (µ̂) of F at µ̂ to be as small as

possible. The payoff of the principal, scaled by 1
g+b

, is

1

g + b

∫ 1

µ̂

(
µg + (1− µ)(−b)

)
F (dµ) = 1− µ̂−

∫ 1

µ̂

F (x)dx

= µ0 − µ̂+ F(µ̂).
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(b) Optimal approval policy

Figure 5: Panel (a) illustrates the relationship between signal (or pre-falsification belief), and
actual (post-falsification) belief. Panel (b) illustrates the optimal approval policy: the red line

is the line with equation pB = µ0(1−µ̂)
µ̂(1−µ0)

(1 − pG); in the solid pink region above the red line,
the decision maker never approves; in the hatched blue region below the red line, she uses an
approval threshold µ̂(pB, pG).

Since the constant terms are irrelevant for optimization, we use F(µ̂) as our objective function

for the principal. This objective function is easily pictured in Figure 4, and it appears clearly

that, in the absence of any falsification constraints, the principal would choose the upper-bound

function of ∆B, which corresponds to full information (FI). It is easy to see on Figure 4 why

the KG information structure is optimal for the agent, and pessimal for the principal, whereas

full information is optimal for the principal. No information (NI) is pessimal for both. The

payoff space generated by all possible information structures is illustrated on Figure 11, below.

6 Optimal Approval and Optimal Falsification

Optimal Approval. To understand the incentives of the agent to falsify, we start by de-

scribing how falsification affects the decision maker’s approval decisions. If the agent decides

to falsify, he changes the belief associated with each signal. Let µ be both the signal received

by the decision maker, and the belief she forms in the absence of falsification. Then, if the

agent chooses a falsification strategy (pB, pG), the decision maker forms belief µ̃ 6= µ when she
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receives signal µ. Their relationship, which we call the belief transformation, is explicited in

the next lemma, which holds for all values of pB and pG, that is, even without the restriction

of Assumption 2. Interestingly, the belief transformation is independent of the test chosen by

the principal, and depends only on the falsification strategy. Hence, any falsification strategy

induces a reinterpretation of signals that does not depend on the test chosen by the principal.

Lemma 3 (Belief Transformation). Under Assumption 1, with falsification (pB, pG), signal µ

induces belief µ̃, where

µ = µ0
(1− µ0)µ̃− µ0(1− µ̃)pG − (1− µ0)µ̃pB
µ0(1− µ0)− µ0(1− µ̃)pG − (1− µ0)µ̃pB

. (BT)

This function has a fixed point µ0. It is increasing in µ̃ if pB + pG < 1, decreasing if pB +

pG > 1, and constant to µ0 otherwise. The range of beliefs µ̃ is the interval
[
µ, µ

]
, where

µ = µ0pG
µ0pG+(1−µ0)(1−pB)

, and µ = µ0(1−pG)
µ0(1−pG)+(1−µ0)pB

.

If the amount of falsification is constrained by Assumption 2, the decision maker still as-

sociates higher signals µ with higher beliefs µ̃, but this is reversed when pB + pG > 1. The

belief transformation is illustrated in panel (a) of Figure 5 for different values of pB and pG.

Note that, with falsification, beliefs may be bounded away from 0 or 1. Whenever pB > 0, the

decision maker can never be sure that she is facing a bad type, and whenever pG > 0, she can

never be sure that she is facing a good type.

The decision maker approves when her belief exceeds µ̂, that is when her signal µ exceeds

the threshold µ̂(pB, pG) obtained from the belief transformation, as illustrated by the first curve

of panel (a) in Figure 5. For some values of (pB, pG), such signals cannot be generated (this

is the case when µ < µ̂), and the decision maker never approves, as illustrated by the second

curve of panel (a) in Figure 5. The following proposition characterizes the optimal approval

strategy under falsification.

Proposition 3 (Optimal Approval). Under Assumption 1, there exists a threshold

µ̂(pB, pG) = µ0
(1− µ0)µ̂− µ0(1− µ̂)pG − (1− µ0)µ̂pB
µ0(1− µ0)− µ0(1− µ̂)pG − (1− µ0)µ̂pB

,

such that:
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(i) If pB < µ0(1−µ̂)
µ̂(1−µ0)

(1 − pG), µ̂(pB, pG) is increasing in pB and pG, and the decision maker

approves any item generating a signal µ ≥ µ̂(pB, pG).

(ii) If pB > 1 − µ0(1−µ̂)
µ̂(1−µ0)

pG, µ̂(pB, pG) is decreasing in pB and pG, and the decision maker

approves any item generating a signal µ ≤ µ̂(pB, pG).

(iii) Otherwise, the decision maker rejects every item.

The optimal policy is illustrated in panel (b) of Figure 5. Note that µ̂(0, 0) = µ̂ as, then,

signals coincide with beliefs.

Optimal Falsification. Now, consider the problem of the agent under both assumptions.

Whenever there is falsification, the threshold µ̂(pB, pG) is higher than µ̂. Since the threshold

is increasing in pB and pG, more falsification hurts both types as it makes the decision maker

more selective. However, it also changes the probabilities with which both types generate the

different signals in a way that can benefit the agent. To see this, we compute the falsification

payoff of the agent. This payoff is 0 in the region where the decision maker rejects for all signals.

In the threshold region, we can write the agent’s payoff as

Π(pB, pG) = 1−
{
µ0(1−pG)+(1−µ0)pB

}
HG

(
µ̂(pB, pG)

)
−
{
µ0pG+(1−µ0)(1−pB)

}
HB

(
µ̂(pB, pG)

)
.

Using the expressions from Lemma 2 applied to HG and HB, we obtain

Π(pB, pG) = 1−H
(
µ̂(pB, pG)

)
+

(
pB
µ0

−
pG

1− µ0

){

H
(
µ̂(pB, pG)

)
−
(
µ̂(pB, pG)−µ0

)
H
(
µ̂(pB, pG)

)}

.

(1)

This expression, as we show, implies that, in any optimal falsification strategy that follows a

relevant test, pG = 0. Intuitively, pretending that items are bad when in fact they are good not

only increases the approval threshold, but also deteriorates the signal distribution generated by

good types. It may, however, be payoff-improving for the agent to sometimes pretend that an

item is good when in fact it is bad. Even though it increases the approval threshold, it allows

bad items to generate the same signal distribution as good ones, and therefore be approved

with a higher probability.

Proposition 4 (Optimal Falsification). Under Assumption 1, and Assumption 2, any optimal

falsification strategy satisfies the following.
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Figure 6: Optimal falsification under Assumption 1 and Assumption 2 if H(µ̂) < 1.

(i) If H(µ̂) < 1, then pG = 0 and pB ≤ µ0(1−µ̂)
µ̂(1−µ0)

.

(ii) If H(µ̂) = 1, then falsification is inconsequential, the decision maker never approves, and

all players get a null payoff.

The idea of the proof, can be visualized on Figure 6. First, we show that all falsification

strategies that do not lie in the hatched triangle are dominated by no falsification. Second, we

show that Π(pB, pG) is decreasing in pG within the hatched triangle.

Proposition 4 implies that the optimal falsification problem of the agent can be reduced to

the choice of pB ∈
[

0, µ0(1−µ̂)
µ̂(1−µ0)

]

, thus generating an approval threshold µ̂(pB, 0) between µ̂ and 1.

We can reformulate this problem as the choice of a threshold µ ∈ [µ̂, 1], and invert the function

µ̂(pB, 0) to get the level of falsification pB that corresponds to a threshold µ,

pB =
µ0(µ− µ̂)

µ̂(µ− µ0)
.

Replacing this in (1), we obtain the falsification payoff of the agent as a function of the induced

signal threshold µ
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Π(µ) = 1−H(µ) +
µ− µ̂

µ̂(µ− µ0)

{

H(µ)− (µ− µ0)H(µ)
}

= 1 +
µ− µ̂

µ̂(µ− µ0)
H(µ)−

µ

µ̂
H(µ), (2)

and the agent’s optimal falsification problem reduces to choosing which approval threshold to

induce so as to maximize Π(µ) on [µ̂, 1].

7 Optimal Design

We now consider the optimal test design problem of the principal in the presence of falsification,

under Assumption 1 and Assumption 2. Both these assumptions are relaxed in Section 9.

A No-Falsification Principle. We start by showing that a no-falsification principle holds.

It states that any final information structure and, therefore, any payoffs the principal can gen-

erate with falsification, can also be generated without falsification. The logic of the argument

is similar to that of the revelation principle. Consider any test, and the optimal falsification

strategy of the agent associated with this test. Together, they generate a certain information

structure. Now, consider providing the agent with the test that generates this precise informa-

tion structure, instead of the initial test. Then, we show that the agent has no incentive to

falsify under this new test. The main difference with the usual revelation principle is in the

link between deviations from no falsification under the new test, and corresponding deviations

from the optimal level of falsification under the initial test. This difference make this result

more delicate as it may not hold under certain circumstances when falsification is costly.13

More formally, suppose that the principal chooses a test H , and let p∗B > 0 be the associated

optimal falsification strategy of the agent. Together, p∗B and H define a new experiment,

characterized by a posterior belief distribution F . One way to deliver this experiment, is to

choose the test F described in the lower panel of Figure 7. As illustrated by Figure 7, falsifying

by choosing pB = ε under this new test induces the same posterior belief distribution as

increasing the level of falsification by (1−p∗B)ε under the initial test H . But since p∗B is optimal

13See Section 8 for further details.
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Figure 7: Experiment and final information structure with p∗B.

under H , this deviation must be unprofitable to the agent. Therefore, it is optimal for the

agent not to falsify under the new test F . This proves the no-falsification principle,14 which we

now state more formally.

Proposition 5 (No-Falsification Principle). If the principal can induce a final belief distribution

F with falsification p∗B > 0, then she can also induce this distribution with no falsification. In

both cases, her payoff is given by F(µ̂), and the payoff of the agent by 1− F (µ̂).

Optimal Design. The no-falsification principle implies that we can restrict the optimal de-

sign problem to the one of finding an optimal test under which the agent has no incentive to

falsify. A test H is such that the agent has no incentive to falsify if and only if Π(µ̂) ≥ Π(µ),

for all µ ∈ [µ̂, 1], that is, recalling the payoff formula (2), if and only if H satisfies the following

incentive constraint

µ− µ̂

µ− µ0

H(µ) ≤ µH(µ)− µ̂H(µ̂), ∀µ ∈
[
µ̂, 1
]
. (IC0)

14The no-falsification principle is more general than the version we state in the theorem. It holds for any state
space (not just binary as in our model) so long as falsification is costless or that falsification costs are concave
in falsification rates. Details are available from the authors upon request.
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And, if this is the case, the payoff of the principal is given by H(µ̂) (up to constants). Hence

the program of the principal is

max
H∈∆B

H(µ̂)

s.t.
µ− µ̂

µ− µ0

H(µ) ≤ µH(µ)− µ̂H(µ̂), ∀µ ∈
[
µ̂, 1
]
. (IC0)

To form intuition about this program, it is useful to go back to Figure 4. The principal wants

to maximize H(µ̂) subject to a constraint on the values taken by H to the right of µ̂. There is

no incentive constraint on H to the left of µ̂. Recall that H(µ̂) is the left-derivative of H at µ̂.

