Noisy Macroeconomic Announcements, Monetary Policy, and Asset Prices*

Roberto Rigobon
Sloan School of Management, MIT
and NBER

Brian Sack
Macroeconomic Advisers, LCC

June 28, 2006

Abstract
The current literature has provided a number of important insights about the effects of macroeconomic data releases on monetary policy expectations and asset prices. However, one puzzling aspect of that literature is that the estimated responses are quite small. Indeed, these studies typically find that the major economic releases, taken together, account for only a small amount of the variation in asset prices—even those closely tied to near-term policy expectations. In this paper we argue that this apparent detachment arises in part from the difficulties associated with measuring macroeconomic news. We propose two new econometric approaches that allow us to account for the noise in measured data surprises. Using these estimators, we find that asset prices and monetary policy expectations are much more responsive to incoming news than previously believed. Our results also clarify the set of facts that should be captured by any model attempting to understand the interactions between economic data, monetary policy, and asset prices.

* We thank John Campbell and Larry Meyer for valuable comments and suggestions, and Mike McMorrow for excellent assistance with the analysis.
1. Introduction

The relationship between economic data, on the one hand, and asset prices and monetary policy, on the other, has become a widely studied topic in the academic literature—and for good reason. Macroeconomic conditions are a key factor determining near-term policy expectations, and those expectations reverberate throughout the financial system by influencing the returns expected on all asset classes.

But despite being widely studied, our current knowledge of the interactions between economic news and asset prices has many shortcomings, and the results are puzzling in some dimensions. Perhaps most importantly, the estimated effects of data releases on monetary policy expectations and asset prices are found to be relatively small. This is the case even for those assets that are known to be very sensitive to near-term monetary policy expectations, such as eurodollar futures and short-term Treasury securities.

This finding is surprising. After all, the literature over the past two decades has argued that monetary policy to a large extent responds systematically to economic conditions. Indeed, the literature has made tremendous progress estimating monetary policy rules that account for these systematic responses in terms of low-frequency data (such as quarterly data). If monetary policy is so systematic, one would expect to see evidence of it also in the higher-frequency movements in interest rates and asset prices around data releases. That is, the major economic data releases would be expected to explain an extensive amount of the variation in assets sensitive to near-term policy expectations.

In our view, the puzzle of the “detachment” of monetary policy expectations and asset prices from the incoming economic news is partly related to the difficulties associated with measuring the surprise component of that news. Most studies to date compute a “surprise” measure for a given release based on expectations taken from a survey conducted ahead of the release. They then regress changes in an asset price on this surprise measure, which we refer to as the standard “eventstudy” approach. The attempt to isolate the unexpected component of the release was a vast improvement over earlier efforts that could not make such a separation, as only the unexpected component should prompt a market reaction. However, this approach likely falls short of accurately measuring the market effects of the incoming news—perhaps considerably.

A problem with the standard eventstudy approach is that the macroeconomic news is likely to be measured very poorly, for several reasons. First, it is hard to accurately measure what the markets are expecting for a given release at the time it comes out, including the full distribution of risks seen for the release. Second, even if one accurately measured expectations, the actual release may be seen as a noisy indicator of the underlying true fundamental factor that drives market responses. And third, the variable measured is usually only one component of a report. After all, most of these reports are complicated, providing lots of information of varying relevance.

Thus, it is quite likely that the macroeconomic surprise included on the right-hand-side of the eventstudy regressions is only a very rough measure of the true incoming news. This paper focuses on measuring the reaction of asset prices and monetary policy expectations to the “true” economic news embedded in the major U.S. data releases. Rather than attempting to better measure the data or the expectations, we focus on developing econometric techniques that will adequately deal with the measurement problems associated with the data surprises used in the existing eventstudy literature.
Our efforts take us in two directions. First, we modify the standard event study regression framework to account for the possibility that the measured surprises contain error. The measurement issues considered here lead to a classical error-in-variables problem of a standard regression, one that biases downward the estimated sensitivity of asset prices to the incoming data. We develop a new estimator that allows for measurement error and hence eliminates this downward bias. The procedure could be used in other applications to correct for the error-in-variables problem.

Second, we employ a principal components approach that removes the need to even try to measure the data surprises. In effect, the approach uses the observed market reactions to infer what the true data surprises were. Such an approach may have appeal if one regards the incoming data as being complex and having many dimensions that could affect asset prices—conditions that make it difficult to measure the data surprise in the manner of the standard event study exercise.

The results provide us with unbiased estimates of the response of monetary policy expectations and asset prices to the “true” surprise contained in all of the major data releases. They also allow us to recover the importance of those true surprises. An important finding from the paper is that macroeconomic data releases matter to a much greater extent than found in previous studies—that is, they account for a greater portion of the fluctuations in market interest rates. Moreover, using these estimators, we are able to refine a set of patterns in the responses that should be explained by any model addressing the interactions between economic variables, monetary policy, and asset prices.

2. Estimating the Effects of Macroeconomic Announcements: Current Methods

Researchers in both macroeconomics and financial economics are very interested in understanding the linkage between monetary policy and asset prices. To that end, one strand of literature has attempted to measure the response of asset prices to monetary policy “shocks,” or the erratic and unpredictable component of monetary policy decisions. But such shocks are limited in size and account for only a very small portion of the variation in asset prices. Instead, most of the movement in short-term interest rates likely represents the systematic response of monetary policy to economic developments. Thus, it may be more relevant to investigate the responses of monetary policy expectations and asset prices to incoming news about the economy.

A sizable literature has taken up this topic and has provided us with some valuable results. The studies to date almost uniformly take an approach that is commonly referred to as “eventstudy.”

2.1. The Eventstudy Specification

Papers in the eventstudy literature typically proceed in a simple regression framework in which the reaction of a given asset price (or market yield) is regressed on the surprise components of the data release, as in the following specification:

\[
\Delta s_t = \gamma \cdot z_t + \epsilon_t, \quad (1a)
\]

\[
z_t = M_t - E_{t-1}[M_t], \quad (1b)
\]
where M_t is the released value of the macroeconomic announcement and $E_{t-1}[M_t]$ is a measure of the market’s expectation ahead of the release. The specification assumes that the only market-moving information is the surprise component of the release z_t, and the parameter γ is the market sensitivity to that surprise—which is the primary interest of this paper.

The basic approach implicit in specification (1) has not varied much over time, but the empirical implementation of the equation has changed in two dimensions.

First, the measure of expectations has improved. Early papers in this area had to model the market’s expectations either as past realized values of the macroeconomic variables or as the outcome of forecasting models that do not necessarily perform very well. More recently, researchers have increasingly relied on surveys to measure expectations and to better isolate the surprise component of data releases. Hence, the measurement of the variable z_t has likely improved over time.

Second, studies have increasingly used a narrower window to measure the market response to the data release. Whereas earlier papers may have used monthly or quarterly data, the eventstudy literature has moved to using changes at a daily frequency (see, for example, McQueen and Roley (1993) and Gürkaynak, Sack, and Swanson (2005)) or even in some cases on an intraday bases (see, for example, Fleming and Remolona (1997) and Balduzzi, Elton, and Green (2001)). The idea of using a narrower window is to reduce the influence of other events that might be affecting the asset price in addition to the data surprise. In terms of the equation (1), it reduces the variance of the error term ϵ_t, which should improve the accuracy of the estimate of the parameter γ.

