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Abstract

We argue that a precedent is important not only because it changes
the relative frequency of a certain event, making it positive rather than
zero, but also because it changes the way that relative frequencies are
weighed. Specifically, agents assess probabilities of future events based
on past occurrences, where not all of these occurrences are deemed
equally relevant. More similar cases are weighed more heavily than
less similar ones. Importantly, the similarity function is also learnt
from experience by “second-order induction”. The model can explain
why a single precedent affects beliefs above and beyond its effect on
relative frequencies, as well as why it is easier to establish reputation
at the outset than to re-establish it after having lost it. Finally, we
discuss more sophisticated forms of learning, by which similarity is
defined not only on cases but also on attributes, and the importance
of some attributes, learnt from the data by second-order induction,
can also affect the perceived importance of other attributes.
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1 Introduction

1.1 Motivating Example

The election of Obama as President of the US in 2008 was a defining event in

US history. For the first time, a person who defines himself and is perceived

by others as an African-American was elected for the highly coveted offi ce,

and this was clearly an important precedent. Whereas in the past African-

Americans would have thought that they had no chance of being elected, as

there had been no cases of presidents of their race, now there was such a

case, and the statistics started looking differently.

It appears, however, that the single case of President Obama changes

statistics far beyond its relative frequency, and this remains true even if we

weigh cases by their recency. For example, considering only the post-WWII

period, the US had 11 presidents before Obama. The effect of his election,

however, does not seem to be captured by the difference between 0:11 and

1:12. We suggest that the precedent set by Obama is partly explained by

a process of “second-order induction”. According to this view of learning,

past data are used in two ways: first, to estimate the probabilities of future

events according to the relative frequency of similar events in the past, and,

second, to learn what counts as “similar”. Up to Obama’s election, “race”

was an important attribute, one which could be a useful variables in fitting

the data. An African-American was therefore considered dissimilar to all past

presidents, differing from them on an attribute that proved to have predictive

power. But once the precedent of Obama was set, people who look at history

may conclude that the race variable is not necessarily helpful in explaining

the data. And if second-order induction suggests that similarity between

cases can be more accurately judged ignoring this variable, it is easier to

understand the importance of the precedent.
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1.2 Belief Formation

How do agents form beliefs about the likelihood of future events? In many

cases, the answer is within the realm of statistics. When evaluating the

probability of a car theft, for example, one may rely on empirical frequen-

cies, which provide natural estimators of probabilities when observations can

be viewed as realizations of i.i.d. random variables. In other problems, such

as assessing the probability of developing a disease, more sophisticated tech-

niques are used in statistics and machine learning, allowing for learning from

cases that are not identical and for identifying patterns in the data. Thus,

logistic regression, decision trees, non-parametric methods and many other

techniques can be used to provide probabilistic assessments. However, there

are many problems in which there are relatively few observations, and those

that exist are rather different from each other. For example, in assessing the

probability of success of a presidential candidate, past cases are clearly of

relevance, but no two are similar enough to simply cite empirical frequencies.

Statistical techniques are used to predict election results based on polls in

the days or weeks preceding an election, but such techniques can hardly be

used to provide reliable probability estimates for the success of a candidate

who considers running, say, two years in advance.

Yet, people are faced with decision problems that depend on these prob-

abilities. The potential candidate herself has to decide whether to run for

offi ce, a decision involving very high stakes. Potential donors and volunteers

also ask themselves how likely it is that this candidate should win. These

beliefs are usually not estimated in any scientific or objective way, and often

not even in any explicit way. Moreover, one may argue that events of this

type do not have well-defined probabilities. But, in the final analysis, deci-

sions have to be made, and some form of beliefs, probabilistic or not, explicit

or not, would underlie rational agents’choices. The focus of this paper is the

belief generation process in these decision problems.

We consider a very simple model, according to which the probability
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of an event is taken to be its similarity-weighted relative frequency. Thus,

the probability that a candidate will win the election is estimated by the

proportion of cases in which similar candidates won elections, where more

similar candidates are assigned higher weights than less similar ones. The

determinant of similarity may include factors such as party affi liation, po-

litical platform, and experience, as well as gender, race, and age. Clearly,

this model is simplistic in many ways. For example, it does not allow for

the identification of trends, as logistic regression would. Yet, it suffi ces for

our purposes. Our main point is that the way similarity of cases should be

judged is itself learnt from the data. Whereas learning from past cases about

the likelihood of future ones is referred to as “first-order induction”, learn-

ing the similarity function, namely, the way first-order induction should be

conducted, is dubbed “second-order induction”.

Using similarity-weighted averages is an intuitive idea that appeared both

in statistics as “kernel methods” (Akaike, 1954, Rosenblatt, 1956, Parzen,

1962) and in psychology as “exemplar learning” (see Medin and Schaffer,

1978, and Nosofsky, 1988). Gilboa, Lieberman, and Schmeidler (GLS, 2006)

suggested the notion of learning the similarity function from the data, and

referring to the optimal function as the “empirical similarity”. While their

paper can be viewed as suggesting a statistical technique, our focus in this

paper is on the interpretation of the model as a description of the way people

reason. Consider, for example, the choice of an electronic device such as a

smartphone or a computer. A child, or an inexperienced adult, may assume

that products with similar outward appearance would be of similar quality.

Experienced consumers, however, would know that the name of the producer

counts more than, say, screen size, when it comes to quality. We view this as

an example of second-order induction. Clearly, consumers do not explicitly

compute the empirical similarity in as GLS (2006); but the model is pro-

posed as an idealized account of a process that people do engage in, typically

implicitly.
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Argenziano and Gilboa (2017) study a second-order induction model

where the empirical similarity is computed by a leave-on-out cross-validation

technique. The focus of that paper is on asymptotic results regarding the

uniqueness of the empirical similarity function and the complexity of its com-

putation, in particular when the number of relevant variables can be rather

large. By contrast, in this paper we consider the same model and study con-

ditions under which a single variable —such as “race”in the example above —

will be included in the empirical similarity function. Abstracting away from

the other variables, and focusing on binary variables throughout, we deal

with a seemingly very simple problem, characterized by no more than four

parameters. We provide some results about values of these parameters for

which the similarity will, or will not, include a specific variable, and then

show how these results can be applied to the questions of (i) the importance

of precedents; and (ii) the cost of establishing and retaining reputation.

