MEMORANDUM

No 22/2007

Coordinating under incomplete information

Department of Economics
University of Oslo

This series is published by the
University of Oslo
Department of Economics
P. O.Box 1095 Blindern

N-0317 OSLO Norway
Telephone: + 4722855127
Fax: $\quad+4722855035$
Internet: http://www.oekonomi.uio.no
e-mail: econdep@econ.uio.no

In co-operation with
The Frisch Centre for Economic Research

Gaustadalleén 21
N-0371 OSLO Norway
Telephone: +4722958820
Fax: $\quad+4722958825$
Internet: http://www.frisch.uio.no
e-mail: $\quad \underline{\text { frisch@frisch.uio.no }}$

Last 10 Memoranda

No 21/07	Jo Thori Lind and Halvor Mehlum With or Without U? The appropriate test for a U shaped relationship
No 20/07	Ching-to Albert Ma A Journey for Your Beautiful Mind: Economics Graduate Study and Research
No 19/07	Simen Markussen Trade-offs between health and absenteeism in welfare states: striking the balance
No 18/07	Torbjørn Hægeland, Oddbjørn Raaum and Kjell Gunnar Salvanes Pennies from heaven - Using exogenous tax variation to identify effects of school resources on pupil achievement
No 17/07B. Bratsberg, T. Eriksson, M. Jäntti, R. Naylor, E. Österbacka, O. Raaum and K. Røed Marital Sorting, Household Labor Supply, and Intergenerational Earnings Mobility across Countries	
No 16/07Kjell Arne Brekke, Gorm Kipperberg and Karine Nyborg Reluctant Recyclers: Social Interaction in Responsibility Ascription	
No 15/07F. R. Førsund, S. A. C. Kittelsen and V. E. Krivonozhko Farrell Revisited: Visualising the DEA Production Frontier	
Q. Farooq Akram and Ragnar Nymoen Model selection for monetary policy analysis - How important is empirical validity?	
No 13/07Knut Røed and Lars Westlie Unemployment Insurance in Welfare States: Soft Constraints and Mild Sanctions	
No 12/07Erik Hernæs and Weizhen Zhu Pension Entitlements and Wealth Accumulation	

A complete list of this memo-series is available in a $\mathrm{PDF}{ }^{\circledR}$ format at: http://www.oekonomi.uio.no/memo/

Coordinating under incomplete information*

Geir B. Asheim ${ }^{\dagger}$
Seung Han Yoo^{\ddagger}

September 29, 2007

Abstract

We show that, in a minimum effort game with incomplete information where player types are independently drawn, there is a largest and smallest Bayesian equilibrium, leading to the set of equilibrium payoffs (as evaluated at the interim stage) having a lattice structure. Furthermore, the range of equilibrium payoffs converges to those of the deterministic complete information version of the game, in the limit as the incomplete information vanishes. This entails that such incomplete information alone cannot explain the equilibrium selection suggested by experimental evidence.

Keywords and Phrases: Minimum effort games, Coordination games, Incomplete information

JEL Classification Numbers: C72

[^0]
1 Introduction

In a minimum effort game (Bryant, 1983; van Huyck et al., 1990; Legros and Matthews, 1993; Vislie, 1994; Hvide, 2001), players simultaneously exert efforts in order to produce a public good, ${ }^{1}$ with the output being determined by the player exerting the minimum effort. Since no player wishes to exert more effort than the minimum effort of his opponents, such a game has a continuum of (pure strategy) Nash-equilibria that are Pareto-ranked.

While it might seem natural to restrict attention to the unique Pareto-dominant equilibrium, experimental evidence (see van Huyck et al., 1990) does not seem to support this argument. Subsequently, Carlsson and Ganslandt (1998) and Anderson et al. (2001) have provided a theoretical foundation for van Huyck et al.'s results by introducing noise in the players' effort choice, by letting their strategic choices translate into efforts with the addition of noise terms ("trembles").

Both Carlsson and Ganslandt (1998) and Anderson et al. (2001) indicate that such noise may be interpreted as or motivated by uncertainty about the objective functions of the players. ${ }^{2}$ Hence, it is of interest to pose the following question: If each player's uncertainty about the effort of his opponent is not due to trembles, but to a small amount of incomplete information about their motivation (e.g., their willingness to pay for the public good, or their cost of contributing effort), will a similar equilibrium selection be obtained? We show in this paper that this is not the case: Introducing incomplete information without trembles in the action choices does not reduce the set of equilibrium payoff profiles.

[^1]We establish that, in the minimum effort game with incomplete information where player types are independently drawn, there is a largest and smallest Bayesian equilibrium, leading to the set of equilibrium payoff profiles (as evaluated at the interim stage) having a lattice structure. Hence, there is a unique Bayesian equilibrium that is weakly preferred to any other Bayesian equilibrium, for all types of each player. Moreover, any Bayesian equilibrium is weakly preferred to the unique Bayesian equilibrium where all players exert minimum effort, for all types of each player. The range of equilibrium payoffs converges to those of the deterministic complete information version of the game, in the limit as the incomplete information vanishes. This entails that such incomplete information alone cannot explain the equilibrium selection suggested by experimental evidence.
van Damme (1991, Chapter 5) analyze finite normal form games "in which each player, although knowing his own payoff function exactly, has only imprecise information about the payoff functions of his opponents", referring to them as disturbed games. He shows that, under certain conditions, only perfect equilibria of an undisturbed game can be approximated by equilibria of disturbed games, as the disturbances go to 0 . The minimum effort game has infinite action sets and hence is outside the class studied by van Damme (1991). Still, we may note that the (pure strategy) Nash equilibria of the minimum effort game, which all can be approximated in a similar manner, are strict and thus pass any test of strategic stability.

The information structure of this paper differs from those in global games. In Carlsson and Ganslandt (1998) and Anderson et al. (2001), players' noise terms are independent. So, the exact counterpart of their models with incomplete information must be one in which player types are independently drawn. However, in global games - as originally modeled by Carlsson and van Damme (1993) and generalized by Frankel et al. (2003) - player types are correlated.

Our paper belongs to a large class of games with strategic complementarities, so-called supermodular games. Supermodular games were first introduced by Topkis (1979) and further explored by Vives (1990) and Milgrom and Roberts (1990). For
games with incomplete information, existence of pure Bayesian equilibria is shown by Vives (1990) for games that are supermodular in actions; by Athey (2001) for games that satisfy a single crossing condition; and recently by Van Zandt and Vives (2007) for games where (a) actions are strategic complements, (b) there is complementarity between actions and types, and (c) interim beliefs are increasing in type with respect to first-order stochastic dominance. Our analysis echoes Vives (1990) and Van Zandt and Vives (2007) by showing the existence of a largest and a smallest Bayesian equilibrium.

We start by introducing the minimum effort game in Section 2, before illustrating incomplete information in Section 3 through the case with two players and two types for each player. We then turn to the analysis of the general n-player case with a continuum of types in Sections 4 and 5. We offer concluding remarks in Section 6, and collect the proofs and some intermediate results in an appendix.

2 The minimum effort game

Consider a coordination game, with $I=\{1,2, \ldots, n\}(n \geq 2)$ as the player set, and $[0, \infty)$ as the action set for each player i. Player i 's action, e_{i}, is interpreted as effort. The players' efforts are chosen simultaneously. Denote by b_{i} player i 's benefit coefficient. The payoff function for player i is given as

$$
b_{i} g\left(\min \left\{e_{1}, \ldots, e_{n}\right\}\right)-c e_{i},
$$

where $g\left(\min \left\{e_{1}, \ldots, e_{n}\right\}\right)$ is the outcome and c is the constant marginal cost of effort. Hence, the outcome is a function g of the minimum effort. We assume throughout this paper that c is positive and that $g:[0, \infty) \rightarrow \mathbb{R}$ satisfies $g(0)=0, g^{\prime}(\cdot)>0$, $g^{\prime \prime}(\cdot)<0, g^{\prime}(e) \rightarrow \infty$ as $e \rightarrow 0$, and $g^{\prime}(e) \rightarrow 0$ as $e \rightarrow \infty$.

Note that the benefit coefficients, $b_{i}, i \in I$, allow for heterogeneity between the players, by endowing them with different willingness to pay for the public good. However, by writing the payoff function as

$$
g\left(\min \left\{e_{1}, \ldots, e_{n}\right\}\right)-\frac{c}{b_{i}} e_{i}=g\left(\min \left\{e_{1}, \ldots, e_{n}\right\}\right)-c \frac{e_{i}}{b_{i}},
$$

it is apparent that the analysis of this paper remains unchanged if we instead interpret the heterogeneity as different costs of contributing effort, or different productivity of effort.

Our assumptions on $g(\cdot)$ entails that for any $b>0$, there is a unique effort level

$$
\bar{e}(b):=\arg \max _{e} b g(e)-c e
$$

determined by $b g^{\prime}(\bar{e}(b))=c$. Furthermore, the function $\bar{e}:(0, \infty) \rightarrow[0, \infty)$ is continuous and increasing. The interpretation is that player i will choose to exert $\bar{e}\left(b_{i}\right)$ if he believes that his effort will be minimal and hence determine the outcome.

With complete information about the benefit coefficients it is straightforward to show that $e=\left(e_{1}, \ldots, e_{n}\right)$ is a (pure strategy) Nash equilibrium if and only if, for all $i \in I, e_{i}=e^{*}$ for some $e^{*} \in\left[0, \bar{e}\left(\min \left\{b_{1}, \ldots, b_{n}\right\}\right)\right]$. Furthermore, if $0 \leq e^{\prime}<e^{\prime \prime} \leq \bar{e}\left(\min \left\{b_{1}, \ldots, b_{n}\right\}\right)$, then it holds for all $i \in I$ that

$$
b_{i} g\left(e^{\prime}\right)-c e^{\prime}<b_{i} g\left(e^{\prime \prime}\right)-c e^{\prime \prime} .
$$

This shows that with complete information the minimum effort game has a continuum of Nash-equilibria that are Pareto-ranked. In particular, with homogeneous players (i.e., $b_{i}=b$ for all $i \in I$), the range of equilibrium payoffs is given by

$$
[0, b g(\bar{e}(b))-c \bar{e}(b)] .
$$

3 Illustrating incomplete information: Two types

Before turning to the general analysis of incomplete information in Section 4, it is instructive to illustrate incomplete information in the simplest setting, with two players and two types for each player, since the basic structure of the analysis carries over to the more general case.

The type of each player i corresponds to his benefit coefficient b_{i}, which may take the values in the set $\left\{b_{L}, b_{H}\right\}$, with $0<b_{L}<b_{H}$. The types of each player is private information and is i.i.d., being b_{H} with probability P and b_{L} with probability $1-P$.