The eventstudy approach has importantly contributed to our understanding of the manner in which monetary policy expectations and asset prices react to incoming economic data. Indeed, as we will show below, this approach finds that the market reaction to a number of releases is statistically significant. Nevertheless, in our view the eventstudy approach has some shortcomings that prevent it from recovering the market response to a “true” macroeconomic data surprise.

2.2. The Econometric Problem: Noisy Data Surprises

The potential problem that arises with the eventstudy approach is that the results will only be as good as the measure of data surprises included on the right-hand side of the equation. Indeed, the model (1) implicitly assumes that the measured data surprise z_t truly captures the true macroeconomic news arising from the releases. If that is not the case, the estimated parameter γ will be biased.

1 Several other papers use intraday data but focus primarily on foreign exchange rates, including Andersen, Bollerslev, Diebold, and Vega (2003) and Faust, Rogers, Wang, and Wright (2003). As an example of a paper using low-frequency data, Cutler, Poterba, and Summers (1989) attempt to measure the influence of macroeconomic shocks on equity prices using a monthly VAR. Stock and Watson (2003) provide a review of other papers that examine the relationship between financial variables and macroeconomic conditions at a monthly or quarterly frequency. Note, however, that the primary interest in that paper is measuring the predictive power of financial variables for economic outcomes rather than the effects of economic outcomes on financial variables.
Even with the improvements noted above, it is a somewhat dubious assumption that the variable z_t is perfectly measured—or that it is even well measured. Instead, it is more plausible that the variable z_t contains considerable measurement error, from a variety of sources.

First, it is unlikely that the survey measures used accurately capture the market expectations at the time of the release. In the results presented below, we collect those expectations from two surveys and splice them together to create a full time series. Before September 2004, we use the median response from the Money Market Services survey, which is a survey of professional forecasters taken the Friday before each release. Since then, we instead use the median response from the regular survey taken by Bloomberg. This figure is the most commonly discussed measure of consensus expectations in the financial markets.

But there are a number of reasons to believe that the expectations measured from these surveys are not necessarily appropriate for gauging the market response. The survey respondents are not the relevant market participants whose expectations matter. Moreover, the survey covers a variety of respondents with very different backgrounds and skill sets, raising questions about whether certain individual responses could distort the measures. It is not even clear that the respondents have the correct incentive scheme, as we suspect that they may assign greater utility to having an out-of-consensus call that comes in correct than having a consensus call that comes in correct. And lastly, we arbitrarily use the median from the panel, though the argument for using this over the mean or some other measure is not clear-cut.

In addition to concerns about the cross-section of panelists, we also have some concerns about the timing of the surveys. Ideally, we would like to know the market expectations the moment before the data release. The MMS survey is instead taken the Friday before the release, making it somewhat stale. For those releases that come out on a Friday (e.g., the employment report), that leaves an entire week (and all the data released that week) for expectations to evolve and move away from the survey response. And the situation for the Bloomberg expectations is even worse. Those responses are submitted at irregular times. Most respondents enter their estimates about a week before the releases, but many instead do it two weeks in advance while others wait until the week of the release.²

Another source of mismeasurement of the macroeconomic surprise is the data release itself. The released data can be thought of as a noisy version of the “true” economic fundamental to which the market responds. Researchers usually focus on just one aspect of the release, and often that one aspect can appear anomalous. A recent example was the advance GDP report for the fourth quarter of 2005, which came in well below the market’s expectations. That surprise owed in large part to a puzzling drop in defense spending that quarter, and hence Wall Street analysts generally dismissed the implications of the report.³

Overall, we believe that the measured data surprises could be quite noisy. Market expectations are probably not measured particularly well, as the survey used is a random variable that at best

² To take an example, consider the employment report that was released on November 5, 2004. Of the 78 responses to the survey, 13 were submitted more than two weeks in advance. Most of the responses, 39, came in the about one week in advance (with 2 others coming in earlier that week). And 24 respondents waited until the week of the release to submit their views.

³ For example, David Greenlaw from Morgan Stanley summarized the report as follows: “Much weaker than expected report. Both final sales and inventories came in well below expectations in Q4. However, we believe that a significant portion of the downside is likely to be recouped in Q1 … Defense [spending] plunged 13% in Q4. We suspect that at least some of this drop reflects a timing quirk that will be unwound in Q1.”
can be considered to be unbiased but not measured without error. And the actual release is likely to contain some noise relative to the true macroeconomic news that affects markets.

2.3. The Bias in Eventstudy Estimates

We start with the assumption that the macroeconomic surprises used in the eventstudy literature are measured with error for the reasons discussed above. In this case, the estimates obtained in the standard literature are plagued with error-in-variables bias.

To provide some structure for discussing the problem, we assume the asset price change immediately around the release at time t is denoted by Δs_t. This market reaction is driven by the “true” macroeconomic news contained in the announcement, which we denote z^*_t, according to the following equation:

$$\Delta s_t = \gamma \cdot z^*_t + \epsilon_t.$$ \hspace{1cm} (2)

We are interested in measuring the sensitivity of financial markets to the true economic news, captured by the parameter γ. The residual ϵ_t captures movements in the asset price in that window that are not driven by the data surprise (or at least not under this linear structure).

To estimate equation (2), most researchers attempt to measure the true macroeconomic news z^*_t as the difference between the released data and the expectation of that data, where the expectation is typically determined from a survey taken in advance of the release. But, as discussed above, there are two potential problems with that measure—that the release may be seen as a noisy version of the true relevance of the news, and that the expectations may be measured poorly. Considering this, we should perhaps take the measured data surprises to be a noisy representation of the true economic news, as follows:

$$z_t = z^*_t + \eta_t,$$ \hspace{1cm} (3)

where z_t denotes the measured data surprise. In this case, the mismeasurement of the true data surprise is captured in the variable η_t.

Using this proxy for the true macroeconomic news, researchers typically resort to estimating the following equation:

$$\Delta s_t = \gamma \cdot z_t + \nu_t,$$ \hspace{1cm} (4)

using an ordinary-least-squares (OLS) regression. However, given the structure above, the error term from the estimated equation is

$$\nu_t = \epsilon_t - \gamma \cdot \eta_t,$$ \hspace{1cm} (5)

which is negatively correlated with the right-hand-side variable in the regression. This correlation, of course, results in the bias in the regression estimate of γ.

6
To quantify the bias, we assume that the true macroeconomic news has a variance of σ_z^2 and that the measurement error is mean zero conditional on the true surprise ($E_t[\eta_t | z_t^*]$) and has a variance of σ_η^2. We also assume that the portion of the asset price movement not explained by the macroeconomic surprise (ϵ_t) is mean zero conditional on the true news and the measurement error ($E_t[\epsilon_t | \eta_t, z_t^*]$) and has a variance of σ_ϵ^2. Under these assumptions, the estimate obtained by an OLS regression is:

$$\hat{\gamma}_{OLS} = \gamma - \gamma \frac{\sigma_\eta^2}{\sigma_z^2 + \sigma_\eta^2}.$$

This estimate has the standard downward bias (towards zero), which is the standard result in the presence of an error-in-variables problem. Based on this consideration, we argue that the typical event study estimation may understate the influence of macroeconomic news on asset prices.

At this point, it is useful to note that we have considered two forms of mismeasurement of the macroeconomic news—one based on noise in our reading of the market’s expectations, and one based on noise in the release itself. Both forms are captured by equation (3), and hence the bias in the OLS estimates applies to both of them. Nevertheless, the interpretation of the results is different depending on which of the two sources predominantly accounts for the mismeasurement. If the mismeasurement is in terms of measuring the market’s expectations, then the OLS estimates are actually missing part of the market reaction. If instead the noise is contained in the actual data, then the market is reacting by less, as it is doing the signal extraction problem and discounting the value of the released data. In that case, the OLS estimates are an accurate measure of the true (but limited) market reaction to the released data.