A first remark is that we can look for optimal tests that are linear to the left of µ̂. To see

this, suppose that H ∈ ∆B satisfies (IC0), and consider the function

H̃(µ) =







µH(µ̂)/µ̂ if µ ≤ µ̂

H(µ) if µ ≥ µ̂
.

It is easy to see that H̃ is in ∆B, and since H̃(µ̂) = H(µ̂)/µ̂ ≤ H(µ̂), by convexity of H, the

new experiment H̃ also satisfies (IC0), and delivers the same payoff to the principal. Therefore,

we have proved the following lemma.

Lemma 4. For every test H that satisfies (IC0), there is a test H̃ that is linear to the left of

µ̂, satisfies (IC0), and delivers the same payoff to the principal.

Linearity means that we can look for optimal tests that put an atom on belief 0, and never

generate any belief in
(
0, µ̂
)
. In particular, we can restrict ourselves to tests such that good

types are never rejected. Another consequence of Lemma 4 is that we can look for optimal

tests that are on the Pareto frontier. Indeed, recalling the definition of the set ∆B, it is easy

to visualize on Figure 4 that H̃ is the test with the lowest possible left derivative at µ̂ among

tests that deliver payoff H(µ̂) to the principal.

Next, we denote the left derivative of H at µ̂ by κ. Since H ∈ ∆B, we must have 0 ≤ κ ≤

1−µ0. Note that the (IC0) constraint is automatically satisfied at µ̂. Therefore, we can rewrite

it as

µH(µ)−
µ− µ̂

µ− µ0
H(µ) ≥ κµ̂, ∀µ > µ̂. (IC′

0)

Then, the principal’s problem reduces to choosing κ ∈
[
0, 1 − µ0

]
, and H ∈ ∆B such that
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H(µ) = κµ for µ ≤ µ̂ so as to maximize κ, under the constraint (IC′
0).

As a first exercise, we can find the optimal test with three signals, and compare it to the

test we described in Section 4. This test must be linear to the right of µ̂. Let η be its slope to

the right of µ̂. We must have η = 1−µ0−κµ̂
1−µ̂

. And we can rewrite (IC′
0) as

ηµ−
µ− µ̂

µ− µ0

(
κµ̂+ η(µ− µ̂)

)
≥ κµ̂, ∀µ > µ̂.

A quick calculation shows that the left-hand side is strictly decreasing in µ. So the incentive

constraint can be simplified to

η −
1− µ̂

1− µ0

(
κµ̂+ η(1− µ̂)

)
≥ κµ̂.

Replacing η by its expression, and rearranging, we obtain

κ ≤
(1− µ0)− (1− µ̂)2

µ̂(2− µ̂)
.

Since the principal wants to maximize H(µ̂) = κµ̂, this constraint must bind at the optimum,

that is, the optimal choice of κ is

κ∗3S =
(1− µ0)− (1− µ̂)2

µ̂(2− µ̂)
.

Proposition 6. The optimal three-signal test is

H∗
3S(µ) =

(1− µ0)− (1− µ̂)2

µ̂(2− µ̂)
µ+

2− µ0 − µ̂

2− µ̂

(
µ− µ̂

)+
,

and it corresponds to the one described in Proposition 2.

This experiment is illustrated in Figure 8, which also depicts the optimal test that we

characterize next. In order to do so, we first define the unique test that makes the agent

indifferent across all falsification levels pB that induce an approval threshold between µ̂ and

1. Then, we proceed to show that this test is optimal. Such a test must satisfy the incentive

constraint (IC′
0) everywhere with equality, and must therefore solve the indifference differential
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Figure 8: Optimal Design – the lower dashed curve is the optimal three-signal test, and the
higher curve is our optimal test.

equation

H(µ)−
µ− µ̂

µ(µ− µ0)
H(µ) =

κµ̂

µ
, (IDE)

on
[
µ̂, 1
]
, with initial condition H(µ̂) = κµ̂. The unique solution to this problem is given by

H(µ) = κµ̂ψ(µ)

(

1 +

∫ µ

µ̂

1

xψ(x)
dx

)

,

where

ψ(µ) = exp

(∫ µ

µ̂

x− µ̂

x(x− µ0)
dx

)

.

If H ∈ ∆B, it must satisfy H(1) = 1− µ0. Adding this constraint pins down the value of κ to

κ∗ =
1− µ0

µ̂ψ(1)
(

1 +
∫ 1

µ̂
1

xψ(x)
dx
) .

Theorem 1. The test defined by

H∗(µ) =







κ∗µ if µ ≤ µ̂

κ∗µ̂ψ(µ)
(

1 +
∫ µ

µ̂
1

xψ(x)
dx
)

if µ ≥ µ̂

is optimal. Furthermore, any other optimal test must be linear to the left of µ̂ and less infor-
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mative than H∗.

Proof. The proof consists of three steps. The first step is to show that H∗ is indeed in ∆B, so

that it is actually a test. This purely calculatory part is proved in the appendix. The third step

is to show that any other optimal experiment is linear to the left of µ̂, and less informative. It is

relegated to the appendix as well. In what follows, we provide the second and most interesting

step of the proof, which consists in showing that no incentive compatible experiment can do

better than H∗.

To see this, suppose that there exists an experiment H ∈ ∆B that satisfies (IC′
0), and

H(µ̂) > H∗(µ̂). Lemma 4 implies that we can additionally chose it to be linear to the left

of µ̂, with slope κ > κ∗, as κµ̂ = H(µ̂) > H∗(µ̂) = κ∗µ̂. Since H(1) = H∗(1) = 1 − µ0,

the intermediate value theorem applied to the difference of H − H∗, which is continuous by

convexity of each of these functions, implies that H and H∗ cross at least once on
(
µ̂, 1
]
. Let

µ̃ be the smallest of these crossing points. Then H(µ) > H∗(µ) for every µ ∈
[
µ̂, µ̃

]
, which

implies that the left-derivative of H at µ̃ is smaller than the left derivative of H∗ at µ̃, that is

H(µ̃) ≤ H∗(µ̃). Therefore, we have

µ̃H(µ̃)−
µ̃− µ̂

µ̃− µ0

H(µ̃) ≤ µ̃H∗(µ̃)−
µ̃− µ̂

µ̃− µ0

H∗(µ̃) = κ∗µ̂< κµ̂,

which implies that H cannot satisfy (IC′
0), a contradiction.

The optimal test is illustrated in Figure 8 and Figure 9. In the proof of Theorem 1, we

derive a closed form expression of the optimal test without integrals. For every µ ≥ µ̂,

H∗(µ) = κ∗(µ− µ0)

{

1 + µ0(µ̂− µ0)
µ̂
µ0

−1
µ̂
−

µ̂
µ0

(
µ

µ− µ0

) µ̂
µ0

}

.

Using this expression we establish that H∗ satisfies the following properties:

Proposition 7. The belief distribution generated by the optimal test has support on {0}∪
[
µ̂, 1
]
,

with atoms at 0 and 1, and a positive, continuously differentiable, and decreasing density on
[
µ̂, 1
)
. The belief distribution generated by the good type has support on

[
µ̂, 1
]
, with a positive,

continuously differentiable, and decreasing density on
[
µ̂, 1
)
, and a single atom at 1. The

belief distribution of the bad type has support on {0} ∪
[
µ̂, 1
]
, with a single atom at 0, and a
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Figure 9: Optimal Design – in each panel, the blue curve in the middle is the distribution of
beliefs, the dashed green curve is the distribution of beliefs generated by the good type, and the
dotted red curve is the distribution of beliefs generated by the bad type.

positive, continuously differentiable, and decreasing density on
[
µ̂, 1
)
. Furthermore, the belief

distribution generated by the good type first-order stochastically dominates that of the bad type.

Hence, optimal tests use a rich set of signals. They involve a continuum of signals despite

the fact that types and actions are binary. The richness of optimal tests is only in the “passing”

signals as only one signal is associated with failure. Note that Figure 9 shows a clustering of

grades close to the threshold. Intuitively, enriching the set of signals that lead to approval allows

the principal to get better information while discouraging falsification. Increasing falsification

would increase the probability that the bad type generates the continuum of signals above µ̂

rather than the reject signal. But the principal would react by rejecting some of the signals

above µ̂ in an amount that exactly offsets the advantage from the first effect.

Our optimal test makes the agent indifferent across all moderate levels of falsification as it

satisfies (IDE). Indifference of “the agent” -at the optimal information structure also appears in

Roesler and Szentes (2017) or Chassang and Ortner (2016). In our context, a test which makes

no-falsification strictly better than some other falsification threshold cannot be optimal, since

the principal can increase the informativeness of that test and still maintain that no falsification

is a best response for the agent.
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Figure 10: Performance of H∗ and H∗
3S in percentage of the full information payoff

Performance. It is interesting to compare the performance of optimal tests and optimal

three-signal tests with the fully information structure. This comparison is illustrated in Figure 10.

Both optimal tests deliver at least 50% of the full information payoff. A numerical analysis

shows that the optimal three-signal test delivers at least around 80% of the optimal test. This

suggests that most of the benefits from our approach can be harvested with simple tests using

a finite and relatively small number of signals.

Proposition 8. H∗ and H∗
3S are ex-ante Pareto efficient. With both tests, the principal obtains

at least 1/2 of the full information payoff. Furthermore, this bound is strict since one can find

a sequence of pairs (µ0, µ̂) such that the payoff ratio gets arbitrarily close to 1/2.

Figure 11 shows the outcome of different information structures in the payoff space, and

illustrates the efficiency of both tests.

8 Costly Falsification

In this section, we study optimal test design when falsification is costly. We model this with a

cost function C(pB, pG) ≥ 0. The cost can be thought of as a combination of a technological

scaling cost, and an expected punishment cost of being caught-which could be explicit, psycho-
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Figure 11: Information structures in payoff space. Each player’s payoff is expressed in per-
centage of her maximum attainable payoff. The grey triangle is the space of attainable payoffs,
and the dots represent the payoffs achieved by different information structures.

logical, or reputational. We naturally assume that C(·) is continuous and increasing in pB and

pG, and that C(0, 0) = 0. The optimal approval strategy described in Proposition 3 applies

to the case of costly falsification without any modifications. Then, the fact that C(pB, pG) is

increasing in pG ensures that the optimal falsification result of Proposition 4 holds with cost, so

the agent always chooses pG = 0. Furthermore, the relevant range for pB is again the interval

I =
[
0, µ0(1−µ̂)

µ̂(1−µ0)

]
. As a consequence, to simplify notations, we can define the new cost function

c(pB) = C(pB, 0).