A strategy for each player i is a function $s_{i}:\left\{b_{L}, b_{H}\right\} \rightarrow[0, \infty)$. A strategy profile $\left(s_{1}, s_{2}\right)$ is a Bayesian equilibrium if, for each $i \in\{1,2\}$,

$$
\begin{align*}
& s_{i}\left(b_{L}\right)=\arg \max _{e \in[0, \infty)} u\left(e, s_{j}, b_{L}\right) \tag{1}\\
& s_{i}\left(b_{H}\right)=\arg \max _{e \in[0, \infty)} u\left(e, s_{j}, b_{H}\right) \tag{2}
\end{align*}
$$

where, for $k=L, H$,

$$
u\left(e_{i}, s_{j}, b_{k}\right):=P b_{k} g\left(\min \left\{e_{i}, s_{j}\left(b_{H}\right)\right\}\right)+(1-P) b_{k} g\left(\min \left\{e_{i}, s_{j}\left(b_{L}\right)\right\}\right)-c e_{i} .
$$

To investigate the range of equilibria payoffs in this simple incomplete information setting, consider the following uniquely determined effort levels,

$$
\begin{aligned}
e_{L} & :=\bar{e}\left(b_{L}\right) \\
e_{H} & :=\arg \max _{e} P b_{H} g(e)-c e
\end{aligned}
$$

and consider the strategy \bar{s} defined by,

$$
\begin{aligned}
\bar{s}\left(b_{L}\right) & :=e_{L} \\
\bar{s}\left(b_{H}\right) & :=\max \left\{e_{L}, e_{H}\right\}
\end{aligned}
$$

The following result shows that the strategy \bar{s} provides an upper bound on equilibrium effort.

Proposition 1 Any Bayesian equilibrium $s=\left(s_{1}, s_{2}\right)$ satisfies that for every player $i, 0 \leq s_{i}\left(b_{L}\right) \leq \bar{s}\left(b_{L}\right)$ and $0 \leq s_{i}\left(b_{H}\right) \leq \bar{s}\left(b_{H}\right)$.

Our main result of this section establishes the existence of a largest and smallest Bayesian equilibrium and shows that the set of Bayesian equilibrium payoff profiles (as evaluated at the interim stage) has a lattice structure.

Proposition 2 (i) The symmetric strategy profile $s=\left(s_{1}, s_{2}\right)$ where for every player $i, s_{i}=\underline{s}$, with \underline{s} defined by $\underline{s}\left(b_{k}\right)=0$ for $k=L, H$, is a Bayesian equilibrium.
(ii) The symmetric strategy profile $s=\left(s_{1}, s_{2}\right)$ where for every player $i, s_{i}=\bar{s}$, is a Bayesian equilibrium.
(iii) If $s=\left(s_{1}, s_{2}\right)$ is a Bayesian equilibrium, then, for $i \in\{1,2\}$ and $k=L, H$,

$$
0=u\left(\underline{s}\left(b_{k}\right), \underline{s}, b_{k}\right) \leq u\left(s_{i}\left(b_{k}\right), s_{j}, b_{k}\right) \leq u\left(\bar{s}\left(b_{k}\right), \bar{s}, b_{k}\right)
$$

(iv) For $i \in\{1,2\}$ and $k=L, H$, if u satisfies

$$
0=u\left(\underline{s}\left(b_{k}\right), \underline{s}, b_{k}\right) \leq u \leq u\left(\bar{s}\left(b_{k}\right), \bar{s}, b_{k}\right),
$$

then there exists a Bayesian equilibrium $s=\left(s_{1}, s_{2}\right)$ such that $u\left(s_{i}\left(b_{k}\right), s_{j}, b_{i}\right)=$ u.

Proposition 2 entails that, in this simple version of the minimum effort game with incomplete information, the range of equilibrium payoffs converges to those of the deterministic complete information version of the game, in the limit as the incomplete information vanishes, by having b_{L} and b_{H} converge to a common benefit coefficient b. In the next two sections we show that this result carries over to the minimum effort game with a continuum of types.

4 Incomplete information with a continuum of types

In the incomplete information version of the minimum effort game with a continuum of types, the type b_{i} of each player i is drawn independently from an absolutely continuous CDF $F: B \rightarrow[0,1]$, where $B=[\underline{b}, \bar{b}]$ denotes the set of types, with $0<\underline{b}<\bar{b}$. A strategy $s_{i}: B \rightarrow[0, \infty)$ for each player i is a measurable function, with S_{i} denoting i 's strategy set. Write $b_{-i}:=\left(b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{n}\right), \Omega:=B^{n-1}$, $s_{-i}:=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)$, and $S_{-i}:=S_{1} \times \cdots \times S_{i-1} \times S_{i+1}, \times \cdots \times S_{n}$. Define $\Phi: \Omega \rightarrow[0,1]$ by

$$
\Phi\left(b_{-i}\right):=F\left(b_{1}\right) \times \cdots \times F\left(b_{i-1}\right) \times F\left(b_{i+1}\right) \times \cdots \times F\left(b_{n}\right) .
$$

Then the payoff of a player of type $b_{i} \in B$ can be written as

$$
u\left(e_{i}, s_{-i}, b_{i}\right):=b_{i} G\left(e_{i}, s_{-i}\right)-c e_{i}
$$

where

$$
G\left(e_{i}, s_{-i}\right):=\int_{\Omega} \min \left\{g\left(e_{i}\right), g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)\right\} d \Phi\left(b_{-i}\right)
$$

If a player of type b_{i} believes that his effort will be minimal and hence determine the outcome, he will choose to exert $\bar{e}\left(b_{i}\right)$. However, when playing with opponents whose strategies are given by s_{-i}, type b_{i} will choose an effort in $\left[0, \bar{e}\left(b_{i}\right)\right]$, since other players, following their strategies, may choose efforts smaller than $\bar{e}\left(b_{i}\right)$ and determine the outcome if type b_{i} exerts $\bar{e}\left(b_{i}\right)$. The following proposition shows that each type b_{i} of player i has a unique best response

$$
\beta\left(s_{-i}\right)\left(b_{i}\right):=\arg \max _{e} u\left(e, s_{-i}, b_{i}\right),
$$

which is an element of $\left[0, \bar{e}\left(b_{i}\right)\right]$ for each b_{i}, and which is a continuous and nondecreasing function of b_{i}.

Proposition 3 For every $s_{-i} \in S_{-i}$, the following holds. Each type b_{i} of player i has a unique best response $\beta\left(s_{-i}\right)\left(b_{i}\right)$. Furthermore, $\beta\left(s_{-i}\right)$ is a continuous and non-decreasing function of b_{i}.

A strategy profile $s=\left(s_{1}, \ldots, s_{n}\right)$ is a Bayesian equilibrium, if, for each type b_{i} of every player $i, s_{i}\left(b_{i}\right)=\beta\left(s_{-i}\right)\left(b_{i}\right)$.

It follows from Proposition 3 that $s_{i}(\cdot)$ is a continuous and non-decreasing function if s_{i} is part of a Bayesian equilibrium.

To investigate the range of equilibrium payoffs under incomplete information, consider the strategy $\bar{s}: B \rightarrow[0, \infty)$ defined by

$$
\bar{s}\left(b_{i}\right):=\sup \left\{e \mid \exists b \leq b_{i} \text { satisfying } F(b)<1 \text { s.t. } e(b)=e\right\}
$$

where $e:\{b \in B \mid F(b)<1\} \rightarrow[0, \infty)$ is defined by

$$
e(b):=\arg \max _{e} b g(e)(1-F(b))^{n-1}-c e
$$

By the assumptions on $g(\cdot)$ it follows that, for each $b \in B$ satisfying $F(b)<1, e(b)$ is uniquely determined by $b g^{\prime}(e(b))(1-F(b))^{n-1}=c$. The following result conveys the importance of the strategy \bar{s}.

Proposition 4 Any Bayesian equilibrium $s=\left(s_{1}, \ldots, s_{n}\right)$ satisfies that, for each type b_{i} of every player $i, 0 \leq s_{i}\left(b_{i}\right) \leq \bar{s}\left(b_{i}\right)$.

Our main result of this section establishes the existence of a largest and smallest Bayesian equilibrium and shows that the set of Bayesian equilibrium payoff profiles (as evaluated at the interim stage) has a lattice structure.

Proposition 5 (i) The symmetric strategy profile $s=\left(s_{1}, \ldots, s_{n}\right)$ where for every player $i, s_{i}=\underline{s}$, with \underline{s} defined by $\underline{s}\left(b_{i}\right)=0$ for each type b_{i}, is a Bayesian equilibrium.
(ii) The symmetric strategy profile $s=\left(s_{1}, \ldots, s_{n}\right)$ where for every player $i, s_{i}=\bar{s}$, is a Bayesian equilibrium.
(iii) If $s=\left(s_{1}, \ldots, s_{n}\right)$ is a Bayesian equilibrium, then, for each type b_{i} of every player i,

$$
0=u(\underline{s}\left(b_{i}\right),(\underbrace{(\underline{s}, \ldots, \underline{s}}_{n-1 \text { times }}, b_{i}) \leq u\left(s_{i}\left(b_{i}\right), s_{-i}, b_{i}\right) \leq u_{i}(\bar{s}\left(b_{i}\right), \underbrace{(\bar{s}, \ldots, \bar{s})}_{n-1 \text { times }}, b_{i})
$$

(iv) For each type b_{i} of every player i, if

$$
0=u(\underline{s}\left(b_{i}\right),(\underbrace{(\underline{s}, \ldots, \underline{s})}_{n-1 \text { times }}, b_{i}) \leq u \leq u(\bar{s}\left(b_{i}\right),(\underbrace{(\bar{s}, \ldots, \bar{s})}_{n-1 \text { times }}, b_{i}),
$$

then there exists a Bayesian equilibrium $s=\left(s_{1}, \ldots, s_{n}\right)$ such that $u_{i}\left(s_{i}\left(b_{i}\right)\right.$, $\left.s_{-i}, b_{i}\right)=u$.

In the next section we show that the range of equilibrium payoffs converges to those of the deterministic complete information version of the game, in the limit as the incomplete information vanishes.

5 Vanishing incomplete information

Given some $b>0$, consider two sequences $\left\{\underline{b}^{m}\right\}_{m=1}^{\infty}$ and $\left\{\bar{b}^{m}\right\}_{m=1}^{\infty}$ satisfying $\underline{b}^{m}<\underline{b}^{m+1}<b<\bar{b}^{m+1}<\bar{b}^{m}$ for all $m \in \mathbb{N}$ and $\quad \lim _{m \rightarrow \infty} \underline{b}^{m}=b=\lim _{m \rightarrow \infty} \bar{b}^{m}$.

Write $B_{m}:=\left[\underline{b}^{m}, \bar{b}^{m}\right]$ for each $m \in \mathbb{N}$, implying that $B_{m} \supset B_{m+1}$ for all $m \in \mathbb{N}$ and $\cap_{m=1}^{\infty} B_{m}=\{b\}$.