We are interested in discovering the market reaction to the “true” surprise, adjusting for the measurement error from these two sources. There are several potential solutions. One is to find an instrument, something that is correlated with the true macroeconomic news but uncorrelated with the measurement error. But such instruments do not exist, leaving the problem of estimation unresolved. Another solution is to improve the data itself, for example by better measuring market expectations. In that regard, the emergence of economic derivatives may be useful, in that they may provide a more accurate and timely reading of market expectations. Still, given all of the above considerations, it is not clear that we will ever have a fully accurately measure the macroeconomic news.

In this paper we take an alternative approach in which we attempt to address the issue through econometric technique. We will ultimately develop two methods that help us resolve some of these issues and allow us to better understand the linkages from economic news to asset prices and monetary policy expectations.

3. Identification through Censoring

The problem of error-in-variables that we discuss above is, in fact, a problem of identification. To see that, consider the case of measuring the effect of a single data release on a single asset price. In that situation, we can compute only three statistics: the variance of the asset price, the variance of the macroeconomic news, and the covariance between them. The problem is that
these moments are determined by four underlying parameters: γ, σ^2_z, σ^2_η, and σ^2_ϵ. Thus, the solution is not identified, or there is a continuum of solutions.

Above we noted that an instrumental-variables approach is one way of solving the problem, if one were able to find an appropriate instrument. Note that the availability of such an instrument basically solves the identification problem. For a variable ω_t to be a valid instrument, it must be correlated with the true news but uncorrelated with the measurement error, as follows:

$$z^*_t = \beta \cdot \omega_t + \kappa_t,$$

(7)

The availability of this instrument adds three pieces of information (the variance of ω_t, its covariance with the measured news, and its covariance with the asset price response) while only adding two unknown variables (β and the variance of κ). As long as β is different from zero, these additional conditions resolve the identification problem. However, as noted above, we cannot think of an instrument that is valid in the circumstances studied in this paper.

In the absence of a valid instrument, the question is whether we can solve the identification problem through some other means. We will do so by developing a new technique that we label “identification through censoring.”

3.1 The Case of One Macroeconomic Announcement

To demonstrate the methodology, we first assume that there is only one macroeconomic announcement at a given time. One special feature of macroeconomic announcements is that they occur at pre-specified days. This is important, because it implies that we can find a sample of other days (or times) at which the magnitude of the surprise variable is exactly zero. When the variable is exactly equal to zero, it means that its error-in-variables is zero as well. This “censoring” of the measurement error will provide the identification.4

Formally, this situation can be described by the following equation:

$$\Delta s_t = \begin{cases}
\gamma \cdot z_t + \epsilon_t & t \in D \\
\epsilon_t & t + 1 \in D
\end{cases}$$

(8)

where D is the set of days (or times) on which the announcements take place. We are assuming that no announcements take place the day before those included in D. Under the assumption that the disturbance ϵ_t is homoskedastic, we can use the variance of the asset price observed at time $t-1$ as additional information in the identification. In that case, the following equations hold:

4 This intuition comes from Goldberger (1991) who argues that the variance of the error-in-variables in survey data depends on the size of the announcement. He used the following example: If you ask how many cigarettes a person smokes in a day, a non-smoker will answer zero—and that reply has no error-in-variables whatsoever. But someone who smokes a pack and a half a day will probably have a sizable error. In other words, the magnitude of the error depends on the magnitude of the reply, with complete censoring of the error at zero.
This is a system of four equations and four unknowns that can be solved for the parameters. Most importantly, the sensitivity of the asset price to the incoming news can be solved as follows:

\[
\begin{align*}
\text{var}(\Delta s_{t-1}) &= \sigma^2_x \\
\text{var}(\Delta s_t) &= \gamma^2 \sigma^2_z + \sigma^2_x \\
\text{var}(z_t) &= \sigma^2_z + \sigma^2_\eta \\
\text{cov}(\Delta s_t, z_t) &= \gamma \sigma^2_z
\end{align*}
\]

(9)

This estimator is in the spirit of Rigobon and Sack (2004), in which the estimator depended on the change in the variance relative to the change in the covariance. Here, the change in the covariance is just the covariance itself, since the macroeconomic surprise has no variance when it is censored.

The above computations rely on the assumption that the structural shocks in the asset price equation (\(\epsilon_t \)) are homoskedastic. This is a fairly strong assumption, and one that is not necessary. To derive an estimator like (10), all we need is a prediction of what the variance would have been like in the absence of the macroeconomic news. Thus, we can incorporate heteroskedasticity to the degree that it is predictable. In other words, the identifying assumption is that the variance of \(\epsilon_t \) is predictable.

For example, suppose we observe a release at 8:30, and as a “control window” we use a 30-minute interval from the previous afternoon at 2:30. The above assumes that the variance of \(\epsilon_t \) around 8:30 is the same as that around 2:30 on the previous day. But even on days of no announcements, this does not seem to be the case. Instead, we require a much weaker assumption—that the shift in the variance of \(\epsilon_t \) on announcement days is the same as the shift on non-announcement days, or

\[
\sigma^2_{\epsilon,t-1,8:30} - \sigma^2_{\epsilon,t-2,2:30} = \sigma^2_{\epsilon,t,8:30} - \sigma^2_{\epsilon,t-1,2:30} .
\]

(11)

This assumption allows for the data to have heteroskedasticity over our sample, as long as that heteroskedasticity looks the same on announcement and non-announcement days. In this case, the estimator (10) still works if we replace the variances with the shift in the variances. This is the assumption that we will employ in the empirical results below.

This estimator eliminates the bias coming from error-in-variables that affects the typical OLS estimates. However, the estimator is only as good as its identifying assumptions. The two main identification assumptions needed are that the errors-in-variable are classical and that the variance of the asset prices is predictable (so that we can make an accurate judgment of what the variance would have been in the absence of the macroeconomic surprise). Conditional on those identifying assumptions, the coefficients from this procedure are accurate. However, if either of the two main assumptions is violated, the estimates are biased. We will return to these issues below.
3.2 The Case of Multiple Macroeconomic Announcements

The BEA, BLS, and other government agencies would make our lives easier if they released one statistic at a time. Unfortunately, this is not the case. Because different releases follow different schedules, often multiple important releases will randomly coincide in both the date and time.

If this problem were just limited to coincidence, we could deal with it by simply eliminating those days with multiple releases. Unfortunately, some of the data releases always coincide with one another. This is the case for those reports that include multiple statistics that have market influence. For example, the employment report involves the simultaneous release of nonfarm payrolls, the unemployment rate, and average hourly earnings—each of which are found to have an independent effect on markets.

In the OLS framework, we can deal with this simultaneity by simply putting the multiple releases into a single regression. We can also address this issue in the identification-through-censoring approach. To achieve identification in such circumstances, it turns out that we simply have to incorporate more than one asset price. For simplicity, we will show this point for the case of two announcements. Also, for simplicity let us assume that the structural shock \(\varepsilon_t \) is homoskedastic.

In this case, the model has the following structure:

\[
\begin{align*}
\Delta s_t &= \gamma_1 \cdot z_{1,t}^* + \gamma_2 \cdot z_{2,t}^* + \varepsilon_t \\
z_{1,t} &= z_{1,t}^* + \eta_{1,t} \\
z_{2,t} &= z_{2,t}^* + \eta_{2,t}
\end{align*}
\]

where the errors in measuring the true surprises (\(\eta_{1,t} \) and \(\eta_{2,t} \)) are likely to be correlated.