An important building block of our analysis is the no-falsification principle. In order for the

principle to hold, it must be no more costly to raise falsification from any p∗B to p∗B +(1− p∗B)ε,

than it is to raise it from 0 to ε. This is satisfied whenever c(pB) is concave in pB, but we can

also accommodate some moderately convex functions with a positive marginal cost at 0. The

following assumption on the cost function ensures that the no-falsification principle holds.15

Assumption 3. For every pB ∈ I and every ε > 0 such that pB + ε ∈ I,

c(ε) ≥ c
(
pB + (1− pB)ε

)
− c(pB).

Under these assumptions, we can formulate the optimal design problem as before. The only

15Note that, if c(·) is differentiable at 0, Assumption 3 is equivalent to requesting that c′(0) ≥ (1− pB)c
′(pB)

for every pB ∈ I at which c(·) is differentiable.
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difference is that we need to account for the cost in the no-falsification incentive constraint,

which becomes

µ− µ̂

µ− µ0
H(µ)− µ̂c

(
µ0(µ− µ̂)

µ̂(µ− µ0)

)

≤ µH(µ)− µ̂H(µ̂), ∀µ ∈
[
µ̂, 1
]
. (ICc0)

Intuitively, costly falsification should allow the principal to attain more informative infor-

mation structures. Hence, we can start by looking for conditions on the cost function that allow

the principal to attain full information. The fully informative test is given by H(µ) = (1−µ0)µ,

and is incentive compatible if, for every µ ∈
[
µ̂, 1
]
,

c

(
µ0(µ− µ̂)

µ̂(µ− µ0)

)

≥ (1− µ0)
µ0(µ− µ̂)

µ̂(µ− µ0)
.

That is, if the cost function satisfies the following full information condition

c(pB) ≥ (1− µ0)pB, ∀pB ∈ I. (FI)

This also shows (replacing the inequality by an equality), that the cost function c(pB) = (1 −

µ0)pB is the unique one that makes the agent indifferent across all the thresholds she might

induce by falsifying under the fully informative test.

In what follows, we assume that c(pB) = λpB, with λ > 0. Such linear cost functions

lend themselves to interesting comparative static results and tractable analysis.16 Note that

Assumption 3 is automatically satisfied by linear cost functions. Moreover, c(pB) satisfies (FI)

if and only if λ ≥ 1 − µ0. Otherwise, we write the indifference differential equation, which is

given by

H(µ)−
µ− µ̂

µ(µ− µ0)
H(µ) =

κµ̂

µ
− λ

µ0(µ− µ̂)

µ(µ− µ0)
.

Its solution with initial condition H(µ̂) = κµ̂ is

H(µ) = µ̂ψ(µ)

[

κ

(

1 +

∫ µ

µ̂

1

xψ(x)
dx

)

− λ
µ0

µ̂

∫ µ

µ̂

x− µ̂

x(x− µ0)ψ(x)
dx

]

,

16The complete solution for arbitrary cost functions that satisfy Assumption 3 is complicated because the
solution of the differential equation may not define a test. In Appendix C, we show how we can modify the cost
function recursively to obtain a solution for a more general class of cost functions. In the case of a linear cost,
the recursive approach is not necessary.
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and the unique value of κ that ensures that H(1) = 1− µ0 is

κ∗λ =

(
1− µ0

µ̂ψ(1)
+ λ

µ0

µ̂

∫ 1

µ̂

x− µ̂

x(x− µ0)ψ(x)
dx

)(

1 +

∫ 1

µ̂

1

xψ(x)
dx

)−1

.

Then, we have the following result.

Theorem 2. If λ ≥ 1 − µ0, then the optimal test is the fully informative one. Otherwise, the

test given by

H∗
λ(µ) =







κ∗λµ if µ ≤ µ̂

µ̂ψ(µ)
[

κ∗λ

(

1 +
∫ µ

µ̂
1

xψ(x)
dx
)

− λµ0
µ̂

∫ µ

µ̂

x−µ̂

x(x−µ0)ψ(x)
dx
]

if µ ≥ µ̂

is optimal. Furthermore, any other optimal experiment must be linear to the left of µ̂, and less

informative than H∗
λ. Finally, for all µ ∈ (0, 1), HFI(µ) > H∗

λ(µ) > H∗(µ).

In the proof of Theorem 2, we derive the following expression for H∗
λ. For every µ ≥ µ̂,

H∗
λ(µ) = κ∗λµ+ (κ∗λ − λ)µ0

{(
µ

µ̂

) µ̂
µ0

(
µ̂− µ0

µ− µ0

) µ̂
µ0

−1

− 1

}

.

With a linear cost, the optimal test has the same qualitative properties as without cost.

Proposition 9. Suppose λ < 1−µ0. Then, the belief distribution generated by our optimal test

has support on {0}∪
[
µ̂, 1
]
, with atoms at 0 and 1, and a positive, continuously differentiable, and

decreasing density on
[
µ̂, 1
)
. The belief distribution generated by the good type has support on

[
µ̂, 1
]
, with a positive, continuously differentiable, and decreasing density on

[
µ̂, 1
)
, and a single

atom at 1. The belief distribution of the bad type has support on {0}∪
[
µ̂, 1
]
, with a single atom

at 0, and a positive, continuously differentiable, and decreasing density on
[
µ̂, 1
)
. Furthermore,

the belief distribution generated by the good type first-order stochastically dominates that of the

bad type.

In addition, we can derive the following comparative statics in λ confirming the initial

intuition that higher costs lead to more informative optimal tests.

Proposition 10. For λ ≤ 1− µ0, the Blackwell informativeness of H∗
λ is strictly increasing in

λ.
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9 Relaxing the Assumptions

In the baseline analysis, we have assumed that falsification rates are perfectly observable by

the decision maker (Assumption 1), and that they must satisfy pB + pG ≤ 1 (Assumption 2).

The latter assumption guarantees that the meaning of grades is not flipped (higher signals are

associated with a higher belief that an item is good). Interestingly, as we explain in Appendix B,

the reason we need Assumption 2 is because we impose the perfect observability Assumption 1.

However, perfect observability is likely to be unjustified in many contexts. We now drop both

these assumptions and derive the optimal falsification-proof test.

Relaxing perfect observability and falsification limits. On the equilibrium path falsifi-

cation rates are correctly anticipated even if they are unobserved. The issue arises for off-path

information sets. However, the fact that the agent has a continuum of items that he subjects to

testing, allows the decision maker to make inferences about the agent’s falsification rates from

the empirical distribution of test results:17

If H denotes a test chosen by the principal, then, for any choice of falsification (pB, pG), the

cross-sectional distribution of signals observed by the decision maker is

F (µ) =
{
µ0(1− pG) + (1− µ0)pB

}
HG(µ) +

{
µ0pG + (1− µ0)(1− pB)

}
HB(µ)

= H(µ) +

(
pG

1− µ0

−
pB
µ0

)
{
H(µ)− (µ− µ0)H(µ)

}
.

Hence, for every test that is not the uninformative test, the decision maker can compute pG
1−µ0

−

pB
µ0

from the cross-sectional distribution of signals. She cannot perfectly observe the choice of

falsification of the agent, since she cannot tell apart two strategies (pB, pG) and (p′B, p
′
G) such

that pG
1−µ0

− pB
µ0

=
p′G

1−µ0
−

p′B
µ0
. Therefore, the information sets of the decision maker are the sets

Iα =

{

(pB, pG) ∈ [0, 1]2 : pB =
µ0

1− µ0

pG + α

}

,

for α ∈ [−1, 1].

17Such linking of decisions has shown to be useful by Jackson and Sonnenschein (2007) who establish that the
incentive costs become negligible by constructing a mechanism in which each agent announces preferences over
many decisions. These announcements must be “budgeted” such that the distribution of types across problems
must mirror the underlying distribution of their preferences. Analogously, in our setup Bayes’ rule implies the
distribution of posteriors must integrate to the prior.
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Figure 12: The blue line, and the green dashed lines each depict an information set of the
decision maker, that is a set of falsification rates that she cannot tell apart. On each of these
information sets, the dot shows the only undominated strategy (pαB, p

α
G) of the agent.

A strategy of the decision maker specifies an approval policy conditioned on signals for

each of her information sets. Since all falsification choices (pB, pG) that belong to the same

information set Iα generate the same distribution of signals F , any strategy of the decision

maker leads to the same approval probabilities of good and bad items for all (pB, pG) ∈ Iα.

When falsification is costless, the agent is thus indifferent between any two falsification strategies

in the same information set. However, when there is even mild falsification costs which increase

with the levels of falsification, this indifference breaks down. We discuss this case first.

Whenever falsification is costly, as in Section 8, with a cost function C(pB, pG) ≥ 0 that is

increasing, any strategy (pB, pG) ∈ Iα that does not minimize pG (and pB) is strictly dominated

by the one that minimizes falsification rates, and thus associated costs,

(pαB, p
α
G) = min Iα.

The cost-minimizing falsification strategies
{
(pαB, p

α
G)
}

α∈[−1,1]
all satisfy pαB + pαG ≤ 1. Further-

more, they contain all falsification strategies of the form (pB, 0) with pB ≤ µ0(1−µ̂)
µ̂(1−µ0)

, that is all

the falsification choices that were potentially optimal in our former analysis (see Proposition 4).

Falsification strategies that do not belong to
{
(pαB, p

α
G)
}

α∈[−1,1]
are strictly dominated and
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cannot be equilibrium strategies. Therefore, when reaching information set Iα, the decision

maker’s equilibrium belief must be, accurately, that the agent played (pαB, p
α
G). Hence, our anal-

ysis of costly falsification (Section 8 and Appendix C) carries on to the case where Assumption 1

and Assumption 2 are relaxed, and all results hold. In particular, the problem of finding an op-

timal test can be reduced to maximizing H(µ̂) over test functions H ∈ ∆B under the constraint

(ICc
0).

To extend our results in the costless case, we can follow two routes. The first option is

a selection argument which consists of looking at the limit of the costly falsification problem

with a vanishing cost. Consider the (linear) cost function εCλ(pB, pG), where Cλ(pB, 0) = λpB.

Then, the following result is immediate:

Proposition 11. The test H∗
ελ is optimal under the cost function εCλ(pB, pG), and it uniformly

converges to H∗ as ε→ 0.

The second option, is to consider an agent with lexicographic preferences with approval

probability as the first dimension, and an increasing falsification cost as the second dimension.

Such preferences naturally capture a distaste for falsification at a given payoff level. The strict

domination argument we made is still valid with these lexicographic preferences, and therefore

the rest of the analysis follows as well, leading to the following result:

Theorem 3. Under lexicographic preferences with any increasing cost function, the test H∗ is

optimal for the principal.