For each $m \in \mathbb{N}$, construct a incomplete information minimum effort game where the type b_{i} of each player i is drawn independently from an absolutely continuous CDF $F_{m}: B_{m} \rightarrow[0,1]$. A strategy $s_{i}: B_{m} \rightarrow[0, \infty)$ of each player i is a measurable function. Denote $\Omega_{m}:=B_{m}^{n-1}$, and define $\Phi_{m}: \Omega_{m} \rightarrow[0,1]$ by

$$
\Phi_{m}\left(b_{-i}\right):=F_{m}\left(b_{1}\right) \times \cdots \times F_{m}\left(b_{i-1}\right) \times F_{m}\left(b_{i+1}\right) \times \cdots \times F_{m}\left(b_{n}\right) .
$$

Then the payoff of an agent of type $b_{i} \in B_{m}$ can be written as

$$
u_{m}\left(e_{i}, s_{-i}, b_{i}\right):=b_{i} G_{m}\left(e_{i}, s_{-i}\right)-c e_{i},
$$

where

$$
G_{m}\left(e_{i}, s_{-i}\right):=\int_{\Omega_{m}} \min \left\{g\left(e_{i}\right), g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)\right\} d \Phi_{m}\left(b_{-i}\right) .
$$

Let the strategy $\bar{s}^{m}: B_{m} \rightarrow[0, \infty)$ be defined by

$$
\bar{s}^{m}\left(b_{i}\right):=\sup \left\{e \mid \exists b \leq b_{i} \text { satisfying } F_{m}(b)<1 \text { s.t. } e^{m}(b)=e\right\},
$$

where $e^{m}:\left\{b \in B_{m} \mid F_{m}(b)<1\right\} \rightarrow[0, \infty)$ is defined by

$$
e^{m}(b):=\arg \max _{e} b g(e)\left(1-F_{m}(b)\right)^{n-1}-c e .
$$

Note that Propositions 4 and 5 (ii)-(iv) apply to the strategy $\bar{s}^{m}(\cdot)$, and Proposition 5 (i) applies to the strategy \underline{s}^{m} defined by $\underline{s}^{m}\left(b_{i}\right)=0$ for each type b_{i}.

Since the sequence $\left\{B_{m}\right\}_{m=1}^{\infty}$ converges to a singleton set containing only the benefit coefficient b, the sequence of incomplete information games converges, in the limit as $m \rightarrow \infty$, to a complete information game where all players have a common benefit coefficient b. The following result shows that the range of equilibrium payoffs
converges to those of the deterministic complete information version of the game, in the limit as the incomplete information vanishes.

Proposition 6 Consider the sequence of incomplete information minimum effort games determined by the sequence of supports $\left\{B_{m}\right\}_{m=1}^{\infty}$ and the sequence of CDFs $\left\{F_{m}\right\}_{m=1}^{\infty}$. Then

$$
\lim _{m \rightarrow \infty} u_{m}\left(\bar{s}^{m}\left(\underline{b}^{m}\right), s_{-i}, b_{i}\right)=b g(\bar{e}(b))-c \bar{e}(b)=\lim _{m \rightarrow \infty} u_{m}\left(\bar{s}^{m}\left(\bar{b}^{m}\right), s_{-i}, b_{i}\right) .
$$

Proposition 6 entails that small uncertainty about the payoffs of the opponents in the minimum effort game with a continuum of types does not result in equilibrium selection, provided that player types are independently drawn. This shows that such an incomplete information version of the minimum effort game does not lead to the the equilibrium selection results obtained by Carlsson and Ganslandt (1998) and Anderson et al. (2001) through their versions of the minimum effort game, where the players' strategic choices translate into efforts with the addition of noise terms.

6 Concluding remarks

Equilibrium selection in the minimum effort game has been studied since van Huyck et al. (1990) obtained their experimental evidence. Both Carlsson and Ganslandt (1998) and Anderson et al. (2001) obtain results consistent with the experiment evidence by introducing noise. Neither Carlsson and Ganslandt (1998) nor Anderson et al. (2001) study incomplete versions of the minimum effort game, since in their formulations the action choices of the players do not depend on private information.

In the present paper we endow the players with private information about their payoff functions, where player types are independently drawn. We establish that such incomplete information alone does not lead to equilibrium selection in the minimum effort game. This means that one should be cautious in interpreting the results of Carlsson and Ganslandt (1998) and Anderson et al. (2001) in terms of incomplete information about the payoff functions of the opponents.

Appendix: Proofs

Proof of Proposition 1. Assume that s is a Bayesian equilibrium. Since the effort set is $[0, \infty)$, it remains to be shown that $s_{i}\left(b_{L}\right) \leq \bar{s}\left(b_{L}\right)$ and $s_{i}\left(b_{H}\right) \leq \bar{s}\left(b_{H}\right)$.

Suppose that $s_{i}\left(b_{L}\right)>\bar{s}\left(b_{L}\right)$. However, then, for any opponent strategy s_{j},

$$
\begin{aligned}
& P b_{L} g\left(\min \left\{s_{i}\left(b_{L}\right), s_{j}\left(b_{H}\right)\right\}\right)+(1-P) b_{L} g\left(\min \left\{s_{i}\left(b_{L}\right), s_{j}\left(b_{L}\right)\right\}\right)-c s_{i}\left(b_{L}\right) \\
& -\left[P b_{L} g\left(\min \left\{\bar{s}\left(b_{L}\right), s_{j}\left(b_{H}\right)\right\}\right)+(1-P) b_{L} g\left(\min \left\{\bar{s}\left(b_{L}\right), s_{j}\left(b_{L}\right)\right\}\right)-c \bar{s}\left(b_{L}\right)\right] \\
\leq & \left.P b_{L} g\left(s_{i}\left(b_{L}\right)\right)\right)+(1-P) b_{L} g\left(s_{i}\left(b_{L}\right)\right)-c s_{i}\left(b_{L}\right) \\
& -\left[P b_{L} g\left(\bar{s}\left(b_{L}\right)\right)+(1-P) b_{L} g\left(\bar{s}\left(b_{L}\right)\right)-c \bar{s}\left(b_{L}\right)\right] \\
= & b_{L} g\left(s_{i}\left(b_{L}\right)\right)-c s_{i}\left(b_{L}\right)-\left[b_{L} g\left(\bar{s}\left(b_{L}\right)\right)-c \bar{s}\left(b_{L}\right)\right]<0,
\end{aligned}
$$

where the weak inequality follows since g is increasing and the strict inequality follows since, by the definition of $\bar{s}\left(b_{L}\right)$ and the property that g is strictly concave, $b_{L} g(e)-c e$ is a decreasing function of e for $e>\bar{s}\left(b_{L}\right)=e_{L}$. This contradicts by (1) that $\left(s_{i}, s_{j}\right)$ in a Bayesian equilibrium, for any $s_{i}\left(b_{H}\right)$, and shows that $s_{i}\left(b_{L}\right) \leq \bar{s}\left(b_{L}\right)$.

Suppose that $s_{i}\left(b_{H}\right)>\bar{s}\left(b_{H}\right)$. Then it follows from the definition of $\bar{s}\left(b_{H}\right)$ and the first part of the proof that, for any opponent strategy s_{j} that might be part of a Bayesian equilibrium, it holds that $s_{j}\left(b_{L}\right) \leq \bar{s}\left(b_{L}\right) \leq \bar{s}\left(b_{H}\right)<s_{i}\left(b_{H}\right)$. This implies the equality below,

$$
\begin{aligned}
& P b_{H} g\left(\min \left\{s_{i}\left(b_{H}\right), s_{j}\left(b_{H}\right)\right\}\right)+(1-P) b_{H} g\left(\min \left\{s_{i}\left(b_{H}\right), s_{j}\left(b_{L}\right)\right\}\right)-c s_{i}\left(b_{H}\right) \\
& -\left[P b_{H} g\left(\min \left\{\bar{s}\left(b_{H}\right), s_{j}\left(b_{H}\right)\right\}\right)+(1-P) b_{H} g\left(\min \left\{\bar{s}\left(b_{H}\right), s_{j}\left(b_{L}\right)\right\}\right)-c \bar{s}\left(b_{h}\right)\right] \\
= & P b_{H} g\left(\min \left\{s_{i}\left(b_{H}\right), s_{j}\left(b_{H}\right)\right\}\right)+(1-P) b_{H} g\left(s_{j}\left(b_{L}\right)\right)-c s_{i}\left(b_{H}\right) \\
& -\left[P b_{H} g\left(\min \left\{\bar{s}\left(b_{H}\right), s_{j}\left(b_{H}\right)\right\}\right)+(1-P) b_{H} g\left(s_{j}\left(b_{L}\right)\right)-c \bar{s}\left(b_{H}\right)\right] \\
\leq & P b_{H} g\left(s_{i}\left(b_{H}\right)\right)-c s_{i}\left(b_{H}\right)-\left[P b_{H} g\left(\bar{s}\left(b_{H}\right)\right)-c \bar{s}\left(b_{H}\right)\right]<0,
\end{aligned}
$$

while the weak inequality follows since g is increasing and the strict inequality follows since, by the definition of $\bar{s}\left(b_{H}\right)$ and the property that g is strictly concave, $P b_{H} g(e)-c e$ is a decreasing function of e for $e>\bar{s}\left(b_{H}\right) \geq e_{H}$. This contradicts by (2) that (s_{i}, s_{j}) in a Bayesian equilibrium, for any $s_{i}\left(b_{L}\right)$, and shows that $s_{i}\left(b_{H}\right) \leq \bar{s}\left(b_{H}\right)$.

Proof of Proposition 2. Part (i). Assume that $s_{j}=\underline{s}$. Then clearly $u\left(e, s_{j}, b_{L}\right)$ and $u\left(e, s_{j}, b_{H}\right)$ are decreasing in e for all $e \geq 0$, establishing the result by (1) and (2).

Part (ii). Assume that $s_{j}=\bar{s}$. By Proposition 1 and (1) and (2), it is sufficient to show that $u\left(e, s_{j}, b_{L}\right)$ is increasing in e for all $e \leq \bar{s}\left(b_{L}\right)$, and $u\left(e, s_{j}, b_{H}\right)$ is increasing in e for all $e \leq \bar{s}\left(b_{H}\right)$. This follows from the definition of \bar{s}.