Note first that the identification is lost. The covariance matrix of the asset price and the two measures of macroeconomic surprises provides six equations, and the variance of the asset price when there are no surprises provides a seventh moment. But the model has nine unknown parameters: \(\gamma_1, \gamma_2, \sigma_{\varepsilon}^2, \sigma_{z_1}^2, \sigma_{z_2}^2, \sigma_{\eta_1}^2, \sigma_{\eta_2}^2 \), the covariance between \(z_{1,t}^* \) and \(z_{2,t}^* \), and the covariance between \(\eta_1 \) and \(\eta_2 \). The under-identification is even more severe in the case of three simultaneous announcements.

The solution to the problem is to consider additional asset prices. If we consider two asset prices, we have the following system of equations:

\[
\begin{align*}
\Delta s_{1,t} &= \gamma_{1,1} z_{1,t}^* + \gamma_{1,2} z_{2,t}^* + \varepsilon_{1,t} \\
\Delta s_{2,t} &= \gamma_{2,1} z_{1,t}^* + \gamma_{2,2} z_{2,t}^* + \varepsilon_{2,t} \\
z_{1,t} &= z_{1,t}^* + \eta_{1,t} \\
z_{2,t} &= z_{2,t}^* + \eta_{2,t}
\end{align*}
\]

where the structural shocks \(\varepsilon_{1,t} \) and \(\varepsilon_{2,t} \) are possibly correlated and the errors in the macroeconomic surprises are, as before, also correlated. We have now achieved identification. The variance-covariance matrix of the asset prices and the macroeconomic surprises on both
announcement and non-announcement days provides 13 moment conditions. These are sufficient to solve for the 13 unknown parameters.\(^5\)

What delivers the identification? It comes from the fact that the noise contained in our measures of the macroeconomic announcements has to be the same independent of the asset price we are considering. That restriction allows the incorporation of an additional asset to bring new information for the identification.

3.3 Implementation of the Estimator

In the results below, we will include five different asset prices and will allow for as many as three simultaneous releases. (All details are described in the next section.) This set-up implies that our estimator is always over-identified. To estimate the parameter values, we use a GMM estimator that seeks to minimize the squared deviations of the errors for each moment condition.\(^6\) It can be shown that this estimator is consistent, and that the estimates are asymptotically normal.

4. The Estimated Effects of Macroeconomic Surprises

This section begins by describing the data that we use and some of the specific decisions made in implementing the various approaches. It then provides some results from both the standard eventstudy estimator and the identification-through-censoring approach.

4.1 Data

In the results that follow, we measure the reaction of five financial variables to incoming macroeconomic news. The set of financial variables is intended to capture the behavior of near-term policy expectations as well as broader asset prices.

Specifically, we include several near-term interest rates that are very sensitive to monetary policy. Eurodollar futures rates are probably the most useful, liquid instrument for that purpose. We therefore include the rates on the second and fourth eurodollar contracts to expire—which will reflect changes in monetary policy expectations roughly at horizons of 6 and 12 months ahead.\(^7\) We also include the two-year Treasury yield, which is very sensitive to the expected path of monetary policy beyond the horizon covered by the eurodollar contracts, and the ten-year Treasury yield. Lastly, we include the S&P 500 index.\(^8\)

\(^5\) Adding the second asset price brings six new moment conditions—it\'s variance and its covariance with the other asset price on both announcement days and non-announcement days, and its covariances with the two measures of surprise on announcement days and its variance on non-announcement days) while adding only four new parameters
\((\gamma_{2,1}, \gamma_{2,2}, \sigma_{\epsilon_1}^2, \text{and the covariance between } \epsilon_1 \text{ and } \epsilon_2).\)

\(^6\) So that the relative importance of the moment conditions is not influenced by the unit of measure, we normalize the movements in each asset price by their standard deviation. The results, however, are expressed in terms of basis points for yields and percentage points for equities.

\(^7\) The second contract will have between three and six months to expiration (with an average of 4.5). It is tied to the three-month Libor rate, which will be sensitive to the expected average funds rate over those three months (with an average of 1.5). Adding together these averages yields 6 months. Similar calculations yield 12 months for the fourth contract. We exclude the first and third contracts because we felt that much of their information would be redundant. In addition, we worried that the variation in the expiration of the first contract from 0 to 3 months might be more problematic (given institutional details such as the spacing of meetings).

\(^8\) We had hoped to include exchange rates as well, but our intraday data did not extend back far enough to make it a useful sample.
For all of these asset prices, we use intraday data. This feature alone provides a sizable improvement over daily eventstudy exercises. As noted above, with intraday data we can look at a narrow window around the time of the release—an interval that includes the influence of data releases at a given time but excludes most other market-moving events. In effect, we are shrinking the size of the error term ϵ_t relative to the influence of the data.

The intraday data slices we consider are 30-minutes long, beginning 5 minutes before the time of an announcement to avoid any complications from variation in the precise timing of the quotes or of the releases. The data releases that we consider all take place at either 8:30 am, 9:15 am, or 10:00 am, giving us slices that run from 8:25 – 8:55 am, 9:10 – 9:40 am, and 9:55 – 10:25 am.

For equities, unfortunately, we only have intraday quotes from when the stock market is open, from 9:30 am – 4:00 pm. Thus, we have to modify our slices accordingly. For the 8:30 am and 9:15 am releases, we use the change in the S&P index from the previous close to 9:55 am. For the 10:00 am release, we can use the same slice that we use for the interest rates.

The control window that we use in each case is a 30-minute window around 2:30 pm on the previous afternoon. We use the variance-covariance matrix in that window to predict what the variance-covariance matrix would have been in the event window in the absence of the data release.

The advantage of using the intraday quotes is shown in Figure 1, which focuses on the response of the two-year Treasury yield to the nonfarm payrolls statistic from the monthly Employment Situation report from the Bureau of Labor Statistics. This is the data release that, in recent years at least, has commanded the most attention in financial markets. As can be seen, there is a clear positive relationship between surprises in the payroll release and the movement in the two-year yield. Moreover, this relationship tightens if we use intraday data instead of daily data.

We investigate the market reactions to 13 different data releases. Those releases are shown in Table 1, along with some information about the frequency of the release and the sample over which we have a measure of market expectations. We generally begin our sample in 1994, though the sample for the Chicago Puchasing Manufacturers Index (PMI) has a shorter sample because we do not have a measure of market expectations until December 1999. Our list includes nearly all of the major macroeconomic indicators that are generally seen as significant market movers.9

4.2 Eventstudy Estimates

Even though it may have the shortcomings discussed above, we still view the standard eventstudy regression as a very useful exercise, one that can tell us a lot about how asset prices and monetary policy expectations are affected by incoming data. The above discussion simply cautions that the resulting coefficients may have some downward bias, thus understating the importance of the data. We implement the eventstudy regression per release, using the data described above. The results are shown in Table 2.

One of the primary findings from this exercise is that monetary policy expectations react significantly to incoming data. The expected path of the federal funds rate (as captured in

9 In all of the results that follow, we discard those days for which we have multiple releases. For the two series from the employment report (nonfarm payrolls and hourly earnings), we always consider their effects together, as discussed above.
A second finding is that the effect of the data releases continues to be sizable even as the maturity of the instrument is extended. Indeed, the two-year yield often moves by about the same amount as the eurodollar futures rates, suggesting that any influence on monetary policy is seen as being very persistent. The sensitivity of market yields extends all the way out to the ten-year Treasury note. The magnitude of its reaction is large enough that it suggests that even distant forward rates are reacting to the news, as found by Gürkaynak, Sack, and Swanson (2005).12

A final observation from the event study results has to do with the reaction of equity markets. The detachment issue seems particularly problematic for equities, as even the most important data releases (such as nonfarm payrolls) do not prompt a significant market reaction. But looking at the response of equities to all of the releases provides us with an important clue about why that may be the case.

