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Open mapping theorems for directionally differentiable functions

Atle Seierstad, University of Oslo

Abstract. Open mapping theorems are proved for directionally differentiable
Lipschitz continuous functions. It is indicated that generalizations to nonsmooth
functions that are not directionally differentiable are possible. The results in the
paper generalize the open mapping theorems for differentiable mappings, and are
different from open mapping theorems for nonsmooth functions in the literature,
when these are specialized to directionally differentiable functions.

Introduction Open mapping theorems are proved for directionally differentiable
Lipschitz continuous nonlinear functions. It is indicated that generalizations to
nonsmooth functions that are not directionally differentiable are possible. The
results in this paper generalize the open mapping theorems for differentiable
mappings, and are different from open mapping theorems for nonsmooth functions
in the literature, when these are specialized to directionally differentiable functions.
It is well-known that if a Lipschitz continuous function between two Euclidean
spaces is differentiable at a given point, and the derivative has a maximal rank,
then the function value at this point is an interior point in the range of the function.
Similar open mapping theorems for set-valued functions in Banach spaces that use
contingent derivatives or coderivatives can be specialized to ordinary function, and
in particular to directionally differentiable Lipschitz continuous functions. (For a
selection of such results, see e.g. Aubin and Ekeland (1984), Borwein and Zhu
(1999), Aubin and Frankowska (1990), Ioffe (2000), Hiriart-Urruty (1979)). These
specialized results, however require stronger approximation conditions than the
ones applied below, somewhat similar in case of differentiability to the change from
differentiability to strict differentiability in the sense of Clarke (1983). Also for
applications of the Solvability Theorem of Clarke et. al. (1998), it seems that some
sort of stronger conditions are needed. For nonsmooth Lipschitz continuous
ordinary functions between Euclidean spaces, with a convex set of first order
approximating matrices ("derivatives"), open mapping theorems of the type
mentioned above hold, provided all matrices have maximal rank. Scattered
examples are Clarke (1983, Ch. 7), Clarke et. al. (1998), Halkin (1976), Jeyakumar
and Luc (2002), Warga (1976, 1978), and Sussmann (2001) , (which also
considers set-valued maps). These results can be specialized to directionally
differentiable ordinary functions. However, these specialized results differ from the
results below, since the results below yield open mapping properties in cases
where the set of approximating matrices by necessity must include matrices with
nonmaximal rank. An example is given.





Results and proofs

For any function f, denote by f ′v̄x the (one-sided) derivative along x at v̄. If x has
unit length, f ′v̄x is called the (one-sided) directional derivative in direction x, at v̄.

Theorem 1. Let v → fv : Rn → Rm be locally Lipschitz continuous, with (one-sided)
directional derivatives at any point v. Assume that for some v̄ ∈ Rn,   0,K  0,

(A) if y  f ′v̄x, with y ∈clB0, and x ∈ clB0,1, then for any other y ′ ∈ clB0,,
there exists an x ′ ∈ clB0,1 such that y ′  f ′v̄x ′ and |x − x ′|≤ K|y − y ′|.

Then for some   0, fv̄ clB0, ⊂ fv̄ clB0,1. 

Observe that a consequence of (A) is that clB0, ⊂ f ′v̄clB0,1 (let y  0, x  0
in (A)). Note also that if n  m, and x → f ′v̄x has a Lipschitz continuous inverse
on Rm, then (A) holds.

Proof We can assume v̄  0 and f0  0, and that f is Lipschitz continuous with
rank F  0 in clB0,1 (i.e. |fv − fv ′|≤ F|v − v ′|, v,v ′ ∈ clB0,1). Write
f ′0x  f ′x. Then f ′x is Lipschitz continuous in x ∈clB0,1 with rank F. Let Δ be
a largest symmetric geometric n-dimensional simplex with barycenter in
0 contained in clB0,1 ⊂ Rn, and let B0, be the largest ball centered in 0 and
contained in Δ. Then clB0, ⊂ Δ ⊂ clB0,, for any   0. Choose 
∈ 0,/2F so small that when x in clB0,, then |f ′x − fx| /4K. (We then also
have |fx| /2 and in particular, these inequalities hold for x ∈ Δ.) The former
inequality follows from the existence of directional derivatives at v̄  0, and a
uniform approximation result, shown below.