Part (iii). We have that $0=u\left(\underline{s}\left(b_{k}\right), \underline{s}, b_{k}\right) \leq u\left(s_{i}\left(b_{k}\right), s_{j}, b_{k}\right)$, since $u\left(0, s_{j}, b_{L}\right)=0$ and $u\left(0, s_{j}, b_{H}\right)=0$, independently of s_{j}. Hence, each type of player i can always ensure himself a non-negative payoff by setting $e_{i}=0$. To show that $u\left(s_{i}\left(b_{k}\right), s_{j}, b_{k}\right) \leq u\left(\bar{s}\left(b_{k}\right), \bar{s}, b_{k}\right)$ for each $k=L, H$, note that $u\left(e_{i}, s_{j}, b_{k}\right)$ is non-decreasing in both $s_{j}\left(b_{L}\right)$ and $s_{j}\left(b_{H}\right)$. Hence, by Proposition 1, $u\left(s_{i}\left(b_{L}\right), s_{j}, b_{L}\right)$ and $u\left(s_{i}\left(b_{H}\right), s_{j}, b_{H}\right)$ are maximized for fixed $s_{i}\left(b_{L}\right)$ and $s_{i}\left(b_{H}\right)$ by setting $s_{j}=\bar{s}$. Moreover, given $s_{j}=\bar{s}$, it follows from part (ii) that $u\left(e_{i}, s_{j}, b_{L}\right)$ is maximized by setting $e_{i}=\bar{s}\left(b_{L}\right)$, and $u\left(e_{i}, s_{j}, b_{H}\right)$ is maximized by setting $e_{i}=\bar{s}\left(b_{H}\right)$.

Part (iv). For all $e \in\left[0, \bar{s}\left(b_{H}\right)\right]$, let s^{e} be given by

$$
\begin{aligned}
s^{e}\left(b_{L}\right) & :=\min \left\{e_{L}, e\right\} \\
s^{e}\left(b_{H}\right) & :=e
\end{aligned}
$$

Then, for any $e \in\left[0, \bar{s}\left(b_{H}\right)\right], u\left(e^{\prime}, s^{e}, b_{L}\right)$ is increasing in e^{\prime} for all $e^{\prime} \leq s^{e}\left(b_{L}\right)$, and $u\left(e^{\prime}, s^{e}, b_{H}\right)$ is increasing in e^{\prime} for all $e^{\prime} \leq s^{e}\left(b_{H}\right)$. Moreover, $u\left(e^{\prime}, s^{e}, b_{L}\right)$ is decreasing in e^{\prime} for all $e^{\prime} \geq s^{e}\left(b_{L}\right)$, and $u\left(e^{\prime}, s^{e}, b_{H}\right)$ is decreasing in e^{\prime} for all $e^{\prime} \geq s^{e}\left(b_{H}\right)$. Hence, by (1) and (2), $\left(s^{e}, s^{e}\right)$ is a symmetric Bayesian equilibrium. Furthermore, $u\left(s^{e}\left(b_{L}\right), s^{e}, b_{L}\right)$ and $u\left(s^{e}\left(b_{H}\right), s^{e}, b_{H}\right)$ are continuous functions of e, with $u\left(s^{0}\left(b_{L}\right), s^{0}, b_{L}\right)=u\left(s^{0}\left(b_{H}\right), s^{0}, b_{H}\right)=$ 0 , and, for $k=L, H, u\left(s^{\bar{s}\left(b_{H}\right)}\left(b_{k}\right), s^{\bar{s}\left(b_{H}\right)}, b_{k}\right)=u\left(\bar{s}\left(b_{k}\right), \bar{s}, b_{k}\right)$. This establishes part (iv).

Turn now to the case with a continuum of types considered in Sections 4 and 5. Let

$$
B_{-i}\left(b_{i}\right):=\left\{b_{-i} \in \Omega \mid b_{j} \geq b_{i} \text { for every } j \neq i\right\}
$$

denote the set of opponent type profiles such that each opponent type $j, b_{j} \geq b_{i}$, and let

$$
A\left(e_{i}, s_{-i}\right):=\left\{b_{-i} \in \Omega \mid s_{j}\left(b_{j}\right) \geq e_{i} \text { for every } j \neq i\right\}
$$

denote the set of opponent type profiles having the property that no opponent exert an effort less than e_{i} when their strategy profile is given by s_{-i}. Then the function $G\left(e_{i}, s_{-i}\right):=$ $\int_{\Omega} \min \left\{g\left(e_{i}\right), g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)\right\} d \Phi\left(b_{-i}\right)$ can be written as

$$
G\left(e_{i}, s_{-i}\right)=\int_{A\left(e_{i}, s_{-i}\right)} g\left(e_{i}\right) d \Phi\left(b_{-i}\right)+\int_{\Omega \backslash A\left(e_{i}, s_{-i}\right)} g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right) d \Phi\left(b_{-i}\right) .
$$

As a function of e_{i}, G has the following properties.
Lemma 1 For every $s_{-i} \in S_{-i}$, the following holds. (i) G is a continuous function of e_{i}. (ii) If $e_{i}^{\prime}<e_{i}^{\prime \prime}$, then $0 \leq G\left(e_{i}^{\prime \prime}, s_{-i}\right)-G\left(e_{i}^{\prime}, s_{-i}\right) \leq g\left(e_{i}^{\prime \prime}\right)-g\left(e_{i}^{\prime}\right)$. (iii) If $G\left(e_{i}^{\prime}, s_{-i}\right)<$ $G\left(e_{i}^{\prime \prime}, s_{-i}\right)$, then, for every $\lambda \in(0,1)$,

$$
G\left(\lambda e_{i}^{\prime}+(1-\lambda) e_{i}^{\prime \prime}, s_{-i}\right)>\lambda G\left(e_{i}^{\prime}, s_{-i}\right)+(1-\lambda) G\left(e_{i}^{\prime \prime}, s_{-i}\right) .
$$

Proof. (i) Fix e_{i} and let $\varepsilon>0$. Since g is continuous, there exists $\delta>0$ such that $\left|g\left(e_{i}^{\prime}\right)-g\left(e_{i}\right)\right|<\varepsilon$ for all e_{i}^{\prime} satisfying $\left|e_{i}^{\prime}-e_{i}\right|<\delta$. This in turn implies that, for all $\left(e_{1}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}\right)$,

$$
\left|\min \left\{g\left(e_{i}^{\prime}\right), g\left(\min _{j \neq i}\left\{e_{j}\right\}\right)\right\}-\min \left\{g\left(e_{i}\right), g\left(\min _{j \neq i}\left\{e_{j}\right\}\right)\right\}\right|<\varepsilon
$$

for all e_{i}^{\prime} satisfying $\left|e_{i}^{\prime}-e_{i}\right|<\delta$. This in turn implies that, for fixed s_{-i},

$$
\begin{aligned}
& \left|G\left(e_{i}^{\prime}, s_{-i}\right)-G\left(e_{i}, s_{-i}\right)\right| \\
& \qquad=\mid \int_{\Omega} \min \left\{g\left(e_{i}^{\prime}\right), g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)\right\} d \Phi\left(b_{-i}\right) \\
& \quad-\int_{\Omega} \min \left\{g\left(e_{i}\right), g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)\right\} d \Phi\left(b_{-i}\right) \mid<\varepsilon
\end{aligned}
$$

for all e_{i}^{\prime} satisfying $\left|e_{i}^{\prime}-e_{i}\right|<\delta$. This shows that G is a continuous function of e_{i}.
(ii) Let $e_{i}^{\prime}<e_{i}^{\prime \prime}$, implying that, for fixed $s_{-i}, A\left(e_{i}^{\prime}, s_{-i}\right) \supseteq A\left(e_{i}^{\prime \prime}, s_{-i}\right)$. Hence, it follows from the definition of G that

$$
\begin{aligned}
G\left(e_{i}^{\prime \prime}, s_{-i}\right) & -G\left(e_{i}^{\prime}, s_{-i}\right)=\int_{A\left(e_{i}^{\prime \prime}, s_{-i}\right)}\left(g\left(e_{i}^{\prime \prime}\right)-g\left(e_{i}^{\prime}\right)\right) d \Phi\left(b_{-i}\right) \\
& +\int_{A\left(e_{i}^{\prime}, s_{-i}\right) \backslash A\left(e_{i}^{\prime \prime}, s_{-i}\right)}\left(g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)-g\left(e_{i}^{\prime}\right)\right) d \Phi\left(b_{-i}\right) .
\end{aligned}
$$

Since g is increasing and $g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right) \leq g\left(e_{i}^{\prime \prime}\right)$ on $\Omega \backslash A\left(e_{i}^{\prime \prime}, s_{-i}\right)$ and $A\left(e_{i}^{\prime}, s_{-i}\right) \subseteq \Omega$, we have that $0 \leq G\left(e_{i}^{\prime \prime}, s_{-i}\right)-G\left(e_{i}^{\prime}, s_{-i}\right) \leq g\left(e_{i}^{\prime \prime}\right)-g\left(e_{i}^{\prime}\right)$.
(iii) Assume $G\left(e_{i}^{\prime}, s_{-i}\right)<G\left(e_{i}^{\prime \prime}, s_{-i}\right)$, and fix $\lambda \in(0,1)$. Write $e_{i}:=\lambda e_{i}^{\prime}+(1-\lambda) e_{i}^{\prime \prime}$. Since G is non-decreasing, we have that $e_{i}^{\prime}<e_{i}<e_{i}^{\prime \prime}$, implying that, for fixed $s_{-i}, A\left(e_{i}^{\prime}, s_{-i}\right) \supseteq$ $A\left(e_{i}, s_{-i}\right) \supseteq A\left(e_{i}^{\prime \prime}, s_{-i}\right)$. It follows from the definition of G that

$$
\begin{aligned}
G\left(e_{i}^{\prime \prime}, s_{-i}\right) & -G\left(e_{i}, s_{-i}\right)=\int_{A\left(e_{i}^{\prime \prime}, s_{-i}\right)}\left(g\left(e_{i}^{\prime \prime}\right)-g\left(e_{i}\right)\right) d \Phi\left(b_{-i}\right) \\
& +\int_{A\left(e_{i}, s_{-i}\right) \backslash A\left(e_{i}^{\prime \prime}, s_{-i}\right)}\left(g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)-g\left(e_{i}\right)\right) d \Phi\left(b_{-i}\right), \\
G\left(e_{i}, s_{-i}\right) & -G\left(e_{i}^{\prime}, s_{-i}\right)=\int_{A\left(e_{i}, s_{-i}\right)}\left(g\left(e_{i}\right)-g\left(e_{i}^{\prime}\right)\right) d \Phi\left(b_{-i}\right) \\
& +\int_{A\left(e_{i}^{\prime}, s_{-i}\right) \backslash A\left(e_{i}, s_{-i}\right)}\left(g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)-g\left(e_{i}^{\prime}\right)\right) d \Phi\left(b_{-i}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
G & \left(e_{i}, s_{-i}\right)-\left[\lambda G\left(e_{i}^{\prime}, s_{-i}\right)+(1-\lambda) G\left(e_{i}^{\prime \prime}, s_{-i}\right)\right] \\
= & \lambda \int_{A\left(e_{i}, s_{-i}\right)}\left(g\left(e_{i}\right)-g\left(e_{i}^{\prime}\right)\right) d \Phi\left(b_{-i}\right)+(1-\lambda) \int_{A\left(e_{i}^{\prime \prime}, s_{-i}\right)}\left(g\left(e_{i}\right)-g\left(e_{i}^{\prime \prime}\right)\right) d \Phi\left(b_{-i}\right) \\
& +\lambda \int_{A\left(e_{i}^{\prime}, s_{-i}\right) \backslash A\left(e_{i}, s_{-i}\right)}\left(g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)-g\left(e_{i}^{\prime}\right)\right) d \Phi\left(b_{-i}\right) \\
& +(1-\lambda) \int_{A\left(e_{i}, s_{-i}\right) \backslash A\left(e_{i}^{\prime \prime}, s_{-i}\right)}\left(g\left(e_{i}\right)-g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)\right) d \Phi\left(b_{-i}\right) \\
= & \int_{A\left(e_{i}^{\prime \prime}, s_{-i}\right)}\left[g\left(e_{i}\right)-\left(\lambda g\left(e_{i}^{\prime}\right)+(1-\lambda) g\left(e_{i}^{\prime \prime}\right)\right)\right] d \Phi\left(b_{-i}\right) \\
& +\int_{A\left(e_{i}, s_{-i}\right) \backslash A\left(e_{i}^{\prime \prime}, s_{-i}\right)}\left[g\left(e_{i}\right)-\left(\lambda g\left(e_{i}^{\prime}\right)+(1-\lambda) g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)\right)\right] d \Phi\left(b_{-i}\right) \\
& +\lambda \int_{A\left(e_{i}^{\prime}, s_{-i}\right) \backslash A\left(e_{i}, s_{-i}\right)}\left(g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)-g\left(e_{i}^{\prime}\right)\right) d \Phi\left(b_{-i}\right) .
\end{aligned}
$$

