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Repeated surveys and the Kalman filter∗

Jo Thori Lind†

July 2, 2004

Abstract

The time series nature of repeated surveys is seldom taken into account. The few

studies that take this into account usually smooth the period-wise estimates without

using the cross sectional information. This leads to inefficient estimation. I present a

statistical model of repeated surveys and construct a computationally simple estimator

based on the Kalman filter which efficiently uses the whole underlying data set, but

which is computationally very simple as we only need the first and second empirical

moments of the data.

Keywords: Surveys, Kalman filter, time series

JEL Classification: C22, C53, C81

1 Introduction

A number of statistical series are estimated on the basis regularly repeated surveys. The

most common approach is to publish parameter estimates at regular intervals, say each year,

pooling surveys collected throughout the year but ignoring previous years. As it is natural

to assume that most parameters of interest evolve slowly and smoothly, this is an inefficient

use of the data.

∗I wish to thank Jørgen Aasness, Eivind Bernhardsen, and Knut R. Wangen with whom I have benefited

from comments and discussions.
†Department of Economics, University of Oslo, PB 1095 Blindern, 0317 Oslo, Norway. Email:
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Jessen (1942) was the first to suggest to use times series techniques to improve the results

from repeated surveys. It was studied in more detail by Gurney and Daly (1965), and the

methodology was further improved by Blight and Scott (1973) and Scott and Smith (1974)

who suggest using statistical signal extraction methods to filter the time specific estimates of

the parameters of interest. See e.g. the survey by Binder and Hidiroglou (1988) for further

details on subsequent developments within this tradition. A more general theory of signal

extraction using the Kalman filter was suggested by Tam (1987) and further developed by

e.g. Binder and Dick (1989), Harvey and Chung (2000), and Pfeffermann (1991).

Their approach is to estimate a parameter, such as the mean, on each individual survey

and then apply the Kalman filter on the estimates. However, there is an important loss of

efficiency as a lot of information contained in each cross section may be lost by this two

step procedure. A more satisfactory approach is to integrate the time series model and the

modelling of the individual observations at each period.

An important step in this direction is obtained by sequential processing of each element

of the observation vector as first suggested by Anderson and Moore (1979, Section 6.4) and

further developed by Durbin and Koopman (2001, Section 6.4). However, if each survey

is relatively large, this leads to unnecessary long recursions, and may particularly render

estimation of the hyper parameters more burdensome than necessary.

I suggest a model where the parameters of interest evolve smoothly over time, and where

each observed data point is a noisy observation of the parameter of interest. If we use the

ordinary Kalman filter algorithm, this will lead to extremely large matrices that has to be

inverted, hence causing severe computational problems unless each survey is extremely small.

In the present work I first show how repeated surveys may be written on state-space form

and then how the Kalman filter algorithm may be transformed to make estimation feasible

without running into computational problems. It turns out that to estimate the mean of the

population, we only need the empirical first and second moments in each period, so both the

computational burden and the data requirements are small. I also extend the estimator to

allow for heterogeneity between groups of individuals.
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2 A simple model

I first present a simplified version of the model an show how the Kalman filter may be

applied to this model. Then I explore a more general model in Section 4. At a survey date

t ∈ (1, . . . , T ) we observe Nt individuals. Let yit denote the observations on individual i

at time t. At the time being I treat yt as a scalar; this is generalized below. I focus on

estimating averages of the yit’s. We may write

yit = µt + εit (1)

where εij ∼ N (0, σ2
t ) contain individual unobserved characteristics and possible sampling

errors. I assume that the εijs are independent both within and between surveys. The variable

of interest is then µt.

Assume that there is a n-vector αt following a linear Markov process, i.e.

αt = Fαt−1 + ξt, (2)

such that µt = Zαt, where ξt ∼ N (0n×1, Q), F is a n × n transition matrix, and Z a

1× n observation matrix. 0n×1 denotes the n-dimensional zero vector. Defining the stacked

matrices ỹt = (y1t, . . . , yNtt)
′ and ε̃t = (ε1t, . . . , εNtt)

′ we can write the complete model as

ỹt = ιNtZαt + ε̃t (3a)

αt = Fαt−1 + ξt (3b)

ε̃t ∼ N
(
0Nt×1, σ

2
t INt

)
(3c)

ξt ∼ N (0n, Q) (3d)

α0 ∼ N (a0, Q0) , (3e)

where I also added assumptions about the distribution of the initial state α0. ιNt denotes a

Nt-dimensional unit vector. If we treat ιNtZ as a single matrix transforming the state vector

into the expectation of the observed data, we see that this is a model on state space form1.

3 The Kalman filter

If we know the parameters of the model, an optimal estimate of the α’s and the µ’s may be

1The dimension of ỹt usually varies with time, but it is easily shown that this does not cause any difficulties

(Durbin and Koopman 2001: Section 4.10)
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calculated by means of the Kalman filter (see e.g. Harvey (1989) or Hamilton (1994: Ch.