The likely explanation for this finding is that a release such as non-farm payrolls contains offsetting forces on equity prices. On the one hand, a strong report would suggest more strength in the economy and hence better earnings prospects, which should boost equity prices. On the other hand, it also raises long-term interest rates, which should lower equity prices. These two forces offset one another, leaving the net effect on equity prices insignificantly different from zero. A similar story could be told for all of the demand-side indicators, which all have no effect on equities.

If this were in fact the case, then we should more clearly see a negative response of equity prices to data that is directly about inflation. The reason is that there is no offsetting news in that case—higher inflation implies that rates will be higher but not that growth will be higher. Thus, equity prices should fall. Indeed, this is precisely what we find. Indeed, the S&P index reacts negatively and significantly to positive surprises in core CPI, core PPI, and hourly earnings—every single inflation measure considered.14

Overall, the event study regressions provide an interesting pattern of market responses to different types of incoming news. Nevertheless, the R-squared statistics from the regressions are relatively low, generally ranging from 0.15 to 0.50. In other words, the event study regressions typically account for only a small portion of the variance of the market reactions, even if we focus on the

10 Other studies, including Fleming and Remolona (1997) and Balduzzi, Elton, and Green (2001), and Gürkaynak, Sack, and Swanson (2005), have found that market interest rates respond significantly to a wide range of macroeconomic data releases.
11 A similar result was found by Kohn and Sack (2005). They noted a similar persistence in the response to FOMC statements and inferred that those statements may be seen as conveying information about the state of the economy in addition to information about the near-term direction of policy.
12 That paper looked explicitly at distant forward rates and found that they often responded to data in the same direction as near-term forward rates. The authors developed the case that this response reflected the fact that long-term inflation expectations in the United States are variable, a case strengthened by the fact that similar sensitivity is not observed in the U.K. perhaps because of its explicit inflation target.
13 By contrast, equities do appear to react significantly to monetary policy shocks, as shown by Bernanke and Kuttner (2003).
14 To our knowledge, this is not an empirical fact that has been emphasized in the literature to date. Fair (?) finds a positive reaction of equities to inflation news. McQueen and Roley (1993) find a reaction that differs across different states of the business cycle, with negative responses for some variables in some states.
movements in the 30-minute window bracketing the announcement. This last observation is the area in which we will see some improvement under the new estimator.

4.3 Identification-though-Censoring Estimates

Table 3 shows the estimated responses under the identification-by-censoring (IC) approach. Broadly speaking, the patterns of the responses are the same as in the eventstudy (ES) exercise: stronger-than-expected readings on growth or higher-than expected readings on inflation tend to boost market interest rates. The stock market response to incoming data on growth is mixed and often insignificant, while it reacts negatively to incoming data on inflation.

The primary difference between the ES and IC approaches is the magnitude of the market responses. The IC coefficients are often two or three times as large as the ES coefficients. This finding suggests that the problem of detachment is, to a large extent at least, associated with the mismeasurement of macroeconomic news.

For example, a one-standard-deviation upward surprise to core CPI (nearly 0.1 percentage point) is estimated to increase yields 6 to 9 basis points, rather than the response of 2 to 2.5 basis points found under ES. It is worth considering again how to interpret this difference. The IC measure is capturing the market response to a “true” core CPI surprise, one that market participants are convinced has no measurement error in it and one for which the market expectations are measured perfectly. The true CPI release may be discounted if it is seen as containing measurement error (e.g., a higher-than-expected reading driven by a single component, such as the price of lodging away from home), or its estimated effect under the ES may be downward biased if the market’s expectations were measured improperly.

One implication of the results is that monetary policy expectations and asset prices may be more systematically related to incoming data than found under the ES approach. This conclusion accords with our understanding of monetary policy from the (lower-frequency) macroeconomic literature, including the view that one way policy has been effective over the past decade is by systematically responding to changes in economic conditions. Our results provide a high-frequency version of that conclusion.

One issue is that the results appear “too good” in some sense. The estimated amount of noise in the data announcements, a statistic that is also identified in the IC procedure, tends to be very high for many of the releases. (This pattern, of course, is directly related to the fact that the IC coefficients are several times larger than the ES coefficients.) For example, the results suggest that 31% of the variation in the non-farm payrolls surprise is due to noise, while 77% of the variation in the core CPI release is due to noise.

It is somewhat hard to grasp just how much noise one would expect relative to some actual “truth” that we never observe. However, some of the readings from Table 2 are clearly implausible. For example, we doubt that 94% of the measured surprise associated with the ISM index is actually noise.

The extent of the estimated noise may raise some questions about whether the identification assumptions hold. We might be particularly concerned about our efforts to predict what the variance of the asset prices would have been in the absence of the macroeconomic surprise, as needed in the IC procedure. Note that the estimates of both the sensitivity of the market response (γ) and the amount of noise in the surprises (σε) tend to increase in the shift in the variance of
the asset price between non-announcement days and announcement days. Hence, if we are underestimating the variance that would be present in the absence of a macroeconomic announcement, we would be overestimating both of these parameters.

One reason to suspect this pattern is that the macroeconomic surprises measured on the right-hand-side of our equations often coincide with the release of other data that might move markets.\footnote{In addition, the announcement itself (even if it is on expectation) could result in some variance of the asset price, because it would presumably reduce uncertainty and cause investors who had different expectations to adjust their positions and views.} For example, the employment report not only includes the current month surprise to nonfarm payrolls, but also revisions to payrolls in the two previous months. Thus, even in the absence of a surprise regarding the current month payroll, one might expect more market volatility than on a non-announcement day because of the possible market reaction to this other information.

If this were the case, the IC estimates presented in Table 3 may have some upward bias. But note that this upward bias exists because the data release is actually more meaningful than captured by the surprise measure on the right-hand-side of the equation. Thus, it still likely reflects that the macroeconomic news is more important than accounted for by the eventstudy approach. We might therefore want to think of an estimator that can better incorporate that additional information.

5. A Principal Components Exercise

This last consideration leads us in the direction of a completely different but complementary approach. The IC estimator was developed out of concern that the macroeconomic surprise variable may be measured poorly, introducing too much variation into that measure. But perhaps the bigger problem is the opposite one—that the right-hand-side variable does not capture enough of the surprise in a given data release.

This would be the case if the data release contained market-moving information other than that represented in the surprise measures considered above. To be sure, most data releases are complicated and convey many pieces of information. It may be difficult to determine a macroeconomic surprise measure that captures all of that information.\footnote{Above we have the example of the payrolls release and the relevance of concurrent revisions to past months payrolls releases. Other examples are quite that retail sales ex-autos coincides with total retail sales (including autos), capacity utilization coincides with industrial production, and so on.}

An alternative approach that avoids this difficulty is to let the financial market data itself determine the data surprise. Specifically, we again consider the movements of the four interest rates and equity prices in the 30-minute window around a given release. Our identification assumption is that the primary event driving the markets in those windows is the data release—an assumption that is certainly plausible for the narrow window that we consider around the release. We are not ruling out that other events take place in that window; but if there does appear to be one common event, we will assign its effects to the data release.