Since g is strictly concave, $e_{i}^{\prime}<e_{i}^{\prime \prime}$, and $\lambda \in(0,1)$, we have that

$$
\begin{equation*}
0<g\left(e_{i}\right)-\left(\lambda g\left(e_{i}^{\prime}\right)+(1-\lambda) g\left(e_{i}^{\prime \prime}\right)\right) \tag{A1}
\end{equation*}
$$

Furthermore, since $g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right) \leq g\left(e_{i}^{\prime \prime}\right)$ on $\Omega \backslash A\left(e_{i}^{\prime \prime}, s_{-i}\right)$, (A1) implies that

$$
0<g\left(e_{i}\right)-\left(\lambda g\left(e_{i}^{\prime}\right)+(1-\lambda) g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)\right)
$$

on $\Omega \backslash A\left(e_{i}^{\prime \prime}, s_{-i}\right)$. Hence, if $A\left(e_{i}, s_{-i}\right)$ has non-zero measure, we have established that

$$
G\left(e_{i}, s_{-i}\right)-\left[\lambda G\left(e_{i}^{\prime}, s_{-i}\right)+(1-\lambda) G\left(e_{i}^{\prime \prime}, s_{-i}\right)\right]>0 .
$$

Moreover, this is trivially the case if $A\left(e_{i}, s_{-i}\right)$ has zero measure, because then $G\left(e_{i}^{\prime}, s_{-i}\right)<$ $G\left(e_{i}, s_{-i}\right)=G\left(e_{i}^{\prime \prime}, s_{-i}\right)$.

Proof of Proposition 3. Unique best response. By Lemma 1(i), $u\left(e, s_{-i}, b_{i}\right)=b_{i} G\left(e_{i}\right.$, $\left.s_{-i}\right)-c e_{i}$ attains a local maximum on $\left[0, \bar{e}\left(b_{i}\right)\right]$. The strict concavity of $g(\cdot)$ and Lemma 1(ii) imply that any such local maximum is also a global maximum:

$$
0>b_{i} g\left(e_{i}\right)-c e_{i}-\left(b_{i} g\left(\bar{e}\left(b_{i}\right)\right)-c \bar{e}\left(b_{i}\right)\right) \geq b_{i} G\left(e_{i}, s_{-i}\right)-c e_{i}-\left(b_{i} G\left(\bar{e}\left(b_{i}\right), s_{-i}\right)-c \bar{e}\left(b_{i}\right)\right)
$$

if $e_{i}>\bar{e}\left(b_{i}\right)$. Suppose that there exist e_{i}^{\prime} and $e_{i}^{\prime \prime}$, with $0 \leq e_{i}^{\prime}<e_{i}^{\prime \prime} \leq \bar{e}\left(b_{i}\right)$, satisfying

$$
b_{i} G\left(e_{i}^{\prime}, s_{-i}\right)-c e_{i}^{\prime}=b_{i} G\left(e_{i}^{\prime \prime}, s_{-i}\right)-c e_{i}^{\prime \prime}=\max _{e} b_{i} G\left(e, s_{-i}\right)-c e
$$

Since $c>0$, we must have $b_{i}\left(G\left(e_{i}^{\prime \prime}, s_{-i}\right)-G\left(e_{i}^{\prime}, s_{-i}\right)\right)=c\left(e_{i}^{\prime \prime}-e_{i}^{\prime}\right)>0$, implying that $G\left(e_{i}^{\prime}, s_{-i}\right)<G\left(e_{i}^{\prime \prime}, s_{-i}\right)$. However, then Lemma 1(iii) implies that

$$
\begin{aligned}
& b_{i} G\left(\lambda e_{i}^{\prime}+(1-\lambda) e_{i}^{\prime \prime}, s_{-i}\right)-c\left(\lambda e_{i}^{\prime}+(1-\lambda) e_{i}^{\prime \prime}\right) \\
& >\lambda\left(b_{i} G\left(e_{i}^{\prime}, s_{-i}\right)-c e_{i}^{\prime}\right)+(1-\lambda)\left(b_{i} G\left(e_{i}^{\prime \prime}, s_{-i}\right)-c e_{i}^{\prime \prime}\right) \\
& =\max _{e} b_{i} G\left(e, s_{-i}\right)-c e
\end{aligned}
$$

which contradicts that e_{i}^{\prime} and $e_{i}^{\prime \prime}$ are best responses. Hence, $\beta\left(s_{-i}\right)\left(b_{i}\right):=\arg \max _{e} b_{i} G(e$, $\left.s_{-i}\right)-c e$ exists and is unique.
$\beta\left(s_{-i}\right)$ is continuous. Suppose that $\beta\left(s_{-i}\right)$ is not a continuous function of b_{i}. Then there exists a sequence $\left\{b_{i}^{m}\right\}_{m=1}^{\infty}$ such that $b_{i}^{m} \rightarrow b_{i}^{0}$ and $\beta\left(s_{-i}\right)\left(b_{i}^{m}\right) \nrightarrow \beta\left(s_{-i}\right)\left(b_{i}^{0}\right)$ as $m \rightarrow$ ∞. Since, for all $m, \beta\left(s_{-i}\right)\left(b_{i}^{m}\right) \in[0, \bar{e}(\bar{b})]$ (cf. the first part of the proof), there exists a subsequence $\left\{\tilde{b}_{i}^{m}\right\}_{m=1}^{\infty}$ satisfying $\tilde{b}_{i}^{m} \rightarrow b_{i}^{0}$ and $\tilde{e}_{i}^{m} \rightarrow \tilde{e}_{i}^{0} \neq e_{i}^{0}$ as $n \rightarrow \infty$, where we write $e_{i}^{0}:=\beta\left(s_{-i}\right)\left(b_{i}^{0}\right)$ and, for all $m, \tilde{e}_{i}^{m}:=\beta\left(s_{-i}\right)\left(\tilde{b}_{i}^{m}\right)$. The definition of $\beta\left(s_{-i}\right)$ implies that the following inequalities are satisfied for all m :

$$
\begin{aligned}
\tilde{b}_{i}^{m} G\left(\tilde{e}_{i}^{m}, s_{-i}\right)-c \tilde{e}_{i}^{m} & \geq \tilde{b}_{i}^{m} G\left(e_{i}^{0}, s_{-i}\right)-c e_{i}^{0} \\
b_{i}^{0} G\left(e_{i}^{0}, s_{-i}\right)-c e_{i}^{0} & \geq b_{i}^{0} G\left(\tilde{e}_{i}^{m}, s_{-i}\right)-c \tilde{e}_{i}^{m} .
\end{aligned}
$$

Since G is a continuous function of e_{i}, by taking limits and keeping in mind that $\tilde{b}_{i}^{m} \rightarrow b_{i}^{0}$ and $\tilde{e}_{i}^{m} \rightarrow \tilde{e}_{i}^{0} \neq e_{i}^{0}$ as $m \rightarrow \infty$, we now obtain that

$$
b_{i}^{0} G\left(\tilde{e}_{i}^{0}, s_{-i}\right)-c \tilde{e}_{i}^{0}=b_{i}^{0} G\left(e_{i}^{0}, s_{-i}\right)-c e_{i}^{0}=\max _{e} b_{i}^{0} G\left(e, s_{-i}\right)-c e
$$

where $\tilde{e}_{i}^{0} \neq e_{i}^{0}$. This contradicts that $\beta\left(s_{-i}\right)\left(b_{i}^{0}\right)$ is unique and shows that $\beta\left(s_{-i}\right)$ is a continuous function of b_{i}.
$\beta\left(s_{-i}\right)$ is non-decreasing. Let $b_{i}^{\prime}\left\langle b_{i}^{\prime \prime}\right.$, and write $e_{i}^{\prime}:=\beta\left(s_{-i}\right)\left(b_{i}^{\prime}\right)$ and $e_{i}^{\prime \prime}:=\beta\left(s_{-i}\right)\left(b_{i}^{\prime \prime}\right)$. The definition of $\beta\left(s_{-i}\right)$ implies the following inequalities:

$$
\begin{align*}
b_{i}^{\prime} G\left(e_{i}^{\prime}, s_{-i}\right)-c e_{i}^{\prime} & \geq b_{i}^{\prime} G\left(e_{i}^{\prime \prime}, s_{-i}\right)-c e_{i}^{\prime \prime} \tag{A2}\\
b_{i}^{\prime \prime} G\left(e_{i}^{\prime \prime}, s_{-i}\right)-c e_{i}^{\prime \prime} & \geq b_{i}^{\prime \prime} G\left(e_{i}^{\prime}, s_{-i}\right)-c e_{i}^{\prime} .
\end{align*}
$$

Hence,

$$
\left(b_{i}^{\prime \prime}-b_{i}^{\prime}\right)\left[G\left(e_{i}^{\prime \prime}, s_{-i}\right)-G\left(e_{i}^{\prime}, s_{-i}\right)\right] \geq 0 .
$$

Since G is a non-decreasing function of e, this implies that $G\left(e_{i}^{\prime}, s_{-i}\right)=G\left(e_{i}^{\prime \prime}, s_{-i}\right)$ if $e_{i}^{\prime}>e_{i}^{\prime \prime}$. However, $e_{i}^{\prime}>e_{i}^{\prime \prime}$ and $G\left(e_{i}^{\prime}, s_{-i}\right)=G\left(e_{i}^{\prime \prime}, s_{-i}\right)$ contradicts (A2). Hence, $e_{i}^{\prime} \leq e_{i}^{\prime \prime}$, showing that $\beta\left(s_{-i}\right)$ is a non-decreasing function of b_{i}.