13)). At date t, the information set is Yt = (ỹ1, . . . , ỹt)
′. Let us denote the expectation and

the covariance matrix of the vector αt1 given the information set at date t2 as

at1|t2 ≡ E (αt1 |Yt2 )

Vt||t2 = E
[(

αt1 − at1|t2
) (

αt1 − at1|t2
)′ |Yt2

]
.

The Kalman filter is calculated by the following recursion:

at|t−1 = Fat−1|t−1 (4a)

Vt|t−1 = FVt−1|t−1F
′ + Q (4b)

at|t = at|t−1 + Kt

(
ỹt − ιNtZat|t−1

)
(4c)

Vt|t = Vt|t−1 −KtιNtZVt|t−1 (4d)

Kt = Vt|t−1Z
′ι′Nt

(
ιNtZVt|t−1Z

′ι′Nt
+ σ2

t INt

)−1
. (4e)

The two first equations are straightforward to calculate. However, in their current form,

(4c-4e) include the matrix
(
ιNtZVt|t−1Z

′ι′Nt
+ σ2

t INt

)−1
. Unless Nt is small, this matrix is of

high dimension, and hence inversion requires large amounts of calculation. However, due to

the data structure assumed above, (4c-4e) may be written as

Vt|t =
(
V −1

t|t−1 + σ−2
t NtZ

′Z
)−1

(5)

at|t = at|t−1 + σ−2
t NtVt|tZ

′ (ȳG
t − Zat|t−1

)
where ȳt denotes the average of yit. The proof, which is based on the matrix inversion lemma,

is given for the more general structure in Section 4.

Using the recursion (5), we calculate estimates of αt given the information set Yt. To

obtain efficient estimates of the states µit we should employ the full information set YT .

To achieve this, we use the ordinary Kalman smoother (Hamilton 1994), which only use

matrices of low dimensionality.

4 A general model

Before I discuss estimation of the parameters of the model, I will set up a more general model

that allows for vectors of observed variables and more importantly group-wise heterogeneity

between observed individuals.
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Now yit denote the m-vector of observations on individual i at time t. Again, we can

write

yit = µit + εit (6)

where εij ∼ N (0m×1, Σt) and µit are vectors. It is normally not particularly interesting to

estimate a separate µ for every individual. Above I assumed that the µit’s were the same

for all individuals at a particular date. But it is often fruitful to group individuals into e.g.

geographical regions or household types, and allow the groups to have different µs. This is

the approach we will pursue now. Assume that there are G such groups, and an associated

µgt for all g ∈ (1, . . . , G) at every date.2 It will be useful to consider the stacked vector of

all the means at date t

µt = (µ′
1t, . . . , µ

′
Gt)

′
. (7)

Expression (6) may now be written as

yit = Jg(i)tµt + εit (8)

where g is the function that associates to each individual i the group that it belongs to, and

Jgt the selection matrix

Jgt =
(

0(g−1)m×m
... Im

... 0(G−g)m×m

)
, (9)

which selects the appropriate elements from the vector µt for individuals in group g.

As above we have a process

αt = Fαt−1 + ξt, (10)

such that µt = Zαt, so Z translates αt into each group’s vector of means. This structure

allows for some components, e.g. seasonals, to be identical across groups and others to be

group specific.

Defining the stacked matrices Jt =
(
J ′

g(1)t, . . . , J
′
g(Nt)t

)′
, ε̃t =

(
ε′1t, . . . , ε

′
Ntt

)′
, and ỹt =

2The covariance matrix Σt is assumed the be identical for every group, but this assumption is easily

relaxed.
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(
y′1t, . . . , y

′
Ntt

)′
, we can write the complete model as

ỹt = JtZαt + ε̃t (11a)

αt = Fαt−1 + ξt (11b)

ε̃t ∼ N (0Ntm×1, INt ⊗ Σt) (11c)

ξt ∼ N (0n, Q) (11d)

α0 ∼ N (a0, Q0) , (11e)

In this model, the Kalman filter is calculated by the recursion

at|t−1 = Fat−1|t−1 (12a)

Vt|t−1 = FVt−1|t−1F
′ + Q (12b)

at|t = at|t−1 + Kt

(
ỹt − JtZat|t−1

)
(12c)

Vt|t = Vt|t−1 −KtJtZVt|t−1 (12d)

Kt = Vt|t−1Z
′J ′

t

(
JtZVt|t−1Z

′J ′
t + INt ⊗ Σt

)−1
. (12e)

Again, this implies inverting a high dimensional matrix, but the data structure allows us to

write (12c-12e) as

Vt|t =
[
V −1

t|t−1 + Z ′ (NG
t ⊗ Σ−1

t

)
Z

]−1

(13)

at|t = at|t−1 + Vt|tZ
′ (NG

t ⊗ Σ−1
t

) (
ȳG

t − Zat|t−1

)
.

In these expressions, ȳG
t denotes the within group averages defined as

ȳG
t ≡

(
1

Ng
1

∑
g(i)=1 y′it · · · 1

Ng
G

∑
g(i)=G y′it

)′
. (14)

The matrix NG
t is the G × G matrix with the number of members of each group at date t

along the diagonal. The proof is found in Appendix A.