The rest of the paper is organized as follows. Section 2 presents the basic

model and the idea of the empirical similarity formally. Section 3 offers a

few general results, whereas Section 4 interprets them for the analysis of

precedents and of reputation. Finally, Section 5 concludes with a general

discussion.

2 Case-Based Beliefs

A binary variable y ∈ {0, 1} is to be predicted based on other binary vari-
ables, x1, ..., xm ∈ {0, 1}. We assume that there are n observations of the
values of x = (x1, ..., xm) ∈ X ≡ {0, 1}m and of the corresponding y values.
Given a new value for the x’s, an agent attempts to predict the value of y.

Observations will be denoted by subscripts, so that observation i is (xi, yi)

where xi = (x1i , ..., x
m
i ) ∈ X and yi ∈ {0, 1}. A new data point xp is given,

and the agent attempts to predict yp.

We assume that prediction is made by a similarity function s : X ×X →
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R+, such that the probability that yp = 1 is estimated by

ysp =

∑
i≤n s(xi, xp)yi∑
i≤n s(xi, xp)

(1)

if
∑

i≤n s(xi, xp) > 0 and ysp = 0.5 otherwise. 1

In this paper we focus on a simple model, according to which the similarity

function takes values in {0, 1}. Further, we assume that each variable either
counts as relevant for prediction, or as irrelevant. Thus, for a subset of

predictors, J ⊂M ≡ {1, ...,m}, let

sJ (xi, xp) =
∏
j∈J
1{xji=xjp} (2)

Thus, the similarity of two vectors is 1 iff they are identical on the set of rele-

vant variables, J . Clearly, the relation “having similarity 1”is an equivalence

relation.

The notion of second-order induction is designed to capture the idea that

the choice of a similarity function is made based on data as well: the “empir-

ical similarity”is a similarity function that, had it been used to predict the

existing data points, where each is estimated based on the others, it would

have performed well. That is, we consider a leave-one-out cross-validation

technique as a model of the process people implicitly undergo in learning

similarity from data. Formally, for each subset of predictors, J ⊂M , let

ysJi =

∑
r 6=i sJ(xr, xi)yi∑
r 6=i sJ(xr, xi)

and consider the sum of squared errors,

SSE (J) =

n∑
i=1

(ysJi − yi)
2

1This formula can be extended to the case of more than two possible values for the
predictors xj and for y in a straightforward manner.
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A function sJ such J ∈ arg minSSE(J) is an empirical similarity func-

tion.

The focus of our analysis is the question, whether a variable is important

for prediction or not. Formally, given a set of predictors, J ⊂ M and j /∈
J , we are interested in the comparison of SSE (J) and SSE (J ∪ {j}). If
SSE (J) > SSE (J ∪ {j}), then the inclusion of the variable j provides a
better fit to the data, and the variable will be used for future predictions. If,

by contrast, SSE (J) < SSE (J ∪ {j}), the addition of the variable j results
in higher errors, and it will not be included. Intuitively, we can think of the

variable as “adding noise”. The reason that a variable can decrease the SSE

is related to “the curse of dimensionality”: a set of predictors J splits the

database into “bins”, namely, sub-databases with identical
(
xl
)
l∈J values. A

new variable splits each of these bins into smaller ones, so that the number

of bins grows exponentially in |J |. When there are too few observations in a
bin, the prediction error can grow. Intuitively, if we are too picky about the

notion of similarity, there will not be enough similar cases for any given case.

Note that this reason is distinct from overfitting, which may be yet another

reason to prefer small sets of predictors.

Observe that the empirical similarity need not be unique. To consider

the most trivial case, suppose that a variable xj is constant in the database.

In this case, SSE (J) = SSE (J ∪ {j}) for any J ⊂ M . By convention, we
may decide to drop such a variable (j), implicitly assuming that handling a

variable incurs some memory and computation costs that are assumed away

in this paper. However, there could be more interesting examples of non-

uniqueness. See Argenziano and Gilboa (2017) for details.

3 Results

Whether a set of predictors J will perform better by the addition of a variable

j /∈ J depends mostly on how much information the latter carries about y,
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given the variables J . In general, this information need not be summarized by

simple correlations or regularities. It is possible that for some
(
xl
)
l∈J values

of the variables in J , xj = 1 makes y = 1 more likely, and vice versa for other(
xl
)
l∈J values. While such cases are theoretically interesting and important,

they seem to be more involved than our motivating examples.2 We wish to

focus attention on simple cases, in which, should a variable be included, it

is relatively clear what predictions it induces. We therefore assume J = ∅
and address the question of whether a variable xj should be included in the

similarity function.

The n points in the database are divided into four types, according to the

values of xj and of y. Let the number of cases of each type be given by the

following case-frequency matrix:

# of cases xj = 0 xj = 1
y = 0 L l
y = 1 K k

Thus, the database includes L +K cases with xj = 0, of which in L we

have y = 0, and in the other K —the value y = 1 was observed; and it also

includes additional k+ l cases with xj = 1, of which l have y = 0 and k have

y = 1.

We are interested in the sign of

∆ (K,L, k, l) ≡ SSE ({j})− SSE (∅)

Clearly, ∆ (K,L, k, l) = ∆ (L,K, l, k) and ∆ (K,L, k, l) = ∆ (k, l,K, L), as

the SSE calculations do not change if we switch between 0 and 1 either for

a predictor xj or for the predicted variables y.

Notice that ∆ (K,L, k, l) > 0 implies that the variable j is not included in

the empirical similarity function, whereas ∆ (K,L, k, l) < 0 implies that it is.