The observation that $s_{i}(\cdot)$ is a continuous and non-decreasing function if s_{i} is part of a Bayesian equilibrium can be applied to show the following useful result.

Lemma 2 Any Bayesian equilibrium satisfies
(i) $G\left(e_{i}, s_{-i}\right)-G\left(e^{\prime}, s_{-i}\right) \leq\left(g\left(e_{i}\right)-g\left(e^{\prime}\right)\right)\left(1-F\left(b^{\prime}\right)\right)^{n-1}$ whenever $e^{\prime}<e_{i}$ and $b^{\prime} \leq$ $\sup \left(\left\{b \mid s_{j}(b)<e^{\prime}\right.\right.$ for all $\left.\left.j \neq i\right\} \cup\{\underline{b}\}\right)$, and
(ii) $G\left(e^{\prime \prime}, s_{-i}\right)-G\left(e_{i}, s_{-i}\right) \geq\left(g\left(e^{\prime \prime}\right)-g\left(e_{i}\right)\right)\left(1-F\left(b^{\prime \prime}\right)\right)^{n-1}$ whenever $e_{i}<e^{\prime \prime}$ and $b^{\prime \prime} \geq$ $\sup \left(\left\{b \mid s_{j}(b)<e^{\prime \prime}\right.\right.$ for all $\left.\left.j \neq i\right\} \cup\{\underline{b}\}\right)$.

Proof. Part (i). Assume $e^{\prime}<e_{i}$ and $b^{\prime} \leq\left(\sup \left\{b \mid s_{j}(b)<e^{\prime}\right.\right.$ for all $\left.\left.j \neq i\right\} \cup\{\underline{b}\}\right)$. Since $s_{j}(\cdot)$ is non-decreasing for all j, the existence of $k \neq i$ such that $s_{k}\left(b_{k}\right) \geq e^{\prime}$ and $\underline{b} \leq b_{k}<b^{\prime}$ would imply that b_{k} is an upper bound for $\left\{b \mid s_{j}(b)<e^{\prime}\right.$ for all $\left.j \neq i\right\} \cup\{\underline{b}\}$ and thus contradict that $b^{\prime} \leq \sup \left(\left\{b \mid s_{j}(b)<e^{\prime}\right.\right.$ for all $\left.\left.j \neq i\right\} \cup\{\underline{b}\}\right)$. Hence, for all $j \neq i, s_{j}\left(b_{j}\right) \geq e^{\prime}$ implies $b_{j} \geq b^{\prime}$; i.e., $A\left(e^{\prime}, s_{-i}\right) \subseteq B_{-i}\left(b^{\prime}\right)$. It now follows from the definition of G that

$$
\begin{aligned}
& G\left(e_{i}, s_{-i}\right)-G\left(e^{\prime}, s_{-k}\right) \\
= & \left.\int_{A\left(e_{i}, s_{-i}\right)}\left(g\left(e_{i}\right)\right)-g\left(e^{\prime}\right)\right) d \Phi\left(b_{-i}\right) \\
& +\int_{A\left(e^{\prime}, s_{-i}\right) \backslash A\left(e_{i}, s_{-i}\right)}\left(g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)-g\left(e^{\prime}\right)\right) d \Phi\left(b_{-i}\right) \\
\leq & \int_{A\left(e^{\prime}, s_{-i}\right)}\left(g\left(e_{i}\right)-g\left(e^{\prime}\right)\right) d \Phi\left(b_{-i}\right) \\
\leq & \int_{B_{-i}\left(b^{\prime}\right)}\left(g\left(e_{i}\right)-g\left(e^{\prime}\right)\right) d \Phi\left(b_{-i}\right) \\
= & \left(g\left(e_{i}\right)-g\left(e^{\prime}\right)\right)\left(1-F\left(b^{\prime}\right)\right)^{n-1},
\end{aligned}
$$

since $g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right) \leq g\left(e_{i}\right)$ on $\Omega \backslash A\left(e_{i}, s_{-i}\right)$.
Part (ii). Assume $e_{i}<e^{\prime \prime}$ and $b^{\prime \prime} \geq \sup \left(\left\{b \mid s_{j}(b)<e^{\prime \prime}\right.\right.$ for all $\left.\left.j \neq i\right\} \cup\{\underline{b}\}\right)$. Since $s_{j}(\cdot)$ is non-decreasing and continuous for all j, the existence of $k \neq i$ such that $s_{k}\left(b_{k}\right)<e^{\prime \prime}$ and $b_{k} \geq b^{\prime \prime}$ would imply that $b^{\prime \prime}$ is not an upper bound for $\left\{b \mid s_{j}(b)<e^{\prime \prime}\right.$ for all $\left.j \neq i\right\} \cup\{\underline{b}\}$ and thus contradict that $b^{\prime \prime} \geq \sup \left(\left\{b \mid s_{j}(b)<e^{\prime \prime}\right.\right.$ for all $\left.\left.j \neq i\right\} \cup\{\underline{b}\}\right)$. Hence, for all $j \neq i$, $b_{j} \geq b^{\prime \prime}$ implies $s_{j}\left(b_{j}\right) \geq e^{\prime \prime}$; i.e., $B_{-i}\left(b^{\prime \prime}\right) \subseteq A\left(e^{\prime \prime}, s_{-i}\right)$. It now follows from the definition of
G that

$$
\begin{aligned}
& G\left(e^{\prime \prime}, s_{-i}\right)-G\left(e_{i}, s_{-k}\right) \\
= & \left.\int_{A\left(e^{\prime \prime}, s_{-i}\right)}\left(g\left(e^{\prime \prime}\right)\right)-g\left(e_{i}\right)\right) d \Phi\left(b_{-i}\right) \\
& +\int_{A\left(e_{i}, s_{-i}\right) \backslash A\left(e^{\prime \prime}, s_{-i}\right)}\left(g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right)-g\left(e_{i}\right)\right) d \Phi\left(b_{-i}\right) \\
\geq & \int_{A\left(e^{\prime}, s_{-i}\right)}\left(g\left(e^{\prime \prime}\right)-g\left(e_{i}\right)\right) d \Phi\left(b_{-i}\right) \\
\geq & \int_{B_{-i}\left(b^{\prime \prime}\right)}\left(g\left(e^{\prime \prime}\right)-g\left(e_{i}\right)\right) d \Phi\left(b_{-i}\right) \\
= & \left(g\left(e^{\prime \prime}\right)-g\left(e_{i}\right)\right)\left(1-F\left(b^{\prime \prime}\right)\right)^{n-1},
\end{aligned}
$$

since $g\left(\min _{j \neq i}\left\{s_{j}\left(b_{j}\right)\right\}\right) \geq g\left(e_{i}\right)$ on $A\left(e_{i}, s_{-i}\right)$.
Proof of Proposition 4. Assume that s is a Bayesian equilibrium. Since the effort set is $[0, \infty)$, it remains to be shown that for each type b_{i} of every player $i, s_{i}\left(b_{i}\right) \leq \bar{s}\left(b_{i}\right)$.

Part 1. First, we show this for \underline{b}; i.e., for every player $i, s_{i}(\underline{b}) \leq \bar{s}(\underline{b})$. Suppose to the contrary that there exists i such that $s_{i}(\underline{b})>\bar{s}(\underline{b})$. From Lemma 2 (ii),

$$
G\left(s_{i}(\underline{b}), s_{-i}\right)-G\left(\bar{s}(\underline{b}), s_{-i}\right) \leq g\left(s_{i}(\underline{b})\right)-g(\bar{s}(\underline{b})) .
$$

Hence,

$$
\begin{aligned}
& u\left(s_{i}(\underline{b}), s_{-i}, \underline{b}\right)-u\left(\bar{s}(\underline{b}), s_{-i}, \underline{b}\right) \\
= & \underline{b} G\left(s_{i}(\underline{b}), s_{-i}\right)-c s_{i}(\underline{b})-\left[\underline{b} G\left(\bar{s}(\underline{b}), s_{-i}\right)-c \bar{s}(\underline{b})\right] \\
\leq & \underline{b} g\left(s_{i}(\underline{b})\right)-c s_{i}(\underline{b})-[\underline{b} g(\bar{s}(\underline{b}))-c \bar{s}(\underline{b})] \\
= & \underline{b} g\left(s_{i}(\underline{b})\right)(1-F(\underline{b}))^{n-1}-c s_{i}(\underline{b})-\left[\underline{b} g(\bar{s}(\underline{b}))(1-F(\underline{b}))^{n-1}-c \bar{s}(\underline{b})\right]<0 .
\end{aligned}
$$

The second equality follows since $F(\underline{b})=0$, while the strict inequality follows since $g(\cdot)$ is strictly concave and $\bar{s}(\underline{b})=e(\underline{b})$. This contradicts that s_{i} can be played in a Bayesian equilibrium if $s_{i}(\underline{b})>\bar{s}(\underline{b})$.

Part 2. Second, we show this for all types in ($\underline{b}, \bar{b}]$; i.e., for for each type $b_{i} \in(\underline{b}, \bar{b}]$ of every player $i, s_{i}\left(b_{i}\right) \leq \bar{s}\left(b_{i}\right)$. Suppose to the contrary that there exists $b^{\prime} \in(\underline{b}, \bar{b}]$ and i such that $s_{i}\left(b^{\prime}\right)>\bar{s}\left(b^{\prime}\right)$. We divide this part into two cases; one case where there is a unique player k maximizing $s_{j}\left(b^{\prime}\right)$ over all $j \in I$, and another case where there are more than one player maximizing $s_{j}\left(b^{\prime}\right)$ over all $j \in I$.