10 Concluding Remarks

Too much falsification renders test results unreliable and thus useless. This underlies the key

trade-off captured by our formulation, which exists regardless of whether cheating is costly, bears

punishment or carries psychological costs. Optimal tests maximize the principal’s payoff taking

into account the agent’s optimal falsification strategy. If cheating is unobserved, the agent

falsifies as much as possible. But, then, the principal, anticipating this, completely distrusts

the results, making the test useless in equilibrium. To harness the benefits of the trade-off

faced by the agent, cheating must be at least partially observable. This can be achieved by

publishing the empirical distribution of test results. Doing so enables fraud detection, and allows
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the principal to best exploit the falsification/credibility trade-off. Think of a high school teacher

who falsifies test scores in order to increase the admission chances of her students. If college

admission officers have a good estimate of the prior of the student population distribution of

abilities, then, by observing the population test scores, they can infer the level of falsification.

Our results have important, yet simple insights for what regulatory bodies can do to enhance

the reliability of test results when agents have access to cheating technologies. First, fully

revealing tests–albeit optimal in the absence of falsification–are prone to cheating, and yield

the worst possible results. More generally, our analysis of a binary state, binary action setup

highlights that simple (binary) tests can be fully manipulated by agent: any binary test can

be turned to deliver the agent-optimal information structure. Tests that perform well have

more grades than there are actions, and must assign intermediate grades with sufficiently high

probability. In fact, the simple addition of a third signal can go a long way towards full

optimality. We show that the optimal three-signal test delivers at least around 80% of the

payoff of the optimal test, and 50% of the full information payoff. This test contains a simple

practical insight: introducing a “noisy” (pooling) grade that is associated with approval in the

absence of falsification, can make falsification so costly that it prevents it, rendering this noisy

test much better than the (manipulated) fully informative test.

To illustrate the logic of the optimal test, consider how a four-signal approximation of our

optimal test could work in practice. Such a test could have grades A,B,C,D, where A,B,C

all lead to approval, but are associated with decreasingly strong beliefs about type, and D

is a reject signal. In the event that some cheating is observed, grades are devalued so as to

counteract the benefit of cheating to the agent. For example, if the observed extent of cheating

is moderate, A,B still lead to approval, but C is devalued to a reject grade. If the extent of

cheating is greater, B or even A,B can be devalued to reject grades as well.

Coming to the more abstract lessons, the no-falsification principle we derive simplifies the

derivation of optimal tests since we can without loss focus on ones that induce no falsification as

a best response. This result echoes the revelation principle but it is more delicate; for example,

it may not hold for some costly falsification technologies. Methodologically, we introduce an

elegant and tractable way to use the no-falsification constraint to analytically derive an optimal

test under very general conditions.
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Appendix

A Proofs without Cost

Proof of Lemma 1. Let H ∈ ∆B. By convexity, H has a left derivative everywhere on (0, 1],

let H(µ) be the left derivative of H at µ. Furthermore, H is piecewise-continuous, everywhere

left-continuous, and weakly increasing on (0, 1]. Then, we can define H(0) = limµ→0H(µ).

Because, H is increasing, H is non-negative. It is also bounded above by 1. Suppose not, so

that H(µ) > 1 for some µ. Because H is left-continuous, there must be an interval [µ− ε, µ] to

the left of µ such thatH(x) > 1 for all x ∈ [µ−ε, µ], so we can choose x < 1 such that H(x) > 1.

By convexity, we must have H(1) − H(x) ≥ H(x)(1 − x) > 1 − x. Since H(1) = 1 − µ0, this

implies H(x) < x− µ0, but then H would violate the lower bound condition on ∆B.

Next, let H be a probability measure on [0, 1] with mean µ0, and also the associated pseudo

cdf. Define H(µ) =
∫ µ

0
H(x)dx. This function is increasing since H is nonnegative. It is also

convex as the integral of a non-decreasing function. The condition on the mean implies that

H(1) = 1−µ0, and H(0) = 0 by definition. Suppose that for some x ∈ (0, 1), H(x) > x(1−µ0).

Then, convexity of H would imply that

H(1) ≥ H(x) +
H(x)−H(0)

x
(1− x) =

H(x)

x
> 1− µ0,

a contradiction. Similarly, if for some x > µ0, we had H(x) < (x−µ0)
+, convexity would imply

that H(0) < 0, a contradiction.

Proof of Lemma 3. Let λ(µ) ≡ HG(dµ)
HB(dµ)

denote the likelihood ratio induced by the test when the

signal realization (and the belief in the absence of falsification) is a small interval dµ centered

on µ. In the presence of falsification, the signal µ observed as a result of the test can no longer

be identified with the the belief formed by the principal. Specifically, by Bayes rule, the belief

µ̃ that is formed when signal µ is generated satisfies

µ̃ =
µ0λ̃(µ)

µ0λ̃(µ) + 1− µ0

, (3)

where

λ̃(µ) =
FG(dµ)

FB(dµ)
=

(1− pG)HG(dµ) + pGHB(dµ)

(1− pB)HB(dµ) + pBHG(dµ)
=

(1− pG)λ(µ) + pG
pBλ(µ) + 1− pB
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is the new relevant likelihood ratio. This expression is increasing in λ over [0,∞) whenever

pB + pG < 1, meaning that the post-falsification belief is increasing in the initial belief. By

contrast, if pB + pG < 1, it is decreasing in λ. This relationship can be inverted to get

λ(µ) =
(1− pB)λ̃(µ)− pG

1− pG − pBλ̃(µ)
.

A simple rewriting of (3) also gives us: λ̃(µ) = µ̃(1−µ0)
µ0(1−µ̃)

. Using these expressions, we can write

the signal, and original belief, as a function of the post-falsification belief:

µ =
µ0

µ0 + (1− µ0)λ(µ)−1

=
µ0

µ0 + (1− µ0)
1−pG−pB λ̃(µ)

(1−pB)λ̃(µ)−pG

=
µ0

µ0 + (1− µ0)
1−pG−pB

1−µ0
µ0

µ̃
1−µ̃

(1−pB)
1−µ0
µ0

µ̃
1−µ̃

−pG

=
µ0

µ0 + (1− µ0)
µ0(1−pG)−µ̃(pB+µ0(1−pG−pB))
µ̃(1−pB−µ0(1−pB−pG))−µ0pG

=
µ0 (µ̃ (1− pB − µ0(1− pB − pG))− µ0pG)

µ0(1− pG)− µ̃ (pB + µ0(1− pG − pB)) + µ0(µ̃− µ0)

=
µ0µ̃
(
1− pB − µ0(1− pB − pG)

)
− µ2

0pG

µ̃
(
µ0(pB + pG)− pB

)
+ µ0(1− µ0)− µ0pG

= µ0
(1− µ0)µ̃− µ0(1− µ̃)pG − (1− µ0)µ̃pB
µ0(1− µ0)− µ0(1− µ̃)pG − (1− µ0)µ̃pB

.

It is easy to see that µ̃ lies in
[

µ0pG
µ0pG+(1−µ0)(1−pB)

, µ0(1−pG)
µ0(1−pG)+(1−µ0)pB

]

. The remaining points follow

from easy calculations.

Proof of Lemma 2. We show the proof for FG, it is similar for FB. Consider the joint probability

that a certain item is of the good type, and the information structure generates a belief in [0, µ)

for this item. This probability can be written as µ0FG(µ), or as
∫ µ

0
xF (dx). By integration by

parts, the latter is equal to µF (µ)−F(µ), which concludes the proof.

Proof of Proposition 3. If pB + pG = 1, the resulting information structure is uninformative,

the principal has belief µ0 regardless of the signal and does not approve. Next, we treat the

case pB + pG < 1. Because µ0 is the prior, it must lie in the interval
[
µ, µ

]
. µ̂, however, need
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not lie in this interval, and, if it does not, the principal never approves. This is the case if the

upper bound of the interval is below µ̂, that is

µ0(1− pG)

µ0(1− pG) + (1− µ0)pB
< µ̂ ⇔ pB >

µ0(1− µ̂)

(1− µ0)µ̂
(1− pG).

When this is not the case, the principal approves for beliefs above µ̂, that is for signals above

µ̂(pB, pG) =
µ0µ̂
(
1− pB − µ0(1− pB − pG)

)
− µ2

0pG

µ̂
(
µ0(pB + pG)− pB

)
+ µ0(1− µ0)− µ0pG

= µ0
(1− µ0)µ̂− µ0(1− µ̂)pG − (1− µ0)µ̂pB
µ0(1− µ0)− µ0(1− µ̂)pG − (1− µ0)µ̂pB

.

A simple calculation shows that this µ̂(pB, pG) increases with pB and pG for pB + pG < 1.

Finally, consider the case pB + pG > 1. Then, the belief transformation is decreasing, and

the decision maker will therefore approve when signals are below µ̂(pB, pG). As previously, µ̂

may not lie in the interval
[
µ, µ

]
. Now, it is the case if µ̂ lies below µ, that is

µ0pG
µ0pG + (1− µ0)(1− pB)

> µ̂ ⇔ pB > 1−
µ0(1− µ̂)

(1− µ0)µ̂
pG.

A simple calculation shows that µ̂(pB, pG) decreases with pB and pG for pB + pG > 1.

To prove Proposition 4 we need the help of the following lemma.

Lemma 5. For every µ ∈ [µ0, 1], H(µ)− (µ− µ0)H(µ) ≥ 0, and the inequality is strict if and

only if H(µ) < 1. Furthermore, this expression is nonincreasing in µ.

Proof. Since H(µ) ≤ 1, we have H(µ)− (µ− µ0)H(µ) ≥ H(µ)− (µ− µ0) ≥ 0 by definition of

∆B, since (µ− µ0)
+ is the lower bound of ∆B. The first inequality is strict if H(µ) < 1. Then,

note that, for any µ > µ′ > µ̂, we have, by convexity

H(µ)− (µ− µ0)H(µ)−H(µ′) + (µ′ − µ0)H(µ′) ≤ H(µ′)(µ− µ′)− (µ− µ0)H(µ) + (µ′ − µ0)H(µ′)

≤
(
H(µ′)−H(µ)

)
(µ− µ0) ≤ 0

Proof of Proposition 4. If H(µ̂) = 1, then H
(
µ̂(pB, pG)

)
= 1 for any falsification strategy.

Therefore, the first term in the expression of Π(pB, pG) is null, and, by Lemma 5, so is the

39



second term. Hence the payoff of the agent is null, regardless of her falsification strategy.

Furthermore, the decision maker approves with probability 0, and therefore her payoff is null.