Of particular interest would be cases that change the sign of ∆, for example,

2Again, see Argenziano and Gilboa (2017) for discussion of the problem in the general
case, including problems having to do with computational complexity.
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∆ (K,L, k, l) > 0 but ∆ (K,L, k + 1, l) < 0, where a single case with xj = 1

and y = 1 adds the variable j to the empirical similarity function, or, vice

versa, if ∆ (K,L, k, l) < 0 but ∆ (K,L, k + 1, l) > 0 so that a single case as

above induces the omission of j, rendering a previously-important variable

unimportant.

When would the variable xj be informative enough to render∆ (K,L, k, l)

negative? Intuitively, the question is about the difference in the proportion of

cases with y = 1 (vs. y = 0) in the two sub-databases, one with xj = 1, and

its complement, with xj = 0. IfK/L = k/l, there is no predictive power to be

gained from splitting the database according to xj, and one would expect to

find ∆ (K,L, k, l) > 0 (where the inequality follows from the loss of accuracy

when using smaller sub-databases). If, by contrast, K/L 6= k/l, then xj

provides statistical information about y. Whether the additional statistical

information is worth splitting the database into smaller bins would depend

on the sizes of the bins obtained. Proposition 1 in Argenziano and Gilboa

(2017) considers the case in which a database is replicated, that is, the matrix

# of cases xj = 0 xj = 1
y = 0 tL tl
y = 1 tK tk

for t > 0. It implies that (in this rather special case) if, indeed, K/L =

k/l, then ∆ (tK, tL, tk, tl) > 0 for all t. By contrast, if K/L 6= k/l, then

∆ (tK, tL, tk, tl) < 0 for suffi ciently large t.

Our focus in this paper is, however, on databases for which k and l are

small. We wish to study the change of beliefs when a new event occurs —such

as the election of an atypical candidate for the presidency, or the behavior

of a new agent who has no history, and so forth. For these cases we will

think of k and l as small (and sometimes zero). Moreover, in many of these

cases the number of relevant cases in the entire history isn’t very large either.

For example, the number of presidential campaigns that can be considered

suffi ciently relevant to a given US election will be in the dozens, rather than

the thousands. Hence, here we have limited interest in asymptotic results.
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The case k = l = 0 will be of special interest. It can be interpreted in two

ways, between which our model does not attempt to distinguish: first, it is

possible that all relevant agents are aware of the variable xj, and they notice

that xj = 1 has never been observed. Second, they might be situations in

which the variable xj hasn’t really occurred to anyone because it has never

been observed. For example, in the application of the model to the study

of reputation, the variable in question will be an agent’s proper name, and

agents were probably not aware of the variable before a person with that

proper name appears on stage. We do not attempt to distinguish between

the two interpretations, and do not need to for the sake of the model.

We assume that there is a non-trivial history in which xj = 0. Specifically,

we assume throughout that L,K > 2. This assumption means that (i) the

database contains a non-trivial number of cases overall, and that (ii) the

prediction of the variable in question, y, is a non-trivial task: there are a few

(at least three) cases with y = 0 as well as with y = 1.

The first result we wish to establish is that, if there are regularities in the

database, the empirical similarity will spot them. Intuitively, we would like

to say that, if it so happens that all cases in the database with xj = 1 had the

same y value, then the variable j will be included in the empirical similarity

function, and will be perceived to be of predictive power. This statement

need not hold if there is only one case with xj = 1 in the database. But if

“all cases in the database with xj = 1”refers to at least two such cases, the

result holds true. Formally,

Proposition 1 For any (K,L), and any k, l > 1, we have

∆ (K,L, k, 0) , ∆ (K,L, 0, l) < 0.

Recall that we assume that L,K > 2, so that the sub-database for which

xj = 0 does not suggest a clear regularity about y. By contrast, if we focus,

for instance, on the case k > 1,l = 0, the rule “if xj = 1 then y = 1”holds in

the database —where its antecedent is satisfied at least twice. Under these
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conditions, the empirical similarity will “identify”the rule by including the

variable j in the similarity function.

Proposition 1 is rather intuitive and turns out to be very simple to prove.

Yet, it is important because it shows that, if case-based predictions are al-

lowed to use second-order induction, they will implicitly learn regularities.

If it is indeed the case that xj = 1 implies y = 1, the empirical similarity

will “learn”the regularity by highlighting the importance of xj. Clearly, the

variable might be found important also when no such simple regularity can

be found. Indeed, case-based predictions can prove useful when no simple

rules hold true. But it is reassuring to know that, should such rules exist,

they will not be missed by a case-based reasoner who employs second-order

induction.

The parameter values k = 1, l = 0 (or vice versa, k = 0, l = 1) are

not covered by Proposition 1. They might appear to represent a relatively

degenerate and uninteresting special case. However, in the next section we

will discuss applications where these values appear to be in the limelight.

They correspond to new realities, where xj = 1 has never been observed

before and therefore deserve analysis. It turns out that, when a case with

xj = 1 is observed for the first time, the variable j will be included in the

empirical similarity if the corresponding y value was the less frequent value

in the rest of the database. Formally,

Proposition 2 If K < L, ∆ (K,L, 1, 0) < 0 and ∆ (K,L, 0, 1) > 0. Sym-

metrically, if K > L, ∆ (K,L, 1, 0) > 0 and ∆ (K,L, 0, 1) < 0. Finally,

∆ (K,K, 1, 0) ,∆ (K,K, 0, 1) > 0.

We find this result rather intuitive: when no cases with xj = 1 were ever

observed (k = l = 0), there is no real meaning to the variable xj: it is always

0 and can be ignored.3 When the first case with xj = 1 pops up, one is led

to ask, is this new feature useful? Should I make a note of the fact that the
3As mentioned above, in this case (where we have, in particular, ∆ (K,L, 0, 0) = 0), we

assume that j is not included in the optimal set of predictors.
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new case had this new feature, or should I better dismiss it as noise? For

example, suppose that one is watching horse races, and classifies horses into

“very fast” (y = 1) or “regular” (y = 0), where the majority of the horses

are “regular”. At some point one observes, for the very first time ever, a

green horse. Stunning as this phenomenon is, the unusual color might not

be informative. Proposition 2 says that, if the green horse turns out to be

very fast, the next time a green horse will show up its color would be noticed.