The approach that we use to implement this assumption is principal components. For a given release, we stack the market reactions into a matrix with one row per observation and one column for each asset price (the second and fourth eurodollar contracts, the two-year Treasury yield, the ten-year Treasury yield, and the S&P index). The principal components exercise determines a set...
of orthogonal factors F (same dimensions as X) that are linear combinations of the original data series:

$$F = X \cdot A,$$

(14)

where $A' A = I$. As a result, the variance-covariance matrix of the responses of the financial variables is given by $F' F = A' \cdot \Sigma \cdot A$, where Σ is a diagonal matrix containing the variances of the factors.

The factors are ordered by the magnitude of their variances (with the factor with the highest variance listed first). In this sense, the first factor explains as much of the variation across the observable variables as possible, the second factor captures as much additional variation as possible, and so on.\(^{17}\) The loadings of the financial variables on each of the factors is given by the inverse of the matrix A, or A'.\(^{17}\) \(^{17}\)

This approach is more general than the IC estimator. It does not require the two identifying assumptions needed in that case, and it can capture a broader set of information than measured by the surprise variables included in the IC and ES approaches. The potential cost, however, is that it could accidentally include some variation not truly associated with the data release. A finding that there is a strong co-movement in the asset prices over the 30-minute window around the data release would boost our confidence that the procedure is picking up the effects of that release.

As reported in Table 4, it turns out that a single factor explains the vast majority of the market reaction to each release. This factor typically accounts for 90% to 95% of the variation in the asset prices in the 30-minute window.\(^{18}\) It is this movement that we associate with the data release, since the release is presumably the dominant market event in the window.\(^{19}\)

In this case, the first principal component provides a measure of the “true” data surprise, one that incorporates all of the market-sensitive news included in a given release. As we would expect, these data surprises are somewhat correlated with the survey-based surprises used above. The table shows that the survey-based surprises account for as much as 50% of the variation in the first principal component. Thus, clearly the surprises used in the ES exercise are an important component of the total news around a data release. However, they are not a complete measure of the market-sensitive news contained in the release, as suggested by the additional (unexplained) variation in the first principal component.

Figure 2 presents an example, that for (ex-auto retail sales). On the horizontal axis is the survey-based surprise used above, and on the vertical axis is the first principal component (normalized in a way to make it most comparable to the retail sales release). Again, the two measures are clearly related, but they are far from identical. The PC-based surprise measure has more variation than can be explained by the survey-based surprise measure, presumably capturing the additional information in the release.

\(^{17}\) When we apply this technique to the above dataset, we normalize each variable by its standard deviation.

\(^{18}\) The table shows the variance of the first factor relative to all of the other factors. But that statistic is nearly identical to the fraction of the variance of the market interest rates explained by the first factor.

\(^{19}\) For comparison, if we conduct the same exercise in the non-event window considered above (the 30-minute window bracketing 2:30), we find that the first factor explains only 80% of the variance of the asset prices. Thus, it does appear that the data release window contains an event that causes a co-movement in the asset prices that is larger than that observed at other times.
The table also reports the loadings of the various asset prices on the PC-based surprise measure. For ease of interpretation, we have normalized each PC measure to have a unitary standard deviation, just as we did with the survey-based surprises used in the ES exercise. The coefficients retain many of the interesting patterns observed in the earlier results. The market interest rates considered have a sizable response to the macroeconomic news, suggesting that the news is affecting the expected path of monetary policy. Those responses are typically also observed at longer-term maturities.

One puzzling aspect of the results is that the equity market no longer appears to have as large of a negative reaction to incoming data on inflation. It is true that the first factor explains a larger fraction of equity price movements for the inflation-related data releases than for other releases, but the response relative to the interest-rate response is smaller than in the above results. Instead, the factor analysis essentially finds a separate factor that drives much of the movements in equity prices. We wonder whether this finding in part reflects that we are forced to use a wider window for the equity price movements (17.5 hours instead of 30 minutes!), which considerably weakens the identification assumption used in the PC exercise.

Perhaps the most important aspect of the PC exercise is its usefulness for assessing the amount of variation in yields that can be attributed to macroeconomic data. The PC exercise indicates that markets are much more sensitive to macroeconomic data releases than suggested by the ES approach. This is a similar finding as the IC estimator used above. However, in this case the reason is not only that we are accounting for the measurement error in the survey-based surprise measure, but also because we are accounting for any other relevant information in the release.

One useful aspect of the PC approach is that, unlike the case for the IC estimator, we recover a time series of the true macroeconomic news, as discussed above. This allows us to cumulate the effects of each release on a particular asset price. Figure 3 shows the cumulative effects of each the data releases on the two-year Treasury yield, where each line represents an individual release. (For example, one line represents the effects of all retail sales releases over our sample.) The point of the figure is not to focus on any particular line, but to get a general sense of the total variation explained under the two approaches. As can be seen, the movements explained by the releases under the ES exercise are much smaller than those under the PC exercise.

Table 5 contains some statistics that further quantify the variation explained under the two approaches. It computes the absolute value of the changes attributable to each release, expressed as basis points per year. By this measure, the most influential data release, by far, has been the employment report. Other influential releases include retail sales, the ISM index, the CPI, and the PPI.

More importantly, the PC measure accounts for much more variation than the standard eventstudy approach. (This, of course, is simply a different way of expressing that the R-squared statistic from the regression increases significantly.) Indeed, this is the case for every single data release considered. We can sum these statistics across all of the releases to obtain a measure of the total variation explained by incoming macroeconomic data (or at least by our releases). By that measure, the PC approach has accounted for nearly twice as much of the variation in the two-year yield than the ES approach. Thus, the new methodology makes an important step towards better understanding the total influence of macroeconomic data on asset prices and monetary policy expectations.
6. Implications and Conclusions

We have learned a lot from the standard eventstudy literature. This paper begins with that approach, implementing it with the benefit of using intraday data and looking across a variety of asset prices. The eventstudy exercise clearly establishes a set of facts that macroeconomists should strive to explain when writing down models of the interactions of macroeconomic developments, monetary policy, and asset prices.

There are three broad observations that derive from the eventstudy exercise. First, policy expectations systematically respond to incoming data, with evidence of stronger-than-expected growth or higher-than-expected inflation leading to an upward revision to the expected federal funds rate path (as reflected in eurodollar futures rates and the two-year Treasury yield). Second, the influence of that data on the yield curve extends to very long maturities (the ten-year yield in our exercise). And third, equities show very mixed reactions to incoming data on growth but negative and significant reactions to data on inflation.

Many of these patterns align well with current macroeconomic models. Those models typically assume that monetary policy is systematically related to incoming data—a relationship that should also be apparent in the high-frequency data. The responsiveness of longer-term Treasury yields is somewhat more challenging to explain in current models, in part due to the difficulty associated with understanding the determination of long-horizon expectations, but it too has been taken up in the recent literature. Lastly, as discussed above, the lack of response of equities to demand-side indicators could reflect that those releases affect both expected dividend growth and interest rates, with offsetting effects on stock prices.

Nevertheless, the eventstudy estimates leave one significant shortcoming in our understanding of market dynamics—that the measured data surprises explain only a small portion of the variation in asset prices and monetary policy expectations. This paper argues that this shortcoming likely reflects mismeasurement of the macroeconomic news.

We developed two new approaches to better account for the influence of the macroeconomic news under the assumption that the measured surprises are noisy. The first is a new econometric technique for accounting for error-in-variables, one that has the potential to be used in other applications as well. The second is a principal components approach that takes advantage of our ability (using intraday data) to zero in on the asset price movements right around the release.