If H(µ̂) < 1, then no falsification gives the agent a strictly positive payoff. Therefore any

optimal falsification must be such that pB ≤ µ0(1−µ̂)
µ̂(1−µ0)

(1 − pG), that is, it must lie below the

red line in Figure 5. In addition, it must satisfy H
(
µ̂(pB, pG)

)
< 1 and pB ≥ µ0

1−µ0
pG. The

second inequality corresponds to the region above the dashed green line in Figure 5. Indeed,

a falsification strategy such that H
(
µ̂(pB, pG)

)
= 1 would yield a null payoff, and we know

that the agent can do better. Then at any potentially optimal falsification strategy, we have

H
(
µ̂(pB, pG)

)
−
(
µ̂(pB, pG) − µ0

)
H
(
µ̂(pB, pG)

)
> 0 by Lemma 5. Suppose that pB < µ0

1−µ0
pG.

Then we would have

Π(pB, pG) < 1−H
(
µ̂(pB, pG)

)
≤ 1−H(µ̂),

so the agent would be better off by not falsifying.

Next, let (pB, pG) be a falsification strategy that satisfies all these criteria, so that it is po-

tentially optimal. Then Π(pB, pG) is decreasing in pG. Indeed, the first term, 1−H
(
µ̂(pB, pG)

)
,

is nonincreasing in pG since µ̂(pB, pG) is nondecreasing in pG. Then H
(
µ̂(pB, pG)

)
−
(
µ̂(pB, pG)−

µ0

)
H
(
µ̂(pB, pG)

)
> 0 is nonincreasing in pG by Lemma 5, and pB

µ0
− pG

1−µ0
> 0 is decreasing in

pG.

Proof of Proposition 6. We have already proved optimality, so the only thing that remains to

be proved is that this experiment indeed corresponds to the one we identified in Proposition 2,

that is they generate the same belief distributions. The first experiment generates probability

(1− µ0)(1− π∗
B) on 0, and the following calculation shows that this is equal to H(0) = κ,

(1− µ0)(1− π∗
B) = 1− µ0 −

µ0(1− µ̂)2

µ̂(2− µ̂)

=
(1− µ0)− (1− µ̂)2

µ̂(2− µ̂)
,

which concludes the proof since other probabilities must coincide as well for both experiments

to generate an average belief of µ0 and have the same atoms.

Proof of Theorem 1. Here, we prove the missing steps in the proof of the theorem.
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Step 1. The first step is to prove that H∗ is indeed in ∆B. Note that H∗ is continuously

differentiable, and to show that it is in ∆B, it is sufficient to show that its derivative H∗ is

indeed a pseudo cdf. Hence, we show that H∗ is nondecreasing and bounded between 0 and 1.

First, note that κ∗ is positive. Therefore H∗(µ) is positive for µ ≤ µ̂. For µ > µ̂, we know that

H∗(µ) =
κ∗µ̂

µ
+

µ− µ̂

µ(µ− µ0)
H∗(µ),

and, since H∗(µ) is clearly positive, so is H∗(µ).

Next, we show that H∗ is non-decreasing. This is immediate on
[
0, µ̂
]
. For µ ≥ µ̂, we start

by calculating the integral in the expression of ψ(µ)

log
(
ψ(µ)

)
=

∫ µ

µ̂

x− µ̂

x(x− µ0)
dx =

∫ µ

µ̂

1

x− µ0
dx−

∫ µ

µ̂

µ̂

x(x− µ0)
dx

=
[

log(x− µ0)
]µ

µ̂
−

µ̂

µ0

[

2 log(x− µ0)− log
(
x(x− µ0)

)]µ

µ̂

= log

(
µ− µ0

µ̂− µ0

)

+
µ̂

µ0
log

(
µ(µ̂− µ0)

µ̂(µ− µ0)

)

.

Replacing in the expression of H∗(µ), we get

H∗(µ) = κ∗µ̂(µ− µ0)

(
µ

µ− µ0

) µ̂
µ0

{

(µ̂− µ0)
µ̂
µ0

−1
µ̂
−

µ̂
µ0 +

∫ µ

µ̂

(x− µ0)
µ̂
µ0

−1
x
−

µ̂
µ0

−1
dx

}

.

The remaining integral is

∫ µ

µ̂

(x− µ0)
µ̂
µ0

−1
x
−

µ̂
µ0

−1
dx =

[

1

µ̂

(
x− µ0

x

) µ̂
µ0

]µ

µ̂

=
1

µ̂

(
µ− µ0

µ

) µ̂
µ0

−
1

µ̂

(
µ̂− µ0

µ̂

) µ̂
µ0

.

Finally, we obtain

H∗(µ) = κ∗(µ− µ0)

{

1 + µ0(µ̂− µ0)
µ̂
µ0

−1
µ̂
−

µ̂
µ0

(
µ

µ− µ0

) µ̂
µ0

}

. (4)

Differentiating, we find

H∗(µ) = κ∗
{

1 + µ0(µ̂− µ0)
µ̂
µ0

−1
µ̂
−

µ̂
µ0 (µ− µ̂)(µ− µ0)

−
µ̂
µ0 µ

µ̂
µ0

−1
}

.
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Hence H∗ is continuously differentiable on [µ̂, 1]. We denote its derivative by h∗. Differen-

tiating again, we get

h∗(µ) = κ∗µ0(µ̂− µ0)
µ̂
µ0 µ̂

1− µ̂
µ0 (µ− µ0)

−
µ̂
µ0

−1
µ

µ̂
µ0

−2
. (5)

Hence h∗(µ) is strictly positive on
[
µ̂, 1
]
, and H∗ is strictly increasing.

To conclude step 1, we only need to show that H∗(1) ≤ 1. By (IDE), we have H∗(1) =

κ∗µ̂+ 1 − µ̂. Hence, we need to show κ∗ ≤ 1. Using (4) and the condition H∗(1) = 1− µ0, we

have

1− µ0 = H(1) = κ∗(1− µ0)

{

1 + µ0(µ̂− µ0)
µ̂
µ0

−1
µ̂
−

µ̂
µ0

−2

(
1

1− µ0

) µ̂
µ0

}

︸ ︷︷ ︸
≥1

,

which concludes the proof.

Step 3. Suppose that H is an optimal experiment, that is not less informative than H∗. By

Lemma 4, we can as well take H to be linear since the linear transformation invoked in this

lemma is above the original experiment, and therefore more informative. Since H is optimal,

we must have H(µ) = H∗(µ) = κ∗µ, for all µ ≤ µ̂. For H not to be less informative than H∗,

there must therefore exist some µ ∈
(
µ̂, 1
)
such that H(µ) > H∗(µ). Since H−H∗ is continuous

and H(1) = H∗(1), we can find the lowest point x above µ at which H(x) = H∗(x). Let µ̃ be

this point. Then H(x) > H∗(x) for every x ∈
[
µ, µ̃

)
. But then, there must exist a subset X of

[µ, µ̃] with positive measure, such that H(x) < H∗(x) for every x ∈ X , as otherwise, we would

have H(µ̃)−H(µ) =
∫ µ̃

µ
H(µ)dµ ≥

∫ µ̃

µ
H∗(µ)dµ = H∗(µ̃) −H∗(µ), a contradiction. Then take

x ∈ X . We have H(x) < H∗(x) and H(x) > H∗(x). Therefore

xH(x)−
x− µ̂

x− µ0
< xH∗(x)−

x− µ̂

x− µ0
H∗(x) = κ∗µ̂,

and H must violate (IC′
0).

Proof of Proposition 7. We have already proved that H∗ is continuously differentiable and ad-
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mits a density on
[
µ̂, 1
)
, which is given by (5). Differentiating (5), we get

h∗′(µ) = −κ∗µ0(µ̂− µ0)
µ̂
µ0 µ̂

1− µ̂
µ0 (µ− µ0)

−
µ̂
µ0

−2
µ

µ̂
µ0

−3(
µ+ µ̂+ 2(µ− µ0)

)
< 0.

Note that we can also write

h∗′(µ) =
h(µ)

µ(µ− µ0)

{

−µ̂ − µ− 2(µ− µ0)
}

.

Differentiating the expressions in Lemma 2, we obtain that the densities of the belief distribu-

tions generated by the two types on
[
µ̂, 1
)
are

h∗G(µ) =
µ

µ0
h∗(µ),

and

h∗B(µ) =
1− µ

1− µ0
h(µ).

A quick calculation yields

h∗′G(µ) =
h∗(µ)

µ0(µ− µ0)

{

−µ̂− µ− (µ− µ0)
}

< 0,

and

h∗′B(µ) =
h∗(µ)

(1− µ0)(µ− µ0)µ

{

−(1− µ)
[

µ̂+ µ+ (µ− µ0)
]

− µ(µ− µ0)
}

< 0.

To prove first-order stochastic dominance, we can use the expressions in Lemma 2 to get

H∗
G(µ)−H∗

B(µ) =
1

µ0(1− µ0)

{

(µ− µ0)H
∗(µ)−H∗(µ)

}

.

We know by Lemma 5 that this expression is negative for µ ≥ µ0. For µ < µ0, we have

H∗(µ) = κ∗, and H∗(µ) = κ∗µ, therefore

H∗
G(µ)−H∗

B(µ) = −
κ∗

1 − µ0
< 0.

Proof of Proposition 8. Pareto efficiency can be seen graphically. Fixing a payoff for the prin-
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cipal, that is a value of F(µ̂), the information structure that maximizes the payoff of the agent

is the one that minimizes the left derivative F (µ̂), while keeping the function F convex, and

under the constraint that F(0, 0). The only possibility is therefore to make F linear between

(0, 0), and (µ̂,F(µ̂)).

For the performance ratio, consider first H∗
3S. Recalling that the payoff of the principal is

equal to µ0 − µ̂+ F(µ̂), the performance ratio is

µ0 − µ̂+ κ∗3Sµ̂

µ0(1− µ̂)
=

1

2− µ̂
.

Interestingly, this ratio is independent of µ0. It is easy to see that it is bounded below by 1/2,

and that this bound is strict.

Next, the performance ratio of H∗ must by construction be greater than the performance

ratio of H∗
3S , and hence above 1/2. To show that this bound is strict, we construct a sequence of

pairs (µ0, µ̂) such that the corresponding performance ratio approaches 1/2. The performance

ratio of H∗ is given by

R(µ0, µ̂) =
µ0 − µ̂+ κ∗3S µ̂

µ0(1− µ̂)
=

µ0 − µ̂+ µ̂

(

1 + µ0
µ̂−µ0

(
µ̂−µ0
µ̂(1−µ0)

) µ̂
µ0

)−1

µ0(1− µ̂)

=
1−

(
µ̂−µ0
µ̂(1−µ0)

) µ̂
µ0

(1− µ̂)

(

1 + µ0
µ̂−µ0

(
µ̂−µ0
µ̂(1−µ0)

) µ̂
µ0

) .