By contrast, if the conspicuously colored horse turns out to be regular, the

special feature will be dismissed.

A complete classification of the quadruples (K,L, k, l) for which∆ (K,L, k, l)

is negative, positive, or zero is beyond the scope of this paper. However, a

few intuitively interpretable results can be obtained when K = L, that is, if

the database with xj = 0 is evenly split between y = 0 and y = 1:

Proposition 3 Let K = L > 2, l ≥ k > 0.4 Define w = l − k ≥ 0. The

following hold:

(i) For every k, ∆ (L,L, k, k),∆ (L,L, k, k + 1) > 0.

(ii) For every k, ∆ (L,L, k, k + w) is decreasing in w.

(iii) For every k and every w ≥ 2, ∆ (L,L, k, k + w) is increasing in k.

(iv) For every k, there exists w (k) ≥ 2 such that

∀w < w (k) ∆ (L,L, k, k + w) ≥ 0

∀w ≥ w (k) ∆ (L,L, k, k + w) < 0.

(v) w (k) is non-decreasing in k.

This proposition analyzes the behavior of the function ∆ (L,L, k, l) as

k and/or l increase.5 Notice that, when l > 1, ∆ (L,L, 0, l) is known to

be negative by Proposition 1. This means that the variable xj is used for

prediction, because throughout the database, when xj = 1 it was also true

4The case k ≥ l > 0 clearly has symmetrical properties.
5Note that, due to symmetry, ∆ (L,L, k, l) = ∆ (L,L, l, k).
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that y = 0. Let us now consider the same function as k grows. Part (i) says

that, as k becomes equal to (l − 1) or to l, ∆ (L,L, k, l) is positive, so that

xj is no longer used for prediction. Intuitively, when there are suffi ciently

many (k) counter-examples to the rule “xj = 1 implies y = 0”, the variable

is considered unimportant. Part (iv), however, says that if k keeps growing

(holding L and l fixed), the variable will re-appears in the empirical similarity

function. Notice that in this time it would be considered informative not

because xj = 1 is associated with y = 0 (as for the case k = 0), but for the

opposite association. Indeed, when there are going to be many cases in which

(xj = 1,y = 1), eventually the l cases in which (xj = 1,y = 0) were observed

will be implicitly considered random errors. To sum, Proposition 3 shows

that, when K = L, for every l > 1, the variable xj will be used for prediction

for very low and very high values of k, but not for some intermediate values.

4 Applications

4.1 Precedents

We suggest to interpret Proposition 3 as capturing the way that a prece-

dent makes a variable lose importance. Consider our motivating example,

namely, the election of President Obama. We focus on the variable xj which

denotes race, where xj = 1 means that the candidate is African-American.

The database would include cases of people who ran campaigns to become

presidents, at least in the primaries of their party, or made a similar attempt

to be elected. The vast majority of them were white, namely, had xj = 0.

Assume that, on top of these white candidates (of which L failed, and K

succeeded, where the proposition requires K = L), there also some attempts

made by African-American candidates, but all of those failed. Assume that

the number of these attempts, l, is at least two. Given zero successes by

African-American candidates, k = 0, race would seem to be important (by

Proposition 1), and the similarity function would take it into account, im-
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plicitly noticing the regularity “No African-American was ever elected pres-

ident”. However, when a few exceptions exist (k = l− 1 would suffi ce), Part

(i) of Proposition 3 will imply that race becomes unimportant. This is the

sense in which the precedent changes more than the statistics: it changes the

similarity function as well. If we let k grow, that is, if after Obama all future

cases are of successful African-American candidates, at some point race will

be considered important again, this time because xj = 1 is predicts victory.

Note that Proposition 3 is limited to the case K = L. This assumption

doesn’t seem realistic: if we wish to argue that all candidates who ran for

the party’s nomination are considered to be cases, then, more or less by

definition, L > K. Moreover, the account above, and Proposition 3 do not

guarantee that a single precedent would be enough to render the race variable

unimportant. Unfortunately, we cannot offer any general results about the

case L > K. However, direct computation shows that, for many values of

the parameters, with L > K and l = 2, the value k = 1 is enough to obtain

∆ (K,L, k, l) > 0.

4.2 Reputation

Consider an agent who’s new to an economic or political scene, and who’s

trying to establish reputation. For example, we may consider a new dean

who aims to enforce regulations more strictly than her predecessors, or a

central banker who intends to curb inflation. Assume that the variable xj

is the agent’s proper name, so that, starting with a clean slate, there are no

cases with xj = 1. Let us assume, again for simplicity, that in the database

past agents who assumed the same post had an equal number of successes

and failures, so that K = L and k = l = 0.

Propositions 2 and 1 suggest that the new agent would have to invest an

effort in establishing y = 1 twice in order to establish her reputation: at the

outset, with k = l = 0, there are no cases with xj = 1, and the variable

clearly does not aid in prediction. But even with k = 1, ∆ (K,L, 1, 0) > 0,
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and xj does not enter the empirical similarity function. However, with k = 2

it does. That is, the dean who wishes to convey the message that “the rules

have changed”would have to successfully enforce the rules twice.

Proposition 3 also tells us what will happen if the dean fails to enforce the

rules at the beginning of her tenure. Part (iv) of the proposition guarantees

that for any number l of failures, it would still be possible to establish reputa-

tion for implementing y = 1 by having a large enough number of successes k.

Part (v) points out that, while establishing reputation after allowing some

failures is possible, the cost of doing so will increase. Thus, second-order

induction can explain why it is easier to establish reputation given a clean

slate than it is to re-establish it after some failures.