Case 1: $s_{k}\left(b^{\prime}\right)>\max \left\{\max _{j \neq k}\left\{s_{j}\left(b^{\prime}\right)\right\}, \bar{s}\left(b^{\prime}\right)\right\}$. Choose any e_{k} satisfying

$$
\max \left\{\max _{j \neq k}\left\{s_{j}\left(b^{\prime}\right), \bar{s}\left(b^{\prime}\right)\right\}<e_{k}<s_{k}\left(b^{\prime}\right)\right.
$$

Then $b^{\prime} \leq \sup \left\{b \mid s_{j}(b)<e_{k}\right.$ for all $\left.j \neq k\right\}$, and it follows from Lemma 2 that

$$
G\left(s_{k}\left(b^{\prime}\right), s_{-k}\right)-G\left(e_{k}, s_{-k}\right) \leq\left(g\left(s_{k}\left(b^{\prime}\right)\right)-g\left(e_{k}\right)\right)\left(1-F\left(b^{\prime}\right)\right)^{n-1} .
$$

Hence,

$$
\begin{aligned}
& u\left(s_{k}\left(b^{\prime}\right), s_{-k}, b^{\prime}\right)-u\left(e_{k}, s_{-k}, b^{\prime}\right) \\
= & b^{\prime} G\left(s_{k}\left(b^{\prime}\right), s_{-k}\right)-c s_{k}\left(b^{\prime}\right)-\left[b^{\prime} G\left(e_{k}, s_{-k}\right)-c e_{k}\right] \\
\leq & b^{\prime} g\left(s_{k}\left(b^{\prime}\right)\right)\left(1-F\left(b^{\prime}\right)\right)^{n-1}-c s_{k}\left(b^{\prime}\right)-\left[b^{\prime} g\left(e_{k}\right)\left(1-F\left(b^{\prime}\right)\right)^{n-1}-c e_{k}\right]<0 .
\end{aligned}
$$

The strict inequality follows since $-c s_{k}\left(b^{\prime}\right)+c e_{k}<0$ if $F\left(b^{\prime}\right)=1$, and it follows since $g(\cdot)$ is strictly concave and

$$
s_{k}\left(b^{\prime}\right)>e_{k}>\max \left\{\max _{j \neq k}\left\{s_{j}\left(b^{\prime}\right)\right\}, \bar{s}\left(b^{\prime}\right)\right\} \geq e\left(b^{\prime}\right)
$$

if $F\left(b^{\prime}\right)<1$. This contradicts that s_{k} can be played in a Bayesian equilibrium if $s_{k}\left(b^{\prime}\right)>\max$ $\left\{\max _{j \neq k}\left\{s_{j}\left(b^{\prime}\right)\right\}, \bar{s}\left(b^{\prime}\right)\right\}$.

Case 2: $K:=\arg \max _{j \in I} s_{j}\left(b^{\prime}\right)$ is not a singleton and $s_{i}\left(b^{\prime}\right)>\bar{s}\left(b^{\prime}\right)$ if $i \in K$. It follows from Proposition 3 that, for each $i \in K$, there exists

$$
b_{i}^{\prime \prime}:=\min \left\{b_{i} \mid s_{i}\left(b_{i}\right)=s_{i}\left(b^{\prime}\right)\right\}
$$

Let $b^{\prime \prime}:=\min \left\{b_{i}^{\prime \prime} \mid i \in K\right\}$. It follows from Case 1 that there exist at least two players $i \in K$ for which $b_{i}^{\prime \prime}=b^{\prime \prime}$. Let k denote one of these. Note that $s_{k}\left(b^{\prime \prime}\right)=s_{k}\left(b^{\prime}\right)>\bar{s}\left(b^{\prime}\right) \geq \bar{s}\left(b^{\prime \prime}\right) \geq$ $\bar{s}(\underline{b})$. It follows from Part 1 that $b^{\prime \prime}>\underline{b}$.

Consider a sequence $\left\{e^{m}\right\}_{m=1}^{\infty}$ such that $\bar{s}(\underline{b})<e^{m}<e^{m+1}<s_{k}\left(b^{\prime \prime}\right)$ for each $m \in \mathbb{N}$ and $e^{m} \rightarrow s_{k}\left(b^{\prime \prime}\right)$ as $m \rightarrow \infty$. Let for each $m \in \mathbb{N}$,

$$
b^{m}:=\sup \left\{b \mid s_{j}(b)<e^{m} \text { for all } j \neq k\right\} ;
$$

i.e., $b>b^{m}$ is equivalent to the existence of $j \neq k$ with $s_{j}\left(b_{j}\right) \geq e^{m}$ and $b_{j}<b$. Since $\bar{s}(\underline{b}) \geq s_{i}(\underline{b})$ for all i (cf. Part 1 of this proof), $s_{i}(\cdot)$ is continuous (cf. Proposition 3 and the definition of a Bayesian equilibrium), and the fact that $\max _{j \neq k} s_{j}\left(b^{\prime \prime}\right)=s_{k}\left(b^{\prime \prime}\right)$, it follows that (i) $\underline{b}<b^{m}<b^{\prime \prime}$, and (ii) $b^{m} \rightarrow b^{\prime \prime}$ as $m \rightarrow \infty$.

For each $m \in \mathbb{N}$ it now follows from Lemma 2 that

$$
G\left(s_{k}\left(b^{\prime \prime}\right), s_{-k}\right)-G\left(e^{m}, s_{-k}\right) \leq\left(g\left(s_{k}\left(b^{\prime \prime}\right)\right)-g\left(e^{m}\right)\right)\left(1-F\left(b^{m}\right)\right)^{n-1}
$$

Hence,

$$
\begin{aligned}
& u\left(s_{k}\left(b^{\prime \prime}\right), s_{-k}, b^{\prime \prime}\right)-u\left(e^{m}, s_{-k}, b^{\prime \prime}\right) \\
= & b^{\prime \prime} G\left(s_{k}\left(b^{\prime \prime}\right), s_{-k}\right)-c s_{k}\left(b^{\prime \prime}\right)-\left[b^{\prime \prime} G\left(e^{m}, s_{-k}\right)-c e^{m}\right] \\
\leq & b^{\prime \prime} g\left(s_{k}\left(b^{\prime \prime}\right)\right)\left(1-F\left(b^{m}\right)\right)^{n-1}-c s_{k}\left(b^{\prime \prime}\right)-\left[b^{\prime \prime} g\left(e^{m}\right)\left(1-F\left(b^{m}\right)\right)^{n-1}-c e^{m}\right]
\end{aligned}
$$

To show that this difference is negative for large m, note first that if $b^{\prime \prime}>\sup \{b \mid F(b)<1\}$, then there exists $M \in \mathbb{N}$ such that $F\left(e^{M}\right)=1$ and $u\left(s_{k}\left(b^{\prime \prime}\right), s_{-k}, b^{\prime \prime}\right)-u\left(e^{m}, s_{-k}, b^{\prime \prime}\right) \leq$ $-c s_{k}\left(b^{\prime \prime}\right)+c e^{M}<0$. Otherwise, $F\left(e^{m}\right)<1$ for all $m \in \mathbb{N}$, and we can let, for each $m \in \mathbb{N}$, $e^{*}\left(b^{m}\right)$ be defined by

$$
e^{*}\left(b^{m}\right):=\arg \max _{e} b^{\prime \prime} g(e)\left(1-F\left(b^{m}\right)\right)^{n-1}-c e
$$

By the assumptions on $g(\cdot)$ it follows that, for each $m \in \mathbb{N}, e^{*}\left(b^{m}\right)$ is uniquely determined by $b^{\prime \prime} g^{\prime}\left(e^{*}\left(b^{m}\right)\right)\left(1-F\left(b^{m}\right)\right)^{n-1}=c$. Since F is absolutely continuous, we have from the strict concavity of $g(\cdot)$ and the definition of $e(\cdot)$ that $e^{*}\left(b^{m}\right) \rightarrow e\left(b^{\prime \prime}\right)$ as $m \rightarrow \infty$. Hence, $s_{k}\left(b^{\prime \prime}\right)>e^{M}>e^{*}\left(b^{M}\right)>e\left(b^{\prime \prime}\right)$ for sufficiently large $M \in \mathbb{N}$, since $s_{k}\left(b^{\prime \prime}\right)>\bar{s}\left(b^{\prime \prime}\right) \geq e\left(b^{\prime \prime}\right)$ and $e^{m} \rightarrow s_{k}\left(b^{\prime \prime}\right)$ as $m \rightarrow \infty$. Therefore,

$$
\begin{aligned}
& u\left(s_{k}\left(b^{\prime \prime}\right), s_{-k}, b^{\prime \prime}\right)-u\left(e^{M}, s_{-k}, b^{\prime \prime}\right) \\
\leq & b^{\prime \prime} g\left(s_{k}\left(b^{\prime \prime}\right)\right)\left(1-F\left(b^{M}\right)\right)^{n-1}-c s_{k}\left(b^{\prime \prime}\right)-\left[b^{\prime \prime} g\left(e^{M}\right)\left(1-F\left(b^{M}\right)\right)^{n-1}-c e^{M}\right]<0
\end{aligned}
$$

by the definition of $e^{*}\left(b^{M}\right)$ and the strict concavity of $g(\cdot)$. This contradicts that s_{k} can be played in a Bayesian equilibrium if $K:=\arg \max _{j \in I} s_{j}\left(b^{\prime}\right)$ is not a singleton and $s_{i}\left(b^{\prime}\right)>\bar{s}\left(b^{\prime}\right)$ if $i \in K$.

Proof of Proposition 5. Part (i). Assume that $s_{j}=\underline{s}$ for every $j \neq i$. Then $G\left(e, s_{-i}\right)=0$ for all $e \geq 0$, which clearly implies that, for all $b_{i} \in[\underline{b}, \bar{b}], u\left(e, s_{-i}, b_{i}\right)$ is decreasing in e for all $e \geq 0$, establishing the result by Proposition 4.

Part (ii). Assume that $s_{j}=\bar{s}$ for every $j \neq i$. By Proposition 4 it is sufficient to show that, for all $b_{i} \in[\underline{b}, \bar{b}], u\left(e^{\prime}, s_{-i}, b_{i}\right)<u\left(e^{\prime \prime}, s_{-i}, b_{i}\right)$ if $e^{\prime}<e^{\prime \prime} \leq \bar{s}\left(b_{i}\right)$.