The sequence we consider is defined for n ≥ 2 by

µn0 =
1

n
,

µ̂n =
1

n
+

1

n2
.

Hence

R
(
µn0 , µ̂

n
)
=

1

1− µ̂n

1−
(

n
(n−1)(n+1)

)1+ 1
n

1 + n
(

n
(n−1)(n+1)

)1+ 1
n
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As n → ∞, the term 1
1−µ̂n

converges to 1, and the term
(

n
(n−1)(n+1)

)1+ 1
n

converges to 0. For

the remaining term, we can write:

n

(
n

(n− 1)(n+ 1)

)1+ 1
n

=

(
1

1 + 1
n

)(
1

1− 1
n

)1+ 1
n
(

1

1 + n

) 1
n

.

Since each of the terms in this product converges to 1 as n→ ∞, we have

lim
n→∞

R
(
µn0 , µ̂

n
)
=

1

2
.

Proof of Theorem 2. We proceed in three steps.

Step 1: Optimality: Optimality works as in the proof of Theorem 1.

Step 2: HFI(µ) > H∗
λ(µ) > H∗(µ). Using the expressions of H∗ and H∗

λ, we can write the

difference of the two functions for each µ ≥ µ̂ as

H∗
λ(µ) = H∗(µ) + λµ0ψ(µ)

G(µ)

G(1)
(B(1)−B(µ)) (6)

where B(y) ≡
∫ y

µ̂

x−µ̂

x(x−µ0)ψ(x)
dx and G(y) ≡

(

1 +
∫ y

µ̂
1

xψ(x)
dx
)

which, because B(1) − B(µ) > 0

and all other terms are positive, implies that HFI(µ) > H∗
λ(µ) on

(
0, 1
)
.

To see how we can get (6), note that

κ∗ =
1− µ0

µ̂ψ(1)

(

1 +

∫ 1

µ̂

1

xψ(x)
dx

)

︸ ︷︷ ︸

G(1)

=
1− µ0

µ̂ψ(1)G(1)
(7)

which implies the following expression for H∗(µ) :

H∗(µ) = κ∗µ̂ψ(µ)

(

1 +

∫ µ

µ̂

1

xψ(x)
dx

)

= κ∗µ̂ψ(µ)G(µ) = (1− µ0)
ψ(µ)G(µ)

ψ(1)G(1)
. (8)
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Note also that

κ∗λ =








1− µ0

µ̂ψ(1)
+ λ

µ0

µ̂

∫ 1

µ̂

x− µ̂

x(x− µ0)ψ(x)
dx

︸ ︷︷ ︸

B(1)








(

1 +

∫ 1

µ̂

1

xψ(x)
dx

)−1

=

(
1− µ0

µ̂ψ(1)
+ λ

µ0

µ̂
B(1)

)

G(1)−1,

or, combined with (7):

κ∗λ = κ∗ + λ
µ0

µ̂

B(1)

G(1)
,

which allows us to write:

H∗
λ(µ) = µ̂ψ(µ)

[

κ∗λG(µ)− λ
µ0

µ̂
B(µ)

]

which gives us (6). Now replacing (8) to (6) we obtain:

H∗
λ(µ) = (1− µ0)

ψ(µ)G(µ)

ψ(1)G(1)
+ λµ0ψ(µ)

G(µ)

G(1)
(B(1)− B(µ)). (9)

Finally noting that HFI(µ) is a solution to the differential equation when λ = 1−µ0, (9) implies

that HFI(µ) > H∗
λ(µ) when λ < 1− µ0.

Step 3: H∗
λ ∈ ∆B: After some algebra, we get the following expression of H∗

λ to the right of

µ̂.

H∗
λ(µ) = κ∗λµ+ (κ∗λ − λ)µ0

{(
µ

µ̂

) µ̂
µ0

(
µ̂− µ0

µ− µ0

) µ̂
µ0

−1

− 1

}

.

This implies

κ∗λ =

1− µ0 + λµ0

[

µ̂
−

µ̂
µ0

(
µ̂−µ0
1−µ0

) µ̂
µ0

−1

− 1

]

1− µ0 + µ0µ̂
−

µ̂
µ0

(
µ̂−µ0
1−µ0

) µ̂
µ0

−1
> λ.

Differentiating, we get

H∗
λ(µ) = κ∗λ + (κ∗λ − λ)µ0µ̂

−
µ̂
µ0 (µ̂− µ0)

µ̂
µ0

−1
(µ− µ̂)µ

µ̂
µ0

−1
(µ− µ0)

−
µ̂
µ0 ≥ κ∗λ.
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And differentiating again

h∗λ(µ) = (κ∗λ − λ)µ0µ̂
−

µ̂
µ0 (µ̂− µ0)

µ̂
µ0 µ

µ̂
µ0

−2
(µ− µ0)

−
µ̂
µ0

−1
> 0. (10)

Hence, we have convexity. Combined with HFI(µ) > H∗
λ(µ) > H∗(µ), this proves that H∗

λ is in

∆B.

Proof of Proposition 9. The proof can be obtained from (10), by proceeding as in the proof of

Proposition 7.

Proof of Proposition 10. Take 1−µ0 ≥ λ′ > λ ≥ 0. Then we can prove H∗
λ′(µ) > H∗

λ(µ) exactly

in the same way as we prove HFI(µ) > H∗
λ(µ) > H∗(µ) in the proof of Theorem 2.

B Observability and No Limits to Falsification Rates

In this Appendix we explain why removing falsification limits while assuming perfect observ-

ability leads to manipulations. Under H∗, choosing pB + pG > 1 leads the decision maker to

form beliefs below µ̂ whenever she observes a signal above µ̂. So all signals that would have

led to approval under no falsification now lead to rejection. However, the reject signal 0 may

now lead to a belief above µ̂. In fact, the optimal falsification rates with pB + pG > 1 must lead

the decision maker to form belief µ̂ when she sees signal 0. This optimal falsification strategy

is described in the following proposition, and illustrated in Figure 13.

Proposition 12. Under Assumption 1, but without limits on falsification rates, the optimal

falsification strategy under H∗ is to choose pG = 1, and pB = µ̂−µ0
µ̂(1−µ0)

. The agent gets a payoff

of µ0/µ̂, whereas the principal and decision maker get a null payoff.

Proof. Optimality of the proposed falsification strategy among those such that pB + pG > 1

follows from the arguments just given. Among other falsification strategies, we know that (0, 0)

is optimal, by design of H∗. To show that the proposed falsification strategy is optimal among

all available ones, we just need to show that the payoff it yields for the agent, µ0/µ̂ is greater
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Ĝ

B̂

Signal
1

0

Belief
1

0

Falsified StateState

µ̂ A
P
P
R
O
V
E

R
E
J
E
C
T

µ0

1−µ0

1

µ0(1−µ̂)
µ̂(1−µ0)

µ̂−
µ0

µ̂(
1−

µ0
)

µ̂

Figure 13: Manipulating H∗, under perfect observability and no limits on falsification.

than the payoff the agent gets under (0, 0). The latter is given by 1 −H∗(µ̂) = 1 − κ∗. Hence

we need to show that

κ∗ =
1

1 + µ0(µ̂− µ0)
µ̂
µ0

−1
µ̂
−

µ̂
µ0 (1− µ0)

−
µ̂
µ0

>
µ̂− µ0

µ̂
,

or, after simplification,

1 <

(
µ̂− µ0

µ̂(1− µ0)

) µ̂
µ0

,

which holds as µ̂ > µ0.

Thus, under perfect observability, the agent can profitably deviate from no-falsification to

falsification rates such that pB + pG > 1 when the principal uses test H∗. But this problem

vanishes if we also relax the perfect observability assumption Assumption 1, and instead allow

the decision maker to learn about cheating only through the cross-sectional distribution of test

results as we do in Section 9.
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C Online Appendix: General Cost Functions

Here, we take back the analysis of optimal design with costly falsification in Section 8 right
before introducing the class of linear cost functions. In particular, we consider cost functions
c(pB) defined on I that satisfy Assumption 3.

If (FI) does not hold, the natural intuition is to proceed as in the case without cost. However,
the solution of the indifference differential equation with the original cost function may, in
general, not be in ∆B. To circumvent this problem, we work with a modified cost function such
that the differential equation always yields a solution in ∆B, and this solution is optimal for
the problem with the original cost function. We obtain this modified cost function recursively.
To understand this, it is useful to rewrite the program of the principal as follows. First, note
that Lemma 4 holds with costs, so we can focus on tests H that are linear to the left of µ̂. Such
tests can be parameterized by the slope κ ∈

[
1−µ0/µ̂, 1−µ0

]
of the test to the left of µ̂. Then,

we have H(µ̂) = H(µ̂)/µ̂ = κ. And, letting ∆B
κ denote the set of these tests with slope κ to the

left of µ̂, we can rewrite the program of the principal as

max
κ∈[κ∗,1−µ0]

max
H∈∆B

κ

κµ̂

s.t. µ̂c

(
µ0(µ− µ̂)

µ̂(µ− µ0)

)

≥ κµ̂+
µ− µ̂

µ− µ0
H(µ)− µH(µ), ∀µ ≥ µ̂. (IC′c

0 )

Note that the optimal no-cost test H∗ satisfies the no-falsification incentive constraint (ICc
0),

so the principal can ensure a payoff above H∗(µ̂) = κ∗µ̂, which is why we limited the range of
slopes over which the principal optimizes to

[
κ∗, 1− µ0

]
.

Next, we show that the cost function can be modified in (IC′c
0 ) without modifying the

constraint it puts on all tests in ∆B
κ . To understand the intuition behind this modification,

recall that (IC′c
0 ) simply expresses that the net profit from falsification should be lower than the

cost, that is Π(µ) − Π(µ̂) ≤ c
(
µ0(µ−µ̂)
µ̂(µ−µ0)

)

. Thus, higher cost helps the principal achieve better

outcomes as they enlarge the set of tests that satisfy the no falsification incentive constraint.
However, excessively high costs are unnecessary. To see that consider two falsification levels
pB < p′B in I that induce thresholds µ < µ′. Then, we show that the difference in net profits
between these two falsification levels, Π(µ′) − Π(µ), can be bounded above by κ(p′B − pB) for
all tests in ∆B

κ . Therefore any cost in excess of c(pB) + κ(p′B − pB) at p
′
B is superfluous, and

can be eliminated without any harm to the principal.
This intuition leads us to define the modified cost functions on I by

ĉκ(x) = min
y∈[0,x]

c(y) + κ(x− y).

As stated in the following lemma, working with these modified cost functions is without loss of
generality because, due to the intuition outlined above, it leads to an equivalent set of incentive
constraints. The proof of the lemma consists in deriving the upper bound that we used in the
intuition.