Let q be any given vector in B0,min/2,/4K ⊂ Rm. We are going to prove
that q  fv for some v ∈ clB0,1.

Let x ∈ Δ and let y : f ′x ∈ clB0,. Then |fx − q|≤ |fx||q| . Since
|f ′x − fx| /4K, and hence |y − fx − q|≤ |y − fx||q| /2K, then by (A) (with
y ′  fx − q ∈ clB0,), there exists an x ′ ∈ clB0,1 such that |x − x ′| /2 and
x ′ ∈ f ′−1fx − q . Hence, x − x ′ ∈ Δ.

Let D̃m be any geometric n-dimensional simplex in the m-th barycentric
subdivision of Δ, and let z̃m :  z̃D̃mbe the barycenter of D̃m. By the argument just
presented, there exists a z̃m

′ : z̃D̃m
′ ∈ clB0,1 such that |z̃m − z̃m

′ | /2, z̃m
′ ∈

f ′−1fz̃m − q, hence, f ′z̃m
′   fz̃m − q ∈ clB0,. Next, and similarly, for each z in

D̃m, there exists a wz ∈ clB0,1 such that |wx − z̃m
′ | ≤ KFD̃m, where D̃m is the

diameter of D̃m and wz ∈ f ′−1fz − q. The reason is that for ym  f ′z̃m
′  ∈ clB0,,

for y ′  fz − q ∈ B0, (cf. the property fx − q ∈ clB0, shown above), we get
that |y ′ − ym| |y ′ − f ′z̃m

′ | |fz − fz̃m  fz̃m − f ′z̃m
′  − q| |fz − fz̃m|≤ FD̃m, so by

(A) an x ′ : wz ∈ clB0,1 exists such that |wz − z̃m
′ | KFD̃m and wz ∈ f ′−1fz − q.



Then |wz − z|≤ |wz − z̃m
′ ||z̃m

′ − z̃m||z̃m −z|≤ KFD̃m  /2  D̃m. Now, limm→D̃m  0.
Hence, for m large enough, z − wz ∈ B0, ⊂ Δ.

For any x ∈ Rn, let x be the largest number in 0,1 such that xx ∈ Δ. For
any z ∈ Δ, let Iz  i : z i  0, where z i denotes the barycentric coordinates of
z relative to the vertices xi, i  0, . . . ,n, of Δ. Next, let a label (or labeling rule ) iz
of the vertices z of D̃m be the rule that iz is the smallest number in Iz such that
z − wzz − wz i ≤ z i. (Such a number must exist, because for any ž, ž′ in Δ,
1   iž′ i ≥  i∈Ižž′ i, i∈Ižž i  1, so ž′ i  ž i for all i ∈ Iž cannot be the case.) If
z belongs to a k -dimensional face of Δ, equal to coxj0 , . . . .xjk for some
subcollection xj0 , . . . .xjk of the collection of vertices x0, . . . ,xn of Δ, then z i  0,
for i ∈ 0, . . . ,n\j0, . . . , jk, and hence iz ∈ j0, . . . , jk. Thus iz is what is called a
proper label.

By Sperner’s lemma, there exists a sequence of completely labeled
n-dimensional simplices Dmm with barycenters zm  z̃Dm and corresponding
vectors zm

′  z̃Dm
′ . (Completely labeled means that the vertices of Dm have labels

0, . . . ,n, and Dm belongs to the m-th barycentric subdivision. ) Let the
subsequences zmk and zmk

′ converge to limits z̄ and z̄′ in clB(0,1, respectively. If
zm

j j are the vertices of Dm, then, for each j, zmk
j k and wzmk

j k also converge to z̄
and z̄′, respectively, (recall |wz − z̃m

′ |≤ KFD̃m.
As we saw above, for m large, when z ∈ D̃m, then z − wz ∈ Δ, i.e. z − wz  1.