The new estimators do not significantly change the patterns of the market responses that we obtain from the standard eventstudy approach. That is, the patterns found under the ES approach (including the three observations noted above) still represent a set of observations that should be explained by macroeconomic models. However, the two new approaches suggest that incoming news generally has a much bigger impact on asset prices than captured by the eventstudy approach.

In the case of the IC estimator, the results suggest that the noise in the measure of the data surprise causes a downward bias in the measured sensitivity of asset prices to that information. The PC estimator also suggests that this may be the case, and it also allows for the possibility that there is other market-sensitive news in the data release beyond the macroeconomic surprise included in the eventstudy regression.

In sum, we argue that the sensitivity of asset prices and monetary policy expectations to high-frequency information on macroeconomic conditions is likely to be greater than captured in
previous studies. This finding accords well with the view that monetary policy systematically responds to economic conditions, and that asset prices more broadly are strongly influenced by the evolution of the economy and policy expectations.
References

Table 1

Macroeconomic Data Announcements

<table>
<thead>
<tr>
<th>Release</th>
<th>Release Time</th>
<th>Frequency</th>
<th>Date of First Observation</th>
<th>Number of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonfarm Payrolls</td>
<td>8:30</td>
<td>Monthly</td>
<td>7-Jan-94</td>
<td>137</td>
</tr>
<tr>
<td>Hourly Earnings</td>
<td>8:30</td>
<td>Monthly</td>
<td>4-Feb-94</td>
<td>134</td>
</tr>
<tr>
<td>GDP (Advance)</td>
<td>8:30</td>
<td>Quarterly</td>
<td>28-Jan-94</td>
<td>46</td>
</tr>
<tr>
<td>Retail Sales (ex Autos)</td>
<td>8:30</td>
<td>Monthly</td>
<td>13-Jan-94</td>
<td>137</td>
</tr>
<tr>
<td>Core CPI</td>
<td>8:30</td>
<td>Monthly</td>
<td>13-Jan-94</td>
<td>137</td>
</tr>
<tr>
<td>Core PPI</td>
<td>8:30</td>
<td>Monthly</td>
<td>12-Jan-94</td>
<td>137</td>
</tr>
<tr>
<td>Housing Starts</td>
<td>8:30</td>
<td>Monthly</td>
<td>20-Jan-94</td>
<td>135</td>
</tr>
<tr>
<td>Durable Goods</td>
<td>8:30</td>
<td>Monthly</td>
<td>27-Jan-94</td>
<td>135</td>
</tr>
<tr>
<td>Capacity Utilization</td>
<td>9:15</td>
<td>Monthly</td>
<td>14-Jan-94</td>
<td>137</td>
</tr>
<tr>
<td>ISM Manufacturing Index</td>
<td>10:00</td>
<td>Monthly</td>
<td>3-Jan-94</td>
<td>133</td>
</tr>
<tr>
<td>Chicago PMI</td>
<td>10:00</td>
<td>Monthly</td>
<td>31-Dec-99</td>
<td>58</td>
</tr>
<tr>
<td>Consumer Confidence</td>
<td>10:00</td>
<td>Monthly</td>
<td>25-Jan-94</td>
<td>137</td>
</tr>
<tr>
<td>New Home Sales</td>
<td>10:00</td>
<td>Monthly</td>
<td>2-Feb-94</td>
<td>136</td>
</tr>
</tbody>
</table>
Table 2
Effects of Macroeconomic Data Surprises on Asset Prices:
Eventstudy Approach

<table>
<thead>
<tr>
<th></th>
<th>ED2</th>
<th>ED4</th>
<th>Y2</th>
<th>Y10</th>
<th>S&P</th>
<th>Pct of Y2 Explained by Data Surprise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonfarm Payrolls</td>
<td>5.74</td>
<td>8.16</td>
<td>6.67</td>
<td>5.34</td>
<td>-0.03</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
<td>0.78</td>
<td>0.66</td>
<td>0.57</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Hourly Earnings</td>
<td>1.72</td>
<td>2.03</td>
<td>2.01</td>
<td>1.84</td>
<td>-0.23</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>0.79</td>
<td>1.11</td>
<td>0.92</td>
<td>0.76</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>GDP (Advance)</td>
<td>1.66</td>
<td>2.28</td>
<td>1.84</td>
<td>1.25</td>
<td>0.15</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>0.73</td>
<td>0.92</td>
<td>0.77</td>
<td>0.71</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Retail Sales (ex Autos)</td>
<td>2.27</td>
<td>3.20</td>
<td>2.05</td>
<td>1.91</td>
<td>0.11</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
<td>0.78</td>
<td>0.55</td>
<td>0.43</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Core CPI</td>
<td>1.89</td>
<td>2.62</td>
<td>1.96</td>
<td>1.97</td>
<td>-0.21</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>0.37</td>
<td>0.50</td>
<td>0.41</td>
<td>0.44</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Core PPI</td>
<td>1.28</td>
<td>1.78</td>
<td>1.39</td>
<td>1.42</td>
<td>-0.20</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>0.33</td>
<td>0.46</td>
<td>0.40</td>
<td>0.40</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Housing Starts</td>
<td>0.33</td>
<td>0.32</td>
<td>0.23</td>
<td>0.28</td>
<td>-0.07</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>0.27</td>
<td>0.24</td>
<td>0.19</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Durable Goods</td>
<td>1.02</td>
<td>1.37</td>
<td>1.34</td>
<td>1.16</td>
<td>-0.04</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>0.33</td>
<td>0.26</td>
<td>0.24</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Capacity Utilization</td>
<td>0.91</td>
<td>1.36</td>
<td>1.03</td>
<td>1.01</td>
<td>0.05</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>0.26</td>
<td>0.19</td>
<td>0.17</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>ISM Index</td>
<td>1.78</td>
<td>2.56</td>
<td>2.07</td>
<td>2.04</td>
<td>-0.05</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0.41</td>
<td>0.33</td>
<td>0.34</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Chicago PMI</td>
<td>1.30</td>
<td>1.99</td>
<td>1.55</td>
<td>1.55</td>
<td>0.08</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>0.31</td>
<td>0.48</td>
<td>0.43</td>
<td>0.36</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Consumer Confidence</td>
<td>1.80</td>
<td>2.15</td>
<td>1.74</td>
<td>1.70</td>
<td>0.08</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>0.33</td>
<td>0.44</td>
<td>0.35</td>
<td>0.29</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>New Home Sales</td>
<td>1.02</td>
<td>1.25</td>
<td>1.01</td>
<td>0.85</td>
<td>-0.05</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0.31</td>
<td>0.25</td>
<td>0.24</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

The table shows the estimated response of the financial variable (in basis points for rates and percentage points for equities) to a one-standard-deviation surprise in the economic release. Coefficients that are significant at the 5% level are shown in bold. The variable ‘ED2’ is the rate on the second eurodollar futures contract (a proxy for monetary policy expectations about 6 months ahead), ‘ED4’ is the rate on the fourth eurodollar futures contract (a proxy for policy expectations about 12 months ahead), ‘Y2’ is the two-year Treasury yield, ‘Y10’ is the ten-year Treasury yield, and ‘S&P’ is the S&P 500 index. The last column reports the R-squared statistic for the Y2 regression. No statistic is reported for hourly earnings because it is estimated in the same regression as nonfarm payrolls.
Table 3
Effects of Macroeconomic Data Surprises on Asset Prices:
Identification-through-Censoring Approach