5 Discussion

5.1 Additional Examples

5.1.1 Example: The Collapse of the USSR

The Soviet bloc started collapsing with Poland, which was the first country

in the Warsaw Pact to break free from the rule of the USSR. Once this was

allowed by the USSR, other countries soon followed. One by one practically

all the USSR satellites in Eastern Europe underwent democratic revolutions,

culminating in the fall of the Berlin Wall in 1989.

Revolutions are often seen as a change of equilibrium. Further, it has

been argued that similarity-weighted frequencies of past cases can be applied

to the prediction of a success of a possible revolution, and therefore also to

the prediction of revolution attempts (see Steiner and Stewart, 2008, Argen-

ziano and Gilboa, 2012). It appears obvious that the case of Poland was an

important precedent, which generated a “domino effect”. According to our

model, its importance didn’t lie only in changing the relative frequencies, but

also via second-order induction, dropping the attribute “being a part of the

Soviet Bloc”from the empirical similarity function.
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Similarly, when the Baltics were allowed to secede from the USSR in

1991, the USSR disintegrated. This can be viewed as another change in

the similarity function: the attribute “being a part of the USSR”, which

separated the Baltics from Poland, was no longer deemed relevant. Soon

after, Chechnya attempted to claim independence from Russia. A success

would have proven that even the variable “being a part of Russia”was no

longer relevant. This, apparently, was not something Russia could afford.

Thus, one could view the battle over Chechnya as a conflict over future

empirical similarity.

5.1.2 Example: Currency Change

In an attempt to restrain inflation, central banks sometimes resort to chang-

ing the currency. France changed the Franc to New Franc (worth 100 “old”

francs) in 1960, and Israel switched from a Lira to a Shekel (worth 10 Liras)

in 1980 and then to a New Shekel (worth 1,000 Shekels) in 1985.

A change of currency has an effect at the perceptual level of the similarity

function. Different denominations might suggest that the present isn’t similar

to the past, and that the rate of inflation might change. However, if people

engage in second-order induction, they would observe new cases and would

learn from themwhether the perceptual change is of import. For example, the

change of currency in Israel in 1980 was not accompanied by policy changes,

and inflation spiraled into hyper-inflation. By contrast, the change in 1985

was accompanied by budget cuts, and inflation was curbed. The contrast

between these two examples suggests that economic agents are suffi ciently

rational to engage in learning the empirical similarity.

5.2 Non-Binary Variables

Consider the motivating example again. We argued that the precedent of

President Obama reduced the importance of the variable “race”in similarity

judgments. This may make other African Americans more likely to win an
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election for two reasons: first, they are similar to the precedent; second, the

attribute on which they differ from the vast majority of past cases is less

important. With variables that can take more than two values, one can have

the latter effect without the former. Suppose that, in an upcoming election,

an American-born man of Chinese origin considers running for offi ce. If,

indeed, the empirical similarity function does not put much weight on the

variable “race”, such a candidate would be more likely to win an election

given the case of Obama than it would have been without this case, without

necessarily being similar to the latter.6

5.3 Similarity Over Variables

Our focus is on similarity between cases, and how it is learnt. But similarity

can also be perceived among variables. For example, one might argue that

the precedent of President Obama may make it more likely that a woman be

elected president. Clearly, a non-white male candidate isn’t very similar to a

white female one, as far as “race”and “gender”are concerned. Further, even

if the variable “race”is no longer perceived as relevant, it doesn’t make a non-

white man more similar to a white woman than to a white man. However,

people might reason along the lines of, “Now that a non-white president was

elected, why not a woman?”Capturing such reasoning would require gen-

eralizing the model described above, allowing a similarity function between

variables. For example, “race”and “gender”are similar in that both are in

the category of “perceptual variables that were used to discriminate against

sub-groups, and that are frowned upon as source of discrimination in modern

democracies”. Due to this similarity, a change in the weight of one variable,

learnt from the empirical similarity as in this paper, may be reflected also in

6This prediction of our model could be tested empirically. Admittedly, should it prove
correct, one could still argue that the similarity function has a variable “Non-Caucasian”
(rather than “race”), so that a Chinese-born and an African-American are similar to each
other in this dimension. We find the change of the similarity function to be a more intuitive
explanation.
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the weight of another variable.

To consider another example, let us revisit the example of the collapse

of the USSR (5.1.1 above). One might argue that the variables “Being a

part of the Soviet Bloc”, “Being a part of the USSR”, and “Being a part

of Russia” bore some a priori similarity to each other. They seem to be

distinct, as the collapse of the Soviet Bloc didn’t immediately proceed to the

disintegration of the USSR itself. Yet, it is possible that the former inspired

the latter, two years later. This might be captured by the variable similarity

notion. Moreover, if Chechen rebels felt encouraged by the collapse of the

Soviet Bloc and of the USSR, they might have been following an inductive

process that involved variables before involving cases. Specifically, if, our of

the three variables two were proved unimportant, one might be justified in

assuming that the third one would follow suit, and make predictions based

on a similarity function that does not take it into account.

Observe that the similarity over variables will also be partly learnt from

the data. In the latter example, the a priori similarity between the three

variables involving the USSR had to be updated given the results of the

Chechen uprising. Clearly, such sophisticated forms of learning are beyond

the scope of the present paper.

5.4 Compatibility with Common Knowledge of Equi-
librium Selection

The informal discussions of precedents and of reputation implicitly assumes

that a large population of players is involved in a coordination game, and that

the equilibrium selection is done by the prediction of play using the empirical

similarity. We argue in Argenziano and Gilboa (2017) that computing the

empirical similarity is compatible with a Bayesian approach applied to the

grand state space; but is it also compatible with common knowledge of the

rationality of others, and of the model itself?

The answer depends on the interpretation of the computation of the em-
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pirical similarity. If we assume that each player believes that the real process

is governed by a fixed similarity function, and tries to learn it by minimizing

the SSE, there seems to be a conflict between the modeler’s world view and

those of the players: according to this interpretation, the modeler is the only

one who knows that all the players are computing the empirical similarity

function, while each of them assumes that she is the only one to do so, and

that the others are not as sophisticated.