Hence, by the complete labeling, if mk is large enough, for any i, for some j,
zmk

j − wzmk
j  i ≤ zmk

j  i. Letting k → , we get z̄ − z̄′ i ≤ z̄ i for all i, i.e. z̄′  0. As
f ′zmk

′   fzmk − q, then, by continuity, 0  f ′0  f ′z̄′  fz̄ − q, i.e. fz̄  q.

Theorem 1 has the following generalization, the proof of which is only a slight
modification of the proof above.

Theorem 2 Let v → fv : Rn → Rm be Lipschitz continuous in a closed bounded
convex set A ⊂ Rn, let v̄ be a point in A, and assume the existence of a ball Bb,
in Rn such that v̄ clBb, ⊂ A. Assume that f has (one-sided) directional
derivatives at v̄ in any direction v/|v|, v in A − v̄,v ≠ 0. Assume also that positive
numbers K and   0 exist such that if p  f ′v̄b, then the following condition
holds:

(B) If y  f ′v̄x,y ∈ clBp,,x ∈ clBb,, then for any other y ′ ∈ clBp,, there
exists an x ′ ∈ clBb, such that y ′  f ′v̄x ′ and |x − x ′|≤ K|y − y ′|.

Then for some   0,   0, fv̄ clBp, ⊂ fv̄ clBb, for all  ∈ 0,. 

Proof Assume that f is Lipschitz continuous with rank F  0 on A. Then f ′x :
f ′v̄x is Lipschitz continuous with rank F on coneA − v̄, the cone generated by
A − v̄. Let   min,/4F. Let Δ be a largest symmetric geometric n-dimensional



simplex with barycenter in 0, contained in clB0, ⊂ Rn, and let B0, be the
largest ball centered in 0 and contained in Δ. Then clB0, ⊂ Δ ⊂ clB0, for
any   0. Using the uniform approximation property shown below, choose  so
small that when x belongs to clBb, and  ∈ 0,, then
|f ′x − fv̄  x − fv̄| min/4K,/4. Now, when x belongs to clBb,, then,
by Lipschitz continuity, |f ′x − p| |f ′x − f ′b| ≤ /4 and hence,
|fv̄  x − fv̄ − p| /2.

Fix an arbitrary number  in 0, and let q be any given vector in
clB0,min/2,/4K ⊂ Rm. We are going to prove that fv̄  q  p  fv for
some v ∈ v̄ clBb,.

Let z ∈clB0, ⊂ Rn. Then y : f ′z  b ∈ clBp,F ⊂ clBp,. Let
x  z  b and let y ′  fv̄  b  z − fv̄ − q. Then, by the last inequality,
|y ′ − p| |fv̄  b  z − fv̄ − q − p|≤ |fv̄  b  z − fv̄ − p||q| /2  /2  ,
so y ′ ∈ clBp,. Now (B) also holds for clBb, and clBp, replaced by
clBb, and clBp,, respectively, denote this condition by (B). Since
|f ′z  b − fv̄  z  b − fv̄| /4K and hence
|y − y ′| |y − fv̄  b  z − fv̄  q|≤ |y − fv̄  b  z − fv̄||q| /2K, then by
(B) there exists an x ′ ∈clBb, such that, for z′ : x ′ − b ∈ clB0,,
|z − z′| |x − x ′| K/2K  /2 and x ′  z′  b ∈ f ′−1fv̄  b  z − fv̄ − q .
Evidently, z − z′ ∈ Δ.

Let D̃m be any geometric n-dimensional simplex in the m-th barycentric
subdivision of Δ, and let z̃m : z̃D̃m be the barycenter of D̃m. By the argument just
presented, there exists an z̃m

′ : z̃D̃m
′ ∈ clB0, such that |z̃m − zm

′ | /2, z̃m
′  b ∈

f ′−1fv̄  b  z̃m − fv̄ − q, hence, f ′z̃m
′  b  fv̄  b  z̃m − fv̄ − q ∈

clBp,.
Next and similarly, for each z in D̃m there exists a wz such that |wz − z̃m

′ | ≤ KFD̃m,
where D̃m is the diameter of D̃m and wz  b ∈ f ′−1fv̄  b  z − fv̄ − q. The
reason is that for ym : f ′z̃m