Lemma 6. Suppose that H ∈ ∆B
κ . Then H satisfies (IC′c

0 ) if and only if it satisfies the same
incentive constraint with ĉκ, that is

µ̂ĉκ

(
µ0(µ− µ̂)

µ̂(µ− µ0)

)

≥ κµ̂+
µ− µ̂

µ− µ0

H(µ)− µH(µ), ∀µ ≥ µ̂. (IC′c̃κ
0 )
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Proof. Consider two falsification levels p′B > pB in I. Let µ′ > µ be the thresholds they induce
in
[
µ̂, 1
]
. The difference in net profits between these two levels of falsifications is given by

Π(µ′)− Π(µ) =

{
µ′ − µ̂

µ̂(µ′ − µ0)
H(µ′)−

µ′

µ̂
H(µ′)

}

−

{
µ− µ̂

µ̂(µ− µ0)
H(µ)−

µ

µ̂
H(µ)

}

.

By convexity, H(µ) is absolutely continuous, and so is the function µ 7→ µ−µ̂

µ−µ0
, therefore we

can write the difference between the first terms in each bracket as

µ′ − µ̂

µ̂(µ′ − µ0)
H(µ′)−

µ− µ̂

µ̂(µ− µ0)
H(µ) =

∫ µ′

µ

{ µ̂− µ0

µ̂(x− µ0)2
H(x) +

(x− µ̂)

µ̂(x− µ0)
H(x)

}

dx

=

∫ µ′

µ

µ̂− µ0

µ̂(x− µ0)2

{

H(x)− (x− µ0)H(x)
}

dx,

Then, by convexity, we have

∫ µ′

µ
H(x)dx

µ′ − µ
=

H(µ′)−H(µ)

µ′ − µ
≤ H(µ′)

implying

−
1

µ̂

∫ µ′

µ

H(x)dx ≥ −
µ′

µ̂
H(µ′) +

µ

µ̂
H(µ′) ≥ −

µ′

µ̂
H(µ′) +

µ

µ̂
H(µ).

Reassembling everything, we have

Π(µ′)− Π(µ) ≤

∫ µ′

µ

µ̂− µ0

µ̂(x− µ0)2

{

H(x)− (x− µ0)H(x)
}

dx

≤
{

H(µ̂)− (µ̂− µ0)H(µ̂)
}∫ µ′

µ

µ̂− µ0

µ̂(x− µ0)2
dx

≤ µ0κ
{ µ′ − µ̂

µ̂(µ′ − µ0)
−

µ− µ̂

µ̂(µ− µ0)

}

≤ κ
{µ0(µ

′ − µ̂)

µ̂(µ′ − µ0)
−
µ0(µ− µ̂)

µ̂(µ− µ0)

}

= κ
(
p′B − pB

)
,

where the second inequality is implied by Lemma 5, the third line is due to the linearity of H
to the left of µ̂, which yields H(µ̂) = µ̂H(µ̂) = κµ̂.

The modified cost function satisfies the following technical properties which are crucial in
proving that the solution to the differential equation with the modified cost function is in ∆B.

Lemma 7. For every κ ∈
[
κ∗, 1 − µ0

]
, the modified cost function ĉκ(x) is well defined, ab-

solutely continuous, nonnegative and nondecreasing on I. It satisfies ĉκ(0) = 0, and ĉκ(x) ≤
min{κx, c(x)} for every x ∈ I. Furthermore, κx − ĉκ(x) is nondecreasing, and, for κ′ > κ,
ĉκ′(x) ≥ ĉκ(x) for every x ∈ I.

Proof. ĉκ(·) is well defined since the function y 7→ c(y) + κ(y − x) is continuous and therefore
admits a minimum on [0, x]. ĉκ(x) is nonnegative as the minimum of a nonnegative function.

ii



By definition, ĉ(x) ≤ c(0) + κ(x − 0) = κx, and ĉ(x) ≤ c(x). This implies ĉ(0) = 0. Let
ŷκ(x) = argminy∈[0,x] c(y) + κ(x − y). By the maximum theorem, ŷ(·) is a nonempty valued
correspondence. Consider x′ > x, and y′ ∈ ŷκ(x

′). Suppose first that y′ > x. Then

ĉκ(x
′) = c(y′) + κ(x′ − y′) ≥ c(y′) ≥ c(x) ≥ ĉκ(x).

Suppose, otherwise, that y′ ≤ x. Then

ĉκ(x
′) = c(y′) + κ(x− y′) + κ(x′ − x) ≥ ĉκ(x) + κ(x′ − x) ≥ ĉκ(x).

Hence ĉκ(·) is nondecreasing. Next, let y ∈ ŷκ(x), and note that

ĉκ(x
′)− ĉκ(x) ≤

[
c(y) + κ(x′ − y)

]
−
[
c(y)− κ(x− y)

]
≤ κ(x′ − x).

Therefore, ĉκ(·) is κ-Lipschitz continuous, and in particular absolutely continuous. Furthermore,
this implies that κx− ĉκ(x) is nondecreasing.

Next, for κ′ > κ, and y′ ∈ ŷκ′(x), we have

ĉκ′(x) = c(y′) + κ′(x− y′) ≥ c(y′) + κ(x− y′) ≥ ĉκ(x).

In what follows, to simplify notations, we also write the modified cost functions as a function
of the induced threshold

γκ(µ) = ĉκ

(
µ0(µ− µ̂)

µ̂(µ− µ0)

)

.

Then, Lemma 6 implies that we can reformulate the program of the principal as

max
κ∈[κ∗,1−µ0]

max
H∈∆B

κ

κµ̂

s.t. µ̂γκ(µ) ≥ κµ̂+
µ− µ̂

µ− µ0
H(µ)− µH(µ), ∀µ ≥ µ̂.

To apply the same idea as in the no-cost case, we would solve the differential equation

µ̂γκ(µ) = κµ̂+
µ− µ̂

µ− µ0
H(µ)− µH(µ)

with initial conditions H(µ̂) = H(µ̂)/µ̂ = κ, and then set κ so that H(1) = 1−µ0. The problem
with directly applying this idea is that it leads to a very intractable equation in κ making it
difficult to characterize the solution. Furthermore, it is difficult to assess existence or uniqueness
of a solution, and even more so, to show that a solution is indeed a test. Therefore, we adopt a
different method that characterizes the solution of the principal’s problem recursively as follows.

• κ0 = 1− µ0.

• To get κn+1, we write the following linear differential equation on
[
µ̂, 1
]

H(µ)−
µ− µ̂

µ(µ− µ0)
H(µ) =

µ̂

µ

(
κ− γκn(µ)

)
,
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with initial conditions H(µ̂) = H(µ̂)/µ̂ = κ. The solution is then given by

H(µ) = µ̂ψ(µ)

[

κ

(

1 +

∫ µ

µ̂

1

xψ(x)
dx

)

−

∫ µ

µ̂

γκn(x)

xψ(x)
dx

]

,

and we set κn+1 to be the unique value of κ such that H(1) = 1 − µ0. That is, we have
the following recurrence equation

κn+1 =

(
1− µ0

µ̂ψ(1)
+

∫ 1

µ̂

γκn(x)

xψ(x)
dx

)(

1 +

∫ 1

µ̂

1

xψ(x)
dx

)−1

. (REC)

Finally, we let Hn(µ) be the solution to the differential equation with κ = κn+1.

We show in the next theorem that this sequence always converges, and we can therefore
define a limit to the sequence of functions Hn. If the limit of this sequence is a test, that is,
if it lies in ∆B, then it is optimal. However, we need to make another assumption on the cost
function to ensure that it is the case.18

Assumption 4. The function c(pB)
pB

is nonincreasing on I.

Then, we have the following theorem.

Theorem 4. If the cost function satisfies (FI), then the optimal test is the fully informative
one. Otherwise, the sequence {κn} is decreasing and admits a limit κ∗c ∈ (κ∗, 1 − µ0). Then,
the function given by

H∗
c(µ) =

{
κ∗cµ if µ ≤ µ̂

µ̂ψ(µ)
[

κ∗c

(

1 +
∫ µ

µ̂
1

xψ(x)
dx
)

−
∫ µ

µ̂

γκ∗c
(x)

xψ(x)
dx
]

if µ ≥ µ̂

is an optimal test whenever the cost function satisfies Assumption 4. Furthermore, any other
optimal experiment must be linear to the left of µ̂ and less informative than H∗

c . Finally, for
all µ ∈ (0, 1), HFI(µ) > H∗

c(µ) > H∗(µ). If Assumption 4 is not satisfied, then κ∗c is an upper
bound on the modified payoff of the principal.

Proof. We have already proved the first point. Suppose, therefore that the cost function does
not satisfy (FI). We prove the results in the theorem in several steps.

Step 1: convergence of the sequence {κn}. To show that the sequence {κn} is decreasing,
we proceed by induction. First, note that when the cost function is given by (1 − µ0)pB, the
fully informative test makes the incentive constraint of the agent hold with equality at ever
µ ≥ µ̂. Therefore, the fully informative test solves the linear differential equation

H(µ)−
µ− µ̂

µ(µ− µ0)
H(µ) =

µ̂

µ

(

1− µ0 − (1− µ0)
µ0(µ− µ̂)

µ̂(µ− µ0)
)

)

,

implying that we have, for all µ ≥ µ̂,

(1− µ0)µ = HFI(µ) = µ̂ψ(µ)

[

κ0

(

1 +

∫ µ

µ̂

1

xψ(x)
dx

)

−

∫ µ

µ̂

κ0
µ0(x−µ̂)
µ̂(x−µ0)

)

xψ(x)
dx

]

,

18Note that Assumption 4 implies Assumption 3.
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and, in particular, at µ = 1

κ0 =

(

1− µ0

µ̂ψ(1)
+

∫ 1

µ̂

κ0
µ0(x−µ̂)
µ̂(x−µ0)

xψ(x)
dx

)(

1 +

∫ 1

µ̂

1

xψ(x)
dx

)−1

.

By construction, κ1 is given by

κ1 =

(
1− µ0

µ̂ψ(1)
+

∫ 1

µ̂

γκ0(x)

xψ(x)
dx

)(

1 +

∫ 1

µ̂

1

xψ(x)
dx

)−1

.

By Lemma 7, we have

γκ0(x) = ĉκ0

(
µ0(x− µ̂)

µ̂(x− µ0)

)

≤ min

{

κ0
µ0(x− µ̂)

µ̂(x− µ0)
, c

(
µ0(x− µ̂)

µ̂(x− µ0)

)}

.

Then, γκ0(x) ≤ κ0
µ0(x−µ̂)
µ̂(x−µ0)

for all x ∈
[
µ̂, 1
]
, and because c(·) does not satisfy (FI), and is

continuous, there exists an open interval over which the inequality is strict. Therefore, we must
have κ1 < κ0 = 1− µ0.

Next, suppose that for n ≥ 1, we have κn ≤ κn−1. Then, Lemma 7 implies that we have
γκn(x) ≤ γκn−1(x), for all x ∈

[
µ̂, 1
]
, and therefore, by (REC), κn+1 ≤ κn.