<table>
<thead>
<tr>
<th></th>
<th>ED2</th>
<th>ED4</th>
<th>Y2</th>
<th>Y10</th>
<th>S&P</th>
<th>Pct of Survey-based Surprise Due to Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonfarm Payrolls</td>
<td>8.65</td>
<td>7.65</td>
<td>10.33</td>
<td>9.62</td>
<td>0.09</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>0.11</td>
<td>0.24</td>
<td>0.07</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Hourly Earnings</td>
<td>10.52</td>
<td>4.78</td>
<td>7.57</td>
<td>12.71</td>
<td>-1.16</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>0.11</td>
<td>0.10</td>
<td>0.29</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>GDP (Advance)</td>
<td>5.71</td>
<td>7.39</td>
<td>5.95</td>
<td>5.15</td>
<td>0.02</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>0.28</td>
<td>0.30</td>
<td>0.28</td>
<td>0.25</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Retail Sales (ex Autos)</td>
<td>6.00</td>
<td>8.19</td>
<td>5.49</td>
<td>4.25</td>
<td>0.02</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>0.18</td>
<td>0.18</td>
<td>0.39</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Core CPI</td>
<td>6.43</td>
<td>8.87</td>
<td>6.61</td>
<td>7.59</td>
<td>-0.94</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>0.72</td>
<td>0.64</td>
<td>0.66</td>
<td>1.16</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Core PPI</td>
<td>4.81</td>
<td>6.30</td>
<td>5.33</td>
<td>5.40</td>
<td>-0.68</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>1.21</td>
<td>1.45</td>
<td>1.09</td>
<td>1.09</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Housing Starts</td>
<td>1.15</td>
<td>1.08</td>
<td>0.95</td>
<td>0.24</td>
<td>-0.01</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>1.88</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Durable Goods</td>
<td>1.79</td>
<td>2.76</td>
<td>2.35</td>
<td>1.86</td>
<td>-0.01</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>0.12</td>
<td>0.15</td>
<td>0.22</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Capacity Utilization</td>
<td>8.63</td>
<td>11.21</td>
<td>7.99</td>
<td>7.06</td>
<td>1.42</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>1.57</td>
<td>0.81</td>
<td>0.93</td>
<td>0.81</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>ISM Index</td>
<td>10.92</td>
<td>17.13</td>
<td>13.94</td>
<td>14.06</td>
<td>-1.11</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>0.62</td>
<td>0.50</td>
<td>0.57</td>
<td>0.59</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Chicago PMI</td>
<td>2.42</td>
<td>3.57</td>
<td>3.12</td>
<td>2.94</td>
<td>0.16</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>2.43</td>
<td>1.74</td>
<td>8.76</td>
<td>2.25</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Consumer Confidence</td>
<td>9.69</td>
<td>12.40</td>
<td>9.67</td>
<td>8.58</td>
<td>0.80</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>0.72</td>
<td>0.75</td>
<td>0.77</td>
<td>0.69</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>New Home Sales</td>
<td>8.63</td>
<td>8.19</td>
<td>9.12</td>
<td>8.64</td>
<td>-0.88</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>1.57</td>
<td>1.20</td>
<td>1.56</td>
<td>1.98</td>
<td>0.09</td>
<td></td>
</tr>
</tbody>
</table>

The table shows the estimated response of the financial variable (in basis points for rates and percentage points for equities) to a one-standard-deviation surprise in the "true" economic release (that measured without noise). Coefficients that are significant at the 5% level are shown in bold. The variable ‘ED2’ is the rate on the second eurodollar futures contract (a proxy for monetary policy expectations about 6 months ahead), ‘ED4’ is the rate on the fourth eurodollar futures contract (a proxy for policy expectations about 12 months ahead), ‘Y2’ is the two-year Treasury yield, ‘Y10’ is the ten-year Treasury yield, and ‘S&P’ is the S&P 500 index. The last column reports the fraction of the variation in the survey-based surprise measure that is estimated to be noise.
Table 4
Effects of Macroeconomic Data Surprises on Asset Prices:
Principal Components Approach

<table>
<thead>
<tr>
<th>Metric</th>
<th>Factor Loadings</th>
<th>Variance Explained by First Factor</th>
<th>Amt Explained by Survey-based Data Surprise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ED2</td>
<td>ED4</td>
<td>Y2</td>
</tr>
<tr>
<td>Employment Report</td>
<td>8.4</td>
<td>11.9</td>
<td>9.9</td>
</tr>
<tr>
<td>GDP (Advance)</td>
<td>3.8</td>
<td>5.6</td>
<td>4.8</td>
</tr>
<tr>
<td>Retail Sales (ex Autos)</td>
<td>4.0</td>
<td>5.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Core CPI</td>
<td>3.1</td>
<td>4.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Core PPI</td>
<td>3.1</td>
<td>4.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Housing Starts</td>
<td>2.1</td>
<td>2.9</td>
<td>2.2</td>
</tr>
<tr>
<td>Durable Goods</td>
<td>2.6</td>
<td>3.7</td>
<td>2.8</td>
</tr>
<tr>
<td>Capacity Utilization</td>
<td>2.3</td>
<td>3.1</td>
<td>2.2</td>
</tr>
<tr>
<td>ISM Index</td>
<td>3.3</td>
<td>5.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Chicago PMI</td>
<td>2.1</td>
<td>3.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Consumer Confidence</td>
<td>2.9</td>
<td>3.9</td>
<td>3.1</td>
</tr>
<tr>
<td>New Home Sales</td>
<td>2.3</td>
<td>3.1</td>
<td>2.6</td>
</tr>
</tbody>
</table>

The table shows the responses of the financial variable (in basis points for rates and percentage points for equities) to a one-standard-deviation surprise in the first principal component. The variable ‘ED2’ is the rate on the second eurodollar futures contract (a proxy for policy monetary expectations about 6 months ahead), ‘ED4’ is the rate on the fourth eurodollar futures contract (a proxy for policy monetary expectations about 12 months ahead), ‘Y2’ is the two-year Treasury yield, ‘Y10’ is the ten-year Treasury yield, and ‘S&P’ is the S&P 500 index. The last column reports the R-squared statistic from a regression of the first factor on the particular survey-based data surprise (two surprises in the case of the employment report).
Table 5

Variation in the Two-Year Treasury Yield Explained by Macroeconomic Surprises

<table>
<thead>
<tr>
<th>Release</th>
<th>ES Approach</th>
<th>PC Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment Report</td>
<td>66</td>
<td>86</td>
</tr>
<tr>
<td>GDP (Advance)</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Retail Sales (ex Autos)</td>
<td>15</td>
<td>36</td>
</tr>
<tr>
<td>Core CPI</td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>Core PPI</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>Housing Starts</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>Durable Goods</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Capacity Utilization</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>ISM Index</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>Chicago PMI</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>Consumer Confidence</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>New Home Sales</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>199</td>
<td>357</td>
</tr>
</tbody>
</table>

The table reports the sum of the absolute value of changes in the two-year yield attributable to the economic release under the two approaches. These changes are then summed over the sample for each variable and scaled by the number of releases per year divided by the total number of releases in the sample.
Figure 1
Response of the Two-Year Yield to Payroll Surprises
Figure 2
Surprise Measures for Retail Sales:
First Principal Component vs. Survey-based Measure
Figure 3
Cumulative Effects of Individual Data Releases on Two-year Yield
(One line per release, in basis points)

Effects from Eventstudy Exercise

Effects from Principal Components Exercise

28