But one may also adopt an interpretation that would make the model, and

rationality of each agent therein, common knowledge: rather than believing

that the process is governed by a fixed similarity function, one can think of the

empirical similarity calculation merely as a focal point on which the players

converge. Indeed, in a coordination game any algorithm for generating beliefs

can serve as a coordinating device. We can think of an implicit pre-play game,

in which players choose their beliefs about the coordination game. This pre-

play game would also be a coordination game, and any method for belief

generation would suggest an equilibrium.

With this interpretation in mind, we suggest that the players use the

empirical similarity prediction as a focal point because it is a reasonable

process in non-strategic setups. By analogy, consider a game in which players

observe rolls of a die, and then have to select points in ∆ ≡ ∆ ({1, 2, ..., 6}).
A player who picks pi ∈ ∆ gets a payoff −‖pi − p̄‖ where p̄ is the average
of the pi’s. Clearly, the selection pi = p̂ (for all i) is an equilibrium for

any p̂ ∈ ∆. Yet, the empirical frequency of the rolls of the die seems to

stand out as a focal point. One reason might be that the empirical frequency

would be a good guess in a prediction problem where the process is i.i.d.

Relatedly, if some of the players mistakenly ignore the strategic aspect of the

game and focus on predicting the next observation, then (with a quadratic

loss function) they would select the empirical frequency. If other players are

trying to minimize the loss function with the realization that some of the

players are non-strategic, they might also select the empirical frequency.
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Along similar lines, in our case there may be some players who are non-

strategic and do indeed believe that the process follows an unknown similarity

function. Attempting to estimate this function, they would use the empirical

similarity to generate their prediction over the game’s equilibrium. Other

players might engage in Level-1 reasoning, and optimally react to the exis-

tence of Level-0 players by predicting the equilibrium chosen by the empirical

similarity. As this is a coordination game, best response implies behavior ac-

cording to the Level-0 beliefs. Similarly, higher levels of reasoning would also

follow the same equilibrium prediction. In other words, the Level-0 predic-

tion, which is statistically but not strategically sophisticated, isn’t only a

reasonable focal point in the belief-selection equilibrium; it is also the best

prediction of the strategic choices of players who engage in Level-k reasoning

for any k ≥ 0 (see Stahl and Wilson, 1995, Nagel, 1995).
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6 Appendix: Proofs

Whenever needed, we use partial derivatives to derive inequalities. In doing

so we obviously extend the definition of the function ∆ (K,L, k, l) to all

non-negative real numbers (K,L, k, l) by the function’s algebraic formula,

whenever well-defined.

Proof of Proposition 1:
Let there be given l > 1. We wish to prove that ∆ (K,L, 0, l) < 0 (where

the case l = 0,k > 1 is obviously symmetric).

The SSE’s are given by

SSE (∅) = K

(
1− K − 1

L+K + l − 1

)2
+ (L+ l)

(
K

L+K + l − 1

)2
= K (L+ l)

L+ l +K

(L+ l +K − 1)2

and

SSE ({j}) = K

(
1− K − 1

L+K − 1

)2
+ L

(
K

L+K − 1

)2
= LK

L+K

(L+K − 1)2

(where the sub-database for which xj = 1 yields SSE = 0). Straightforward

calculation yields

∆ (K,L, 0, l) = −Kl
(
L (K − 2) + (K − 1)2

)
l + (L+K − 1) (L (K − 2) +K (K − 1))

(L+K − 1)2 (L+ l +K − 1)2

which is clearly negative. Notice that the above holds for any L,K > 2, with

no assumptions made about their relative sizes. �

Proof of Proposition 2:
We need to show that

(i) If K < L, ∆ (K,L, 1, 0) < 0 and ∆ (K,L, 0, 1) > 0;

(ii) If K > L, ∆ (K,L, 1, 0) > 0 and ∆ (K,L, 0, 1) < 0;
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(iii) ∆ (K,K, 1, 0) ,∆ (K,K, 0, 1) > 0.

We first study ∆ (K,L, 0, 1), and show that it is positive for K ≤ L and
negative for K > L. By symmetry, this will also show that ∆ (K,L, 1, 0) is

positive for K ≥ L and negative for K < L, together completing the proof.

The SSE’s are given by

SSE (∅) = K

(
1− K − 1

L+K

)2
+ (L+ 1)

(
K

L+K

)2
= K (L+ 1)

L+K + 1

(L+K)2

and

SSE ({j}) = K

(
1− K − 1

L+K − 1

)2
+ L

(
K

L+K − 1

)2
+ 0.25

= LK
L+K

(L+K − 1)2
+ 0.25

(where the sub-database for which xj = 1 yields SSE = 1
4
).

It follows that

∆ (K,L, 0, 1) =
1

4 (L+K − 1)2 (L+K)2

[
L4 + L3 (4K − 2) + L2 (2K2 + 2K + 1)

+L (−4K3 + 6K2 + 2K)− 3K4 + 2K3 + 5K2 − 4K

]
(3)

Let a (K,L) denote the the expression in the square brackets in (the RHS

of) equation (3), which clearly has the same sign as ∆ (K,L, 0, 1). First, we

observe that

a(K,K) = 4K
(
2K + 2K2 − 1

)
> 0.