Next, note the definition of κ∗ implies that, for all n ≥ 0, κn > κ∗. {κn} is therefore a
decreasing sequence bounded from below, hence it must converge to a limit κ∗c ∈

[
κ∗, 1 − µ0

)
.

Furthermore, κ∗c must be a fixed point of the recurrence equation (REC). Therefore

κ∗c =

(
1− µ0

µ̂ψ(1)
+

∫ 1

µ̂

γκ∗c (x)

xψ(x)
dx

)(

1 +

∫ 1

µ̂

1

xψ(x)
dx

)−1

,

and, since κ∗c > 0, γκ∗c (x) > 0, for all x > µ̂, implying that κ∗c > κ∗.

Step 2: HFI(µ) > H∗
c(µ) > H∗(µ). Using the expressions of H∗ and H∗

c , we can write the
difference of the two functions for each µ ≥ µ̂ as

H∗
c(µ)−H∗(µ) =

µ̂
∫ 1

µ̂

γκ∗c
(x)

xψ(x)
dx

1 +
∫ 1

µ̂
1

xψ(x)
dx
ψ(µ)

∫ µ

µ̂

γκ∗c (x)

xψ(x)
dx

×







1 +
∫ µ

µ̂
1

xψ(x)
dx

∫ µ

µ̂

γκ∗c
(x)

xψ(x)
dx

−
1 +

∫ 1

µ̂
1

xψ(x)
dx

∫ 1

µ̂

γκ∗c
(x)

xψ(x)
dx







︸ ︷︷ ︸

≡∆(µ)

, (11)

where the second equality is from the proof of Theorem 1.
Note that we have ∆(1) = 0. To assess the sign of this term, we compute its derivative

∆′(µ) =




1

∫ µ

µ̂

γκ∗c
(x)

xψ(x)
dx





2

1

µψ(µ)

{∫ µ

µ̂

γκ∗c(x)

xψ(x)
dx− γκ∗c(µ)

(

1 +

∫ µ

µ̂

1

xψ(x)

)}

.
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Since γκ∗c(·) is nondecreasing, we have
∫ µ

µ̂

γκ∗c
(x)

xψ(x)
dx ≤ γκ∗c(µ)

∫ µ

µ̂
1

xψ(x)
dx, and therefore, ∆′(µ) < 0

on
(
µ̂, 1
]
, implying that H∗

c(µ) > H∗(µ) on
[
µ̂, 1
)
, which easily extends to

(
0, µ̂
]
by linearity of

both functions on this interval and continuity at µ̂.
Next, note that the fully informative test HFI is the solution of the differential equation

with cost when the cost function is given by γFI(µ) = (1−µ0)
µ0(µ−µ̂)
µ̂(µ−µ0)

. Hence, we can write the

following version of (11),

HFI(µ)−H∗(µ) =
µ̂
∫ 1

µ̂

γFI (x)
xψ(x)

dx

1 +
∫ 1

µ̂
1

xψ(x)
dx
ψ(µ)

∫ µ

µ̂

γFI(x)

xψ(x)
dx

×

{
1 +

∫ µ

µ̂
1

xψ(x)
dx

∫ µ

µ̂

γFI(x)
xψ(x)

dx
−

1 +
∫ 1

µ̂
1

xψ(x)
dx

∫ 1

µ̂

γFI(x)
xψ(x)

dx

}

. (12)

Subtracting (11) from (12)

HFI(µ)−H∗
c(µ) =

µ̂
∫ 1

µ̂

δ(x)
xψ(x)

dx

1 +
∫ 1

µ̂
1

xψ(x)
dx
ψ(µ)

∫ µ

µ̂

δ(x)

xψ(x)
dx

×

{
1 +

∫ µ

µ̂
1

xψ(x)
dx

∫ µ

µ̂

δ(x)
xψ(x)

dx
−

1 +
∫ 1

µ̂
1

xψ(x)
dx

∫ 1

µ̂

δ(x)
xψ(x)

dx

}

︸ ︷︷ ︸

≡∆̃(µ)

, (13)

where δ(x) = γFI(x)− γκ∗c (x) is bounded below by 0, above by γFI(x). Lemma 7 implies that
δ(x) is non decreasing in x. Therefore, applying the same argument as for ∆, we can show that
HFI(µ) > H∗

c(µ) on
(
0, 1
)
.

Step 3: H∗
c ∈ ∆B: Next, we show that H∗

c ∈ ∆B. Given that we already have HFI(µ) >
H∗
c(µ) > H∗(µ), it is sufficient to show that H∗

c is convex to ensure that it is in ∆B. Using the
same computations as in the case without cost, we can write

H∗
c(µ) = κ∗c(µ− µ0)

{

1 + µ0(µ̂− µ0)
µ̂
µ0

−1
µ̂
−

µ̂
µ0

(
µ

µ− µ0

) µ̂
µ0

}

− (µ− µ0)
1− µ̂

µ0 µ
µ̂
µ0 µ̂

∫ µ

µ̂

γκ∗c(x)(x− µ0)
µ̂
µ0

−1
x
−

µ̂
µ0

−1
dx.

We introduce the function

ϕκ(µ) = κpB − ĉκ(pB) = κ
µ0(µ− µ̂)

µ̂(µ− µ0)
− γκ(µ).

vi



By Lemma 7, this function is nonnegative and nondecreasing in pB, and hence in µ. Then, we
can rewrite H∗

c as follows

H∗
c(µ) = κ∗cµ+ (µ− µ0)

1− µ̂
µ0 µ

µ̂
µ0 µ̂

{

κµ0

µ̂

(

µ̂
−

µ̂
µ0 (µ̂− µ0)

µ̂
µ0

−1
− µ

−
µ̂
µ0 (µ− µ0)

µ̂
µ0

−1
)

︸ ︷︷ ︸

=
∫ µ

µ̂
(x−µ̂)(x−µ0)

µ̂
µ0

−2
x
−

µ̂
µ0

−1
dx

−

∫ µ

µ̂

γκ∗c(x)(x− µ0)
µ̂
µ0

−1
x
−

µ̂
µ0

−1
dx.

}

Therefore

H∗
c(µ) = κ∗cµ+ (µ− µ0)

1− µ̂
µ0 µ

µ̂
µ0 µ̂

∫ µ

µ̂

ϕκ∗c(x)(x− µ0)
µ̂
µ0

−1
x
−

µ̂
µ0

−1
dx. (14)

Differentiating, we get

H∗
c (µ) = κ∗c + µ̂

{
ϕκ∗c(µ)

µ
+ (µ− µ̂)(µ− µ0)

−
µ̂
µ0 µ

µ̂
µ0

−1

∫ µ

µ̂

ϕκ∗c(x)(x− µ0)
µ̂
µ0

−1
x
−

µ̂
µ0

−1
dx

}

. (15)

Note that this implies that H∗
c (µ) ≥ κ∗c for all µ ≥ µ̂. Next, note that, by definition, the

function H∗
c solves the differential equation

µ− µ̂

µ− µ0
H∗
c(µ)− µH∗

c (µ) + κ∗cµ̂ = µ̂γκ∗c(µ),

which we can also write

µ− µ̂

µ− µ0
(H∗

c(µ)− (µ− µ0)H
∗
c (µ))− µ̂ (H∗

c (µ)− κ∗c) = µ̂γκ∗c (µ).

Differentiating this equation, we obtain

µh∗c(µ) =
µ̂− µ0

(µ− µ0)2
(H∗

c(µ)− (µ− µ0)H
∗
c (µ))− µ̂γ′κ∗c(µ)

=
µ̂− µ0

(µ− µ0)(µ− µ̂)

{

H∗
c (µ)− κ + γκ∗c(µ)−

(µ− µ0)(µ− µ̂)

µ̂− µ0
γ′κ∗c(µ)

}

=
µ̂− µ0

(µ− µ0)(µ− µ̂)

{
H∗
c (µ)− κ∗c + ĉκ∗c (pB)− pB ĉ

′
κ∗c
(pB)

}

We have already proved that H∗
c (µ)− κ∗c ≥ 0, and it is easy to see that Assumption 4 implies

that ĉκ∗c (pB)/pB is nonincreasing, and therefore ĉκ∗c (pB)− pB ĉ
′
κ∗c
(pB) ≥ 0.

Step 4: Optimality of H∗
c : Let H ∈ ∆B be a test withH(µ̂) = µ̂κ′, and κ′ > κ∗c that satisfies

the no-falsification incentive constraint. By Lemma 4, we can take this test to be linear to the
left of µ̂, that is H ∈ ∆B

κ . Then H satisfies, for every µ ≥ µ̂,

µ̂γκ′(µ) ≥ κ′µ̂+
µ− µ̂

µ− µ0
H(µ)− µH(µ).
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Since κ′ > κ∗c , there must exist some n ≥ 0 such that κn ≥ κ′ > κn+1. Then, by Lemma 7,
γκn(µ) ≥ γκ′(µ), implying that the no-falsification incentive constraint must hold with γκn as
well, that is, for every µ ≥ µ̂,

µ̂γκn(µ) ≥ κ′µ̂+
µ− µ̂

µ− µ0
H(µ)− µH(µ).

Next consider the function Hn(µ), which, by definition, satisfies Hn(µ̂) = µ̂κn+1, and
Hn(1) = 1− µ0, and, for every µ ≥ µ̂,

µ̂γκn(µ) = κn+1µ̂+
µ− µ̂

µ− µ0
Hn(µ)− µHn(µ).

Since H(µ̂) > Hn(µ̂), and H(1) = Hn(1) = 1 − µ0, there exists some µ̃ ∈
(
µ̂, 1
]
, such that

H(µ̃) = Hn(µ̃), and H(µ) > Hn(µ) for µ ∈
[
µ̂, µ̃

)
. But then, we must have H(µ̃) ≤ Hn(µ̃).

Therefore

µ̂γκn(µ̃) ≥ κ′µ̂+
µ̃− µ̂

µ̃− µ0
H(µ̃)− µ̃H(µ̃)

> κn+1µ̂+
µ̃− µ̂

µ̃− µ0

Hn(µ̃)− µ̃Hn(µ̃) = µ̂γκn(µ̃),

a contradiction.

Thus, our recursive approach delivers the optimal test whenever Assumption 4 is satisfied.
When Assumption 4 is not satisfied, the recursive approach still delivers a limit function H∗

c .
However, we cannot ensure that this function is convex, and therefore corresponds to a test.
But it is still true that any optimal test H(µ) must lie below H∗

c(µ), and therefore the modified
payoff of the principal is bounded above by H∗

c(µ̂) = κ∗c µ̂. Furthermore, for any cost function,
if H∗

c happens to be convex so that it is a test, then it is an optimal test.
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