′  b ∈ clBp,, then y ′ : fv̄  b  z − fv̄ − q ∈
clBp,, (this inclusion was shown above), and we have that |y ′ − ym|
|y ′ − f ′z̃m

′  b| |fv̄  b  z − fv̄ − q − fv̄  b  z̃m − fv̄ − q| |fv̄  b  z − fv̄
so by (B), an x ′ : wz  b ∈ clBb, exists such that |wz − z̃m

′ |≤ KFD̃m and
wz  b ∈ f ′−1fv̄  b  z − fv̄ − q. Then |wz − z|≤ |wz − z̃m

′ ||z̃m
′ − z̃m||z̃m

−z|≤ KFD̃m  /2  D̃m. Now, limmD̃  0. Hence, for m large enough, |z − wz|≤ ,
so z − wz ∈ Δ.

Again there exists a sequence of simplices Dmm with barycenters zm : z̃Dm

and corresponding vectors zm
′ : z̃Dm

′ and subsequences zmk and zmk
′ that converge

to limits z̄ and z̄′, respectively (z̄ and z̄′ now in clB0,, such that if zm
j j are the

vertices of Dm, then, for each j, zmk
j k and wzmk

j k also converge to z̄ and z̄′,
respectively, (recall |wz − z̃m

′ |≤ KFD̃m, and finally, such that, for any i, for some j,
zmk

j − wzmk
j  i ≤ zmk

j  i. Letting k → , we get z̄ − z̄′ i ≤ z̄ i for all i, i.e. z̄′  0. As
f ′zm

′  b  fv̄  b  zm − fv̄ − q, by continuity,
p  f ′b  fv̄  b  z̄ − fv̄ − q, i.e. fv  fv̄  q  p for
v  v̄  b  z̄ ∈ v̄ clBb,.



Note 1. (Comment on the uniformity of , .  Evidently,   ,F,K,, and 
 ,F,K,, i.e. these entities do not depend on b, as long as b is such that
v̄ clBb, ⊂ A. (By the proof of the uniform approximation property below, the
above independence of  and  on b evidently holds.)

Let rintC be the relative interior of the set C.

Corollary. Let v → fv : Rn → Rm be Lipschitz continuous in a closed bounded
convex set A ⊂ Rn. Assume that f has (one-sided) directional derivatives at v̄ ∈ A in
any direction v/|v|, v in A − v̄. Assume also that

(C) For each p ∈ f ′v̄rintA − v̄ there exist a bp ∈ rintA − v̄ such that p  f ′v̄bp
and positive numbers Kp,p,p, such that clBbp,p ∩ linspanA − v̄ ⊂ A − v̄, and
such that if y  f ′v̄x,y ∈ clBp,p,x ∈ clBbp,p ∩ linspanA − v̄, then for any
other y ′ ∈clBp,p, there exists an x ′ ∈ clBbp,p ∩ linspanA − v̄ such that
y ′  f ′v̄x ′ and |x − x ′|≤ Kp|y − y ′|.

Then, for any p ∈ f ′v̄rint(A − v̄], for some ∗  0, fv̄  p ∈ fA for all
 ∈ 0,∗. In fact, ∗  ∗Kp,p,p (∗ also depends on the Lipschitz rank F of f.

Proof. We can assume that v̄  0. Let E  linspanA. If we restrict f to E, and b ∈
rintA − v̄  rintA, then E ∩ clBb,p ⊂ A − v̄  A, and we are back in a situation
were Theorem 2 applies.

The uniform approximation property

Let A ′ be a subset of the unit sphere x ∈ Rn : |x| 1, let v̄ ∈ Rn, and assume that
f : Rn → Rm is Lipschitz continuous on A ′′ : Bv̄, ∩ v̄ coneA ′, some number
 0, with directional derivatives at v̄ in all directions x in A ′. Then
lim↓0−1fx  v̄ − fv̄ is uniform in x ∈ A ′.