This establishes Part (iii), and will also be a useful benchmark for Parts (i)

and (ii). Indeed, to prove that a(K,L) > 0 (and thus that ∆ (K,L, 0, 1) > 0)

for L > K, we will consider the partial derivative of a(K,L) relative to its

second argument, and show that it is positive for L ≥ K. (Clearly, a(K,L)
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is a polynomial in its two arguments, and it is well-defined and smooth for

all real values of (K,L).) To see this, observe that

∂a (K,L)

∂L
= 4L3 + 12L2K − 6L2 + 4LK2 + 4LK + 2L− 4K3 + 6K2 + 2K(4)

= 4L3 + (12K − 6)L2 +
(
4K2 + 4K + 2

)
L+

(
−4K3 + 6K2 + 2K

)
Observe that 12K − 6 > 0 (as K > 2), and thus the only negative term in

this derivative is −4K3. However, for L ≥ K is 4K2L− 4K3 ≥ 0 and thus,

for L ≥ K we have ∂a(K,L)
∂L

> 0. Because, for L ≥ K, a (K,L) is strictly

increasing in L and a(K,K) > 0, we also have a(K,L) > 0 for L > K.

We now turn to the case L < K, where equation (4) might be negative

(and, indeed, will become negative if L is held fixed and K → ∞.) Again
the strategy of the proof is to use direct evaluation at a benchmark and

partial derivative arguments beyond, though a few special cases will require

attention. The benchmark we use is the case K = L + 1. Here direct

calculations yield

a (L+ 1, L) = −4L
(
2L2 − 1

)
< 0

This time we consider the partial derivative of a (K,L) wrt to its first argu-

ment, and would like to establish that it is negative. If it were, increasing

K from (L+ 1) further up would only result in lower values of a (K,L), and

therefore the negativity of a (K,L) (and of ∆ (K,L, 0, 1)) for K > L would

be established.

Consider, then,

∂a (K,L)

∂K
= 4L3 + 4L2K + 2L2 − 12LK2 + 12LK + 2L− 12K3 + 6K2 + 10K − 4(5)

= 4L3 + (4K + 2)L2 +
(
12K − 12K2 + 2

)
L+

(
6K2 − 12K3 + 10K − 4

)
Consider (5) as a polynomial in L. Using the fact L < K, we obtain an

upper bound on this expression by replacing L by K whenever coeffi cients of
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powers of L are clearly positive:

4L3 + (4K + 2)L2 +
(
12K − 12K2 + 2

)
L+

(
6K2 − 12K3 + 10K − 4

)
< 4K3 + (4K + 2)K2 + 12K2 + 2K − 12K2L+ 6K2 − 12K3 + 10K − 4

and, if we drop the only term still involving L (−12K2L), we obtain

∂a (K,L)

∂K
< 4K3 + (4K + 2)K2 + 12K2 + 2K + 6K2 − 12K3 + 10K − 4

= −4
(
−3K − 5K2 +K3 + 1

)
We now observe that the last expression is negative for K ≥ 6, and thus the

partial derivative ∂a(K,L)
∂K

is indeed negative for all K ≥ 6, L < K. Coupled

with the fact that a (L+ 1, L) < 0, we obtain a (K,L) < 0 for all K ≥ 6

(and 2 < L < K).

We now wish to show that a (K,L) < 0 holds also for lower values of

K. However, as K > L > 2 only a few pairs of values (K,L) are possible:

(4, 3),(5, 3),(5, 4). Direct calculation shows that a (K,L) is negative for all

these pairs. Specifically,

a (4, 3) = −204

a (5, 3) = −1, 424

a (5, 4) = −496

This concludes the proof of Parts (i) and (ii). �

Proof of Proposition 3:
We start by noting that the SSE formulae, for the case K = L and

l = k + w, are

SSE (∅) = (L+ k)

(
1− L+ k − 1

2L+ 2k + w − 1

)2
+(L+ k + w)

(
L+ k

2L+ 2k + w − 1

)2

SSE ({j}) = L

(
1− L− 1

2L− 1

)2
+ L

(
L

2L− 1

)2
+k

(
1− k − 1

2k + w − 1

)2
+ (k + w)

(
k

2k + w − 1

)2
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and thus

∆ (L,L, k, k + w) = 2
L3

(2L− 1)2
+ k (2k + w)

k + w

(2k + w − 1)2
(6)

− (L+ k) (2L+ 2k + w)
L+ k + w

(2L+ 2k + w − 1)2

(i) To see that ∆ (L,L, k, k) > 0, note that

∆ (L,L, k, k)

= 2

(
L3

(2L− 1)2
+

k3

(2k − 1)2
− (L+ k)3

(2L+ 2k − 1)2

)

=
2

(2L− 1)2 (2k − 1)2 (2L+ 2k − 1)2

 L3 (2k − 1)2 (2L+ 2k − 1)2

+k3 (2L− 1)2 (2L+ 2k − 1)2

− (L3 + 3L2k + 3Lk2 + k3) (2L− 1)2 (2k − 1)2


=

2Lk

(2L− 1)2 (2k − 1)2 (2L+ 2k − 1)2

 L3 (16k − 4) + L2 (8 (4k − 1) (k − 1))
+L (12k3 − 40k2 + 24k − 3)
+ (4Lk3 − 4k3) + 8k2 − 3k

 > 0

where the inequality holds because the expression in square brackets can

have only one term that may be negative, namely L (12k3 − 40k2 + 24k − 3),

which is negative for k = 1, 2. However, it can easily be verified that for these

two values the entire expression in square brackets is, indeed, positive.

We now turn to evaluate ∆ (L,L, k, k + 1). Here we simply note that

∆ (L,L, k, k + 1) =
1

4
L

2k2 (4L− 1) + 2kL (4L− 1) + (2L− 1)2

k (2L− 1)2 (L+ k)
> 0

which concludes the proof of Part (i). �

(ii) We wish to show that ∆ (L,L, k, k + w) is decreasing in w. Consider

Equation (6) and differentiate wrt w to obtain

∂∆ (L,L, k, k + w)

∂w
(7)

= − Lz (L, k, w)

(2k + w − 1)3 (2L+ 2k + w − 1)3
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where

z (L, k, w) = w4 [L+ 2k − 2] (8)

+w3
[
2L2 + 6L (2k − 1) + 12k (k − 1) + 6

]
+w2

[
L2 (12k − 6)− 6+

12L (−2k + 3k2 + 1) + 24k (−k + k2 + 1)

]