Since F is absolutely continuous, the properties of $g(\cdot)$ and the definition of $e(\cdot)$ entail that (a) $e(\cdot)$ is continuous and (b) $e\left(b_{i}\right) \rightarrow 0$ as $b_{i} \uparrow \sup \{b \mid F(b)<1\}$. The definition of $\bar{s}(\cdot)$ now implies that, for each $b_{i} \in[\underline{b}, \bar{b}]$, there exists $b^{\prime \prime}$ satisfying $\underline{b} \leq b^{\prime \prime} \leq b_{i}$ and $F\left(b^{\prime \prime}\right)<1$ such that $e\left(b^{\prime \prime}\right)=\bar{s}\left(b^{\prime \prime}\right)=\bar{s}\left(b_{i}\right)$. Hence, since $\bar{s}(\cdot)$ is non-decreasing and $s_{j}=\bar{s}$ for every $j \neq i$, we have that $b^{\prime \prime} \geq \sup \left(\left\{b \mid s_{j}(b)<e^{\prime \prime}\right.\right.$ for all $\left.\left.j \neq i\right\} \cup\{\underline{b}\}\right)$ if $e^{\prime \prime} \leq \bar{s}\left(b_{i}\right)$. Hence, if
$e^{\prime}<e^{\prime \prime} \leq \bar{s}\left(b_{i}\right)$, Lemma 2 implies that

$$
G\left(e^{\prime \prime}, s_{-i}\right)-G\left(e^{\prime}, s_{-i}\right) \geq\left(g\left(e^{\prime \prime}\right)-g\left(e^{\prime}\right)\right)\left(1-F\left(b^{\prime \prime}\right)\right)^{n-1}>0,
$$

where the strict inequality follows since $g(\cdot)$ is increasing and $F\left(b^{\prime \prime}\right)<1$. By the definition of $e(\cdot)$ and the strict concavity of $g(\cdot)$,

$$
\begin{aligned}
& b^{\prime \prime} G\left(e^{\prime \prime}, s_{-i}\right)-c e^{\prime \prime}-\left[b^{\prime \prime} G\left(e^{\prime} s_{-i}\right)-c e^{\prime}\right] \\
\geq & b^{\prime \prime} g\left(e^{\prime \prime}\right)\left(1-F\left(b^{\prime \prime}\right)\right)^{n-1}-c e^{\prime \prime}-\left[b^{\prime \prime} g\left(e^{\prime}\right)\left(1-F\left(b^{\prime \prime}\right)\right)^{n-1}-c e^{\prime}\right]>0 .
\end{aligned}
$$

Since $b_{i} \geq b^{\prime \prime}$ and $G\left(e^{\prime \prime}, s_{-i}\right)>G\left(e^{\prime} s_{-i}\right)$, this implies that

$$
\begin{aligned}
& u\left(e^{\prime \prime}, s_{-i}, b_{i}\right)-u\left(e^{\prime}, s_{-i}, b_{i}\right) \\
= & b_{i} G\left(e^{\prime \prime}, s_{-i}\right)-c e^{\prime \prime}-\left[b_{i} G\left(e^{\prime} s_{-i}\right)-c e^{\prime}\right] \\
\geq & b^{\prime \prime} G\left(e^{\prime \prime}, s_{-i}\right)-c e^{\prime \prime}-\left[b^{\prime \prime} G\left(e^{\prime} s_{-i}\right)-c e^{\prime}\right]>0
\end{aligned}
$$

which establishes that $u\left(e^{\prime}, s_{-i}, b_{i}\right)<u\left(e^{\prime \prime}, s_{-i}, b_{i}\right)$ if $e^{\prime}<e^{\prime \prime} \leq \bar{s}\left(b_{i}\right)$.
Part (iii). We have that, for each type b_{i} of every player i,

$$
0=u(\underline{s}\left(b_{i}\right),(\underbrace{s, \ldots, \underline{s}}_{n-1 \text { times }}, b_{i}) \leq u\left(s_{i}\left(b_{i}\right), s_{-i}, b_{i}\right)
$$

since, for each $b_{i}, u\left(0, s_{-i}, b_{i}\right)=0$, independently of s_{-i}. Hence, each type b_{i} of player i can always ensure himself a non-negative payoff by setting $e_{i}=0$. To show that, for each type b_{i} of every player i,

$$
u\left(s_{i}\left(b_{i}\right), s_{-i}, b_{i}\right) \leq u(\bar{s}\left(b_{i}\right),(\underbrace{(\bar{s}, \ldots, \bar{s})}_{n-1 \text { times }}, b_{i}),
$$

note that, for each b_{i}, the definition of u and Proposition 4 imply that $u\left(s_{i}\left(b_{i}\right), s_{-i}, b_{i}\right)$ is maximized for fixed s_{i} over the set of opponent Bayesian equilibrium strategies by setting $s_{j}=\bar{s}$ for all $j \neq i$. Moreover, given $s_{j}=\bar{s}$ for all $j \neq i$, it follows from part (ii) that, for each $b_{i}, u\left(e_{i}, s_{j}, b_{i}\right)$ is maximized by setting $e_{i}=\bar{s}\left(b_{i}\right)$.

Part (iv). For all $e \in[0, \bar{s}(\bar{b})]$, let s^{e} be given by

$$
s^{e}\left(b_{i}\right):=\min \left\{\bar{s}\left(b_{i}\right), e\right\} .
$$

for all $b_{i} \in[\underline{b}, \bar{b}]$. Then, for any $e \in[0, \bar{s}(\bar{b})]$, it follows from part (i) that $u\left(e^{\prime}, s_{-i}, b_{i}\right)$ with $s_{j}=s^{e}$ for all $j \neq i$ reaches a local maximum on $[0, e]$ at $s^{e}\left(b_{i}\right)$ and is decreasing in e^{\prime} for all $e^{\prime} \geq e$. Hence, $\left(s_{1}, \ldots, s_{n}\right)$ with $s_{i}=s^{e}$ for all $i \in I$ is a symmetric Bayesian equilibrium.

Furthermore, for all $b_{i}, u\left(s^{e}, s_{-i}, b_{i}\right)$ with $s_{j}=s^{e}$ for all $j \neq i$ is a continuous function of e, with

$$
\begin{aligned}
& 0=u(\underline{s}\left(b_{i}\right),(\underbrace{(\underline{s}, \ldots, \underline{s})}_{n-1 \text { times }}, b_{i})=u(s^{0}\left(b_{i}\right),(\underbrace{\left.s^{0}, \ldots, s^{0}\right)}_{n-1 \text { times }}, b_{i}), \\
& u(s^{\bar{s}(\bar{b})}, \underbrace{\left(s^{\bar{s}(\bar{b})}, \ldots, s^{\bar{s}(\bar{b})}\right)}_{n-1 \text { times }}, b_{i})=u(\bar{s}\left(b_{i}\right), \underbrace{(\bar{s}, \ldots, \bar{s})}_{n-1 \text { times }}, b_{i}) .
\end{aligned}
$$

This establishes part (iv).
Proof of Proposition 6. For each $m \in \mathbb{N}$, it follows from the definition of $e^{m}:\{b \in$ $\left.B_{m} \mid F_{m}(b)<1\right\} \rightarrow[0, \infty)$ that

$$
\begin{align*}
& e^{m}\left(\underline{b}^{m}\right)=\bar{e}\left(\underline{b}^{m}\right) \tag{A3}\\
& e^{m}(b) \leq \bar{e}(b) \leq \bar{e}\left(\bar{b}^{m}\right) \text { for all } b \in B_{m} \text { such that } F_{m}(b)<1, \tag{A4}
\end{align*}
$$

keeping in mind that $\left(1-F_{m}(b)\right)^{n-1} \leq 1$ for all $b \in B_{m}$ and $\bar{e}(\cdot)$ is an increasing function. It follows from (A3) and (A4) and the definition of $\bar{s}^{m}: B_{m} \rightarrow[0, \infty)$ that

$$
\begin{equation*}
\bar{e}\left(\underline{b}^{m}\right) \leq \bar{s}^{m}\left(b_{i}\right) \leq \bar{e}\left(\bar{b}^{m}\right) \text { for all } b_{i} \in B_{m} . \tag{A5}
\end{equation*}
$$

Since $\bar{e}(\cdot)$ is a continuous function and $\lim _{m \rightarrow \infty} \underline{b}^{m}=b=\lim _{m \rightarrow \infty} \bar{b}^{m}$, we have that

$$
\lim _{m \rightarrow \infty} \bar{e}\left(\underline{b}^{m}\right)=\bar{e}(b)=\lim _{m \rightarrow \infty} \bar{e}\left(\bar{b}^{m}\right)
$$

which in combination with (A5) entails that

$$
\lim _{m \rightarrow \infty} \bar{s}^{m}\left(\underline{b}^{m}\right)=\bar{e}(b)=\lim _{m \rightarrow \infty} \bar{s}^{m}\left(\bar{b}^{m}\right) .
$$

The result now follows from the properties of the payoff functions $u_{m}, m \in \mathbb{N}$, and the CDFs $\Phi_{m}, m \in \mathbb{N}$.

References

Anderson, S.P., Goeree, J.K., and Holt, C.A. (2001), Minimum-effort coordination games: Stochastic potential and logit equilibrium, Games and Economic Behavior 34, 177-199.

Athey, S. (2001), Single Crossing Properties and the Existence of Pure Strategy Equilibria in Games of Incomplete Information, Econometrica 69, 861-889.

Bryant, J. (1983), A simple rational expectations Keynes-type model, Quarterly Journal of Economics 98, 525-528.

Carlsson, H. and Ganslandt, M. (1998), Noisy equilibrium selection in coordination games, Economics Letters 60, 23-34.

Carlsson, H. and van Damme, E. (1993), Global Games and Equilibrium Selection, Econometrica 61, 989-1018.

Frankel, D.M., Morris, S., and Pauzner, A. (2003), Equilibrium selection in global games with strategic complementarities, Journal of Economic Theory 108, 1-44.

Hvide, H.K. (2001), Some comments on free-riding in Leontief partnerships, Economic Inquiry 39, 467-473.

Legros, P., and Matthews, S.A. (1993), Efficient and nearly-efficient partnerships, Review of Economic Studies 68, 599-611.

Milgrom, P., and Roberts, J. (1990), Rationalizability, learning, and equilibrium in games with strategic complementarities, Econometrica 58, 1255-1277.

Topkis, D. (1979), Equilibrium points in nonzero-sum n-person submodular games, SIAM Journal of Control and Optimization 17, 773-787.
van Damme, Eric (1991), Stability and Perfection of Nash Equilibria, 2nd edition, Springer Verlag, Berlin.
van Huyck, J.B., Battalio, R.C., and Beil, R.O. (1990), Tacit coordination games, strategic uncertainty, and coordination failure, American Economic Review 80, 234-248.

Vislie, J. (1994), Efficiency and equilibria in complementary teams, Journal of Economic Behavior and Organization 23, 83-91.

Vives, X. (1990), Nash equilibrium with strategic complementaries, Journal of Mathematical Economics 19, 305-321.

Vives, X. (2005), Nash equilibrium with strategic complementaries, Journal of Economic Literature 43, 437-479.

Van Zandt, T., and Vives, X. (2007), Monotone equilibria in Bayesian games of strategic complementarities, Journal of Economic Theory 134, 339-360.

[^0]: *We thank Hans Carlsson and Ani Guerdjikova for comments. Part of this work was done while Asheim was visiting Cornell University, which hospitality is gratefully acknowledged.
 ${ }^{\dagger}$ Department of Economics, University of Oslo, P.O. Box 1095 Blindern, 0317 Oslo, Norway (e-mail: g.b.asheim@econ.uio.no).
 ${ }^{\ddagger}$ Department of Economics, Cornell University, Ithaca, NY 14853, USA
 (e-mail: sy239@cornell.edu). Corresponding author.

[^1]: ${ }^{1}$ Although we will interpret output as a public good throughout this paper, an equivalent interpretation is that output is a private good divided among the players by a linear sharing rule.
 ${ }^{2}$ Carlsson and Ganslandt (1998, pp. 23-24) write: "The noise may also result from slightly imperfect information about the productivity of the different agents' efforts ...", while Anderson et al. (2001, p. 181) motivate their approach by suggesting that "[e]ven in experimental set-ups, in which money payoff can be precisely stated, there is still some recidual haziness in the players' actual payoffs, in their perceptions of the payoffs, ...".