Proof: Let  be any number  0, and let xi, i  1, . . . , i∗, be a finite set of unit vectors
such that xi ∈ A ′ and A ′ ⊂ Bx1, . . . ,xi∗,/4F,F the Lipschitz rank of f on A ′′.
(Then F is also the Lipschitz rank of x → f ′v̄x on A ′.  Choose ∗ ∈ 0, so small
that |−1fv̄  xi − fv̄ − f ′xi| /2 for all i, when  ∈ 0,∗. Let x be any vector
x in A ′. Then, for some i, |x − xi|≤ /4F, and
|−1fv̄  x − fv̄ − f ′x|≤ |−1fv̄  x − fv̄ − f ′x − −1fv̄  xi − fv̄ − f ′x
|−1fv̄  x − fv̄  xi||f ′xi − f ′x||−1fv̄  xi − fv̄ − f ′xi|≤
−1F|x − xi|F|x − xi|/2 ≤ /4  /4  /2  .



Example Let , r denote polar coordinates, let a point in R2 described by polar
coordinates be denoted by ; r and let  be the function that maps points ; 1 into
2; 1, for  ∈ 0,3/2, and that maps points ; 1, for  ∈ 3/2,2 into
−1  4 − 3/2/, 0. The two definitions of  for   3/2, and the definitions of 
for   0 and   2 coincide. Let Fx,y : R2 → R2 be the positively linearly
homogeneous extension of  from the unit circle C to all R2 (with F0,0  0,0).
On C, it is obvious that F is Lipschitz continuous, and because F is positively
linearly homogeneous, it is Lipschitz continuous everywhere, (see Appendix). In
this particular example, we see immediately that clB0,1 ⊂ FclB0,1. Let us use
the Corollary to show B0, ⊂ FclB0,1 for some   0.

For  ∈ 0,3/2, F ′0,0x,y  cos2, sin2 if x,y  cos, sin, and for
any p  p; 1 ∈ R2 of unit length, we have p  2p modulo 2; 1 for some
p ∈ /8,  /8. Note that F ′0,0clB0,1  clB0,1. To show that property (C)
holds in this example it suffices to prove that it holds for any p  p; 1 ∈ R2,p ∈
0,2. Let bp : p; 1, p  /16,Kp  4,p  /8, and note that if a ∈ clBp,/16,
a′ ∈ clBp,/16, then |a/|a|−p|≤ /8, |a′/|a′|−p|≤ /8, so a  2; |a|, a′  2 ′; |a′| for
some unique  and  ′ in p − /16,p  /16 ⊂ 0,3/2. For d  ; |a|,
d′   ′; |a′|, evidently, d,d′ ∈ Bbp,/8 and |a − a′|≥ |d − d′|. Then the Corollary
says that for each p, for some p

∗, 0,p
∗p ⊂ FclB0,1, and in fact, p

∗ is
independent of p.

Now, F ′0,0x,y  0,0 for   7/4, x,y  cos7/4, sin7/4, which
removes the possibility that any convex family of 2  2 −matrices  that yields the
linear approximations of the function F contains only invertible matrices.

Frankly, this example may not be completely convincing as regards the
usefulness of the above approach. I guess that refinements of the proofs in the
tradition of approximating matrices are possible (or even exist) giving results that
would cover examples of the type above, including more nonlinear and hence more
interesting examples. (In particular, one might consider the possibility that the
matrices are only approximating in certain directions, not all directions.) Of course,
one could try to come up with more "substantial" examples in favor of the approach
here. One difficulty then is that the sets of approximating matrices can be varied
indefinitely, and all of them have to be shown to contain a matrix of nonmaximal
rank. In the truly nonsmooth case, for which results are briefly sketched in the next
note, an example is mentioned which in a sense seems to be more substantial in
this case.