+w

 L2 (16k2 − 8k + 6)− 20k
−L (−32k3 + 24k2 − 36k + 10)

+36k2 − 16k3 + 16k4 + 2


+

[
L2 (12k − 2) + L (36k2 − 24k + 3)

+ (24k3 − 24k2 + 6k)

]
As the denominator in (2) is positive, we need to show that so it z (L, k, w)

for w > 0. To prove this, we will argue that all the coeffi cients of powers of

w in the above (Equation (8)) are positive. Specifically, the coeffi cients of

w4, w3, w2 and the free coeffi cient can be directly verified to be positive:

L+ 2k − 2 > 0

2L2 + 6L (2k − 1) + 12k (k − 1) + 6 > 0

L2 (12k − 6)− 6 + 12L
(
−2k + 3k2 + 1

)
+ 24k

(
−k + k2 + 1

)
> 0

L2 (12k − 2) + L
(
36k2 − 24k + 3

)
+
(
24k3 − 24k2 + 6k

)
> 0.

As for the coeffi cient of w,

L2
(
16k2 − 8k + 6

)
−L

(
−32k3 + 24k2 − 36k + 10

)
+
(
16k4 − 16k3 + 36k2 − 20k + 2

)
it is easy to see that the first and last terms are positive. Finally, straightfor-

ward analysis shows that (−32k3 + 24k2 − 36k + 10) is negative for all k > 0.

�

(iii) We need to show that, for every k and every w ≥ 2, ∆ (L,L, k, k + w)

is increasing in k. Differentiating ∆ (L,L, k, k + w) with respect to k we

obtain
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∂ (∆ (L,L, k, k + w))

∂k
=

2L

(2k + w − 1)3 (2L+ 2k + w − 1)3
P (L, k, w)

where

P (L, k, w) = w5

+w4 [3L+ 6k]

+w3
[
2L2 + 12Lk + 12k2 − 6

]
+w2

[
L2 (4k + 2) + L

(
12k2 − 12

)
+ 8k3 − 24k + 8

]
−w

[
L (36k − 12) + k (36k − 24) + 6L2 + 3

]
+
[
24k2 − L2 (12k − 2)− L

(
36k2 − 24k + 3

)
− 6k − 24k3

]
We argue that P (L, k, w) > 0 for all w ≥ 2. We first observe that P (L, k, 2) >

0:

P (L, k, 2) = 21L+ 42k + 12Lk2 + 4L2k

+48Lk + 14L2 + 48k2 + 8k3 + 10

which is clearly positive. Next, to see that P (L, k, w) > 0 also for all w > 2,

we consider the derivative of P (L, k, w) with respect to w and show that it

is positive. Indeed,

∂P (L, k, w)

∂w
= 5w4 (9)

+w3 [12L+ 24k]

+w2
[
6L2 + 36Lk + 36k2 − 18

]
+w

[
8L2k + 4L2 + 24Lk2 − 24L+ 16k3 − 48k + 16

]
+
[
−6L2 − 36Lk + 12L− 36k2 + 24k − 3

]
As the coeffi cients of w4, w3, w2, and w in (9) are all positive, we can bound
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∂P (L,k,w)
∂w

from below by ∂P (L,k,w)
∂w

|w=1 and observe that

∂P (L, k, 1)

∂w
= 5 + [12L+ 24k] +

[
6L2 + 36Lk + 36k2 − 18

]
+
[
8L2k + 4L2 + 24Lk2 − 24L+ 16k3 − 48k + 16

]
+
[
−6L2 − 36Lk + 12L− 36k2 + 24k − 3

]
= 8L2k + 4L2 + 24Lk2 + 16k3 > 0 (10)

Because P (L, k, w) > 0 was shown to hold at w = 2, ∂P (L,k,1)
∂w

> 0 for all

w ≥ 1, we conclude that P (L, k, w) > 0 holds for all w ≥ 2. �

(iv) Let there be given k > 1. We wish to show that there exists w (k) ≥ 2

such that

∀w < w (k) ∆ (L,L, k, k + w) ≥ 0

∀w ≥ w (k) ∆ (L,L, k, k + w) < 0.

Given Part (i), we know that ∆ (L,L, k, k + w) > 0 holds for w = 0, 1. More-

over, Part (ii) established that ∆ (L,L, k, k + w) is strictly decreasing in w.

Given these, it suffi ces to show that for some w, we have ∆ (L,L, k, k + w) <

0, and we can then define w (k) as the minimal w for which this inequality

holds. We now turn to show that ∆ (L,L, k, k + w) becomes negative as

w →∞.
To see this, we consider the SSE expressions again:

SSE (∅) =
(L+ k) (L+ k + w)2 + (L+ k + w) (L+ k)2

(2L+ 2k + w − 1)2

SSE ({j}) =
2L3

(2L− 1)2
+ k(k + w)

2k + w

(2k + w − 1)2

For any L and k, letting w →∞, we have

SSE (∅) =
(L+ k) (L+ k + w)2 + (L+ k + w) (L+ k)2

(2L+ 2k + w − 1)2

=
(L+ k)w2 + ...

w2 + ...
→w→∞ L+ k
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while
2L3

(2L− 1)2
< L

for L > 2 and
k(k + w) (2k + w)

(2k + w − 1)2
→w→∞ k

hence, SSE (∅) > SSE ({j}) for all w large enough. �

(v) We wish to show that w (k) is increasing in k. As noted above, Part

(i) establishes that w (k) ≥ 2 for all k. Consider k, k′ > 1 with k′ > k. We

need to show that w (k′) ≥ w (k). This, however, follows from Parts (iii) and

(iv): by definition of w (k′), we have

∆ (L,L, k′, k′ + w (k′)) < 0.

Since w (k′) ≥ 2, we can apply Part (iii) to conclude that —given that k < k′

—we have

∆ (L,L, k, k + w (k′)) < ∆ (L,L, k′, k′ + w (k′)) < 0

and this implies that w (k) ≤ w (k′). ��
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