Note 2 (Generalizations) Generalizations to Lipschitz continuous functions not
having directional derivatives and possible applications in control theory will be
considered in future work. Some indications of the possibility of such
generalizations can however be given. For any given vector v̄, for any sequence
k ↓ 0,k  0, for any vector v, a subsequence ̄k ↓ 0, exists such that
̄k
−1fv̄  ̄kv − fv̄ converges to some vector denoted f ′v̄v. More generally,

given a countable dense set V in clB0,1, by diagonal selection, a subsequence k

of k can be found, such that the sequence k
−1fv̄  kv − fv̄ converges to some



limit denoted f ′v̄v for all v ∈ V, and by the Lipschitz continuity, even for all v ∈
clB0,1. Of course, v → f ′v̄v is not positively linearly homogeneous, so the
condition (A) and (B) in Theorems 1 and 2 need the following reformulations,
respectively:

(D) A sequence k ↓ 0, and positive numbers K and  exist, such that
k
−1fv̄  kv − fv̄ converges to some limit denoted f ′v̄v for all v ∈ clB0,1, and

for any k, if y  kf ′v̄x/k,y ∈clB0,k,x ∈ clB0,k, then for any other
y ′ ∈clB0,k, there exists an x ′ ∈ clB0,k such that y ′  kf ′v̄x ′/k and
|x − x ′|≤ K|y − y ′|.

(E) A sequence k ↓ 0, and positive numbers K and  exist, such that
k
−1fv̄  kv − fv̄ converges to some limit denoted f ′v̄v for all v/|v|,v ∈ A − v̄,

v ≠ 0, and such that for any k, if y  kf ′v̄x/k,x ∈ clBkb,k,y ∈
clBkf ′v̄b,k, then for any other y ′ ∈clBkf ′v̄b,k, there exists an
x ′ ∈clBkb,k such that y ′  kf ′v̄x ′/k and |x − x ′|≤ K|y − y ′|.

The conclusion in Theorem 1 still holds, while the conclusion of Theorem 2
must be weakened slightly:
For some   0,   0, fv̄ clBf ′v̄b, ⊂ fv̄ clBb, for all
  k ∈ 0,.

To obtain a proof of both results in this note, one can replace f ′x in the proof of
Theorem 2 by f ′x/ : f ′v̄x/,  : k chosen so small that
|f ′x/ − fv̄  x − fv̄| min/4,/4K. (A uniform approximation property
corresponding to the uniform approximation property used in the theorems above
holds.)
For the proof see Appendix.

For a moment, one might wonder if the results in this note could work in the case of
the function x  x sin1/x, (0  0 ) to yield, for example that B0, ⊂ 0,
for some ,  0, which of course can be seen to be true in this particular example.
But x is not Lipschitz continuous. Without being completely specific, define x,
x  0 to be a similar, Lipschitz continuous function, that zigzags between the the
lines y  x and y  −x along lines shifting between having slopes 2 and −2, the
oscillations being more rapid the closer x is to the origin. It may be seen that the
indicated results in this note applies to this function , moreover one of the
approximating 1  1 matrices of  is zero.
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Appendix. A positively linearly homogeneous function F : Rn → Rm, with F0  0,
is Lipschitz continuous if it is Lipschitz continuous on the unit sphere



x ∈ Rn : |x| 1 : Let F∗ be the Lipschitz rank of F on the unit sphere, let
K  sup|v|1|Fv|, and let F ′  2F∗  K. The inequality |Fv − Fw|≤ F ′|−v − w| is
trivial if v  0 or w  0. Assume v ≠ 0,w ≠ 0. Define a : |w|−|v|≤ |w − v|. Then
|Fv − Fw| ||v|Fv/|v|  |w|Fw/|w||≤ ||v|Fv/|v|  |v|Fw/|w||||w|−|v|Fw/|w||≤
F∗||v|v/|v|−|v|w/|w|||w − v|K 
F∗||v|v/|v|−|w|−aw/|w|||w|−|v|K ≤
F∗||v|v/|v|−|w|w/|w||F∗|aw/|w|||w|−|v|K ≤
F∗|v − w|F∗|v − w|K|v − w| F ′|v − w|.

Proof of the variants of Theorems 1 and 2 stated in Note 2
Proof Assume that f is Lipschitz continuous with rank F  0 on A. Then, for any
  0, f ′−1x : af ′v̄x/ is Lipschitz continuous with rank F on coneA − v̄. Let
  min,/4F.

Let Δ be a largest symmetric geometric n-dimensional simplex with barycenter
in 0, contained in clB0, ⊂ Rn, and let B0, be the largest ball centered in 0 and
contained in Δ. Then clB0, ⊂ Δ ⊂ clB0,, for any  ∈ 0,1. Now, using the
uniform approximation property (which also holds in the present case), choose  so
small that when x belongs to clBb, and   k ∈ 0,, then
|f ′x/ − fv̄  x − fv̄| min/4K,/4. Note that for x in clBb,,
|f ′−1x − f ′b|≤ F|x/ − b| /4, by Lipschitz continuity. The two last
inequalities give |fv̄  x − fv̄ − p| /2.

Fix an arbitrary number   k in 0, and let q be any given vector in
clB0,min/2,/4K ⊂ Rm. We are going to prove that fv̄  q  p  fv for
some v ∈ v̄ clBb,.

Let z ∈clB0, ⊂ Rn. Then y : f ′−1z  b  f ′z/  b ∈ clBp,F ⊂
clBp, . Let x  z  b and let y ′  fv̄  b  z − fv̄ − q. Then, by the last
inequality,
|y ′ − p| |fv̄  b  z − fv̄ − q − p|≤ |fv̄  b  z − fv̄ − p||q| a/2  /2  ,
so y ′ ∈ clBp,. Since |f ′−1z  b − fv̄  z  b − fv̄| /4K and hence
|y − y ′| |y − fv̄  b  z − fv̄  q| /2K, then by (E), there exists an
x ′ ∈clBb, such that, for z′ : x ′ − b, |z − z′| |x − x ′| K/2K ≤ /2 and x ′/ 
z′  b/ ∈ f ′−1fv̄  b  z − fv̄ − q/ . Evidently, z − z′ ∈ Δ.

Let D̃m be any geometric n-dimensional simplex in the m-th barycentric
subdivision of Δ, and let z̃m be the barycenter of D̃m. By the argument just
presented, there exists an z̃m

′ ∈ clB0, such that |z̃m − zm
′ | /2, z̃m

′  b/ ∈
f ′−1fv̄  b  z̃m − fv̄ − q/, hence, f ′−1z̃m

′  b  fv̄  b  z̃m − fv̄ − q.
Next and similarly, for each z in D̃m, there exists a wz such that |wz − z̃m

′ |
≤ KFD̃m, where D̃m is the diameter of D̃m and
wz  b/ ∈ f ′−1fv̄  b  z − fv̄ − q/. The reason is that for
ym  f ′−1z̃m

′  b, then for y ′  fv̄  b  z − fv̄ − q ∈ clBp, (this
inclusion was shown above), we have that |y ′ − ym|
|y ′ − f ′−1z̃m

′  b| |fv̄  b  z − fv̄ − q − fv̄  b  z̃m − fv̄ − q| |fv̄  b 
so by (E), an x ′ : wz  b ∈ clBb, exists such that |wz − z̃m

′ |≤ KFD̃m and
wz  b/ ∈ f ′−1fv̄  b  z − fv̄ − q/. Then |wz − z|≤ |wz − z̃m

′ ||zm
′ − z̃m||z̃m



−z|≤ KFD̃m  /2  D̃m. Now, limm→D̃  0. Hence, for m large enough, |z − wz|≤ ,
so z − wz ∈ Δ.

Again there exists a sequence of simplices Dmm with barycenters zm  z̃Dm

and corresponding vectors zm
′  z̃Dm

′ and subsequences zmk and zmk
′ that converge

to limits z̄ and z̄′ in clB0,, such that if zm
j j are the vertices of Dm, then, for each

j, zmk
j k and wzmk

j k also converge to z̄ and z̄′, respectively (recall |wz − z̃m
′ |

≤ KFD̃m, and finally, such that, for any i, for some j, zmk
j − wzmk

j  i ≤ zmk
j  i. Letting

k → , we get z̄ − z̄′ i ≤ z̄ i for all i, i.e. z̄′  0. As
f ′−1zm

′  b  fv̄  b  zm − fv̄ − q, by continuity,
p  f ′b  fv̄  b  z̄ − fv̄ − q, i.e. fv  fv̄  q  p for
v  v̄  b  z̄ ∈ v̄ clBb,.