5 Estimation

The algorithm described above was based upon the knowledge of the parameters of the model.

Since they are normally not known, they will have to be estimated. Below I derive estimators

for the parameters, but assume that F and Z are known matrices. It is straightforward to

extend the framework to allow for estimating selected parameters in these matrices.
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The usual approach to estimating parameters in Kalman filter models is maximum likeli-

hood. An alternative approach based on the EM algorithm is explored in Appendix B. The

likelihood of the data given a set of parameter values is

f (YT ; Θ) = f (ỹ1) f (ỹ2|Y1) · · · f (ỹT |YT−1) . (15)

Furthermore, it follows from (11) that

ỹt|Yt−1 ∼ N
(
JtZat|t−1, Ωt

)
(16)

where

Ωt = E
[(

JtZ
(
αt − at|t−1

)
+ ε̃t

) (
JtZ

(
αt − at|t−1

)
+ ε̃t

)′]
= JtZVt|t−1Z

′J ′
t + INt ⊗ Σt.

The log likelihood of the observed sample is

ln L = −
∑T

t=1 Nt

2
ln (2π)− 1

2

T∑
t=1

[
ln |Ωt|+

(
ỹt − JtZat|t−1

)′
Ω−1

t

(
ỹt − JtZat|t−1

)]
. (17)

Due to the high dimension of Ωt, calculation of |Ωt| by direct calculations is extremely time

consuming, and will not work on most computer systems. However, Appendix A shows that

we may rewrite the expression. First,

|Ωt| = |Σt|Nt−G
G∏

h=1

|Λh| (18)

where

Λh :=

 N g
1 J1ZVt|t−1Z

′J ′
1 + Σt if h = 1

N g
hJhZ

[
V −1

t|t−1 +
∑h−1

i=1 N g
i Z ′J ′

iΣ
−1
t JiZ

]−1

Z ′J ′
h + Σt if h > 1.

Second,

Ψt : =
(
ỹt − JtZat|t−1

)′
Ωt

(
ỹt − JtZat|t−1

)
=

G∑
h=1

tr
[
N g

htΣ
−1 Covht yit

]
(19)

+
(
ȳG

t − Zat|t−1

)′
Ξt

{
IGm − Z

[
V −1

t|t−1 + Z ′ΞtZ
]−1

Z ′Ξt

} (
ȳG

t − Zat|t−1

)
.
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where N g
ht is the number of members of group h at data t, Covht (yit) denotes the intra-

group empirical variance-covariance matrix of the yits at date t (without degrees of freedom-

adjustment), and Ξt = NG ⊗ Σ−1
t . From equations (18) and (19) we can then calculate the

likelihood value

ln L = −
∑T

t=1 Nt

2
ln (2π)− 1

2

T∑
t=1

[ln |Ωt|+ Ψt] . (20)

6 Conclusion

I have presented a modified Kalman filtering algorithm to perform calculations on repeated

samples. The procedure makes it possible to obtain efficient estimates of underlying estimates

of the laws of motion of the parameters of interest. By using the Kalman filter to smooth

the estimates from each sample, we get more precise estimates in each period. Hence even

if each survey is small, we get reliable estimates, so we can produce estimates with higher

frequency than what has been possible so far. By defining each group as a geographical area,

the procedure is also applicable for small area estimation and can be extended to improve

upon the techniques described in e.g. Pfeffermann (2002). Finally, forecasting is simple to

perform and have well-known properties when using techniques based on the Kalman filter.

At the present stage, the method only admits estimation of sample means. An interesting

extension would be to allow for estimation of repeated regression coefficients integrating the

estimation of the regressions with the Kalman filter.
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Appendix

A Proofs

A.1 Proof of equation (13)

From the matrix inversion lemma (Lütkepohl 1996: 29), we have

(
JtZVt|t−1Z

′J ′
t + INt

⊗ Σt

)−1 (21)

= INt
⊗ Σ−1

t − INt
⊗ Σ−1

t JtZ
(
V −1

t|t−1 + Z ′J ′
t

(
INt

⊗ Σ−1
t

)
JtZ

)−1

Z ′J ′
t

(
INt

⊗ Σ−1
t

)
.

Furthermore,

J ′
t

(
INt

⊗ Σ−1
t

)
Jt =

(
J ′

g(1)t · · · J ′
g(Nt)t

) 
Σ−1 · · · 0

...
. . .

...

0 · · · Σ−1




Jg(1)t

...

Jg(Nt)t


=

Nt∑
i=1

J ′
g(i)tΣ

−1Jg(i)t,

and

J ′
g(i)tΣ

−1Jg(i)t =



0m×m

...

Im

...

0m×m


Σ−1

(
0m×m · · · Im · · · 0m×m

)

=



0m×m · · · 0m×m · · · 0m×m

...
. . .

...
. . .

...

0m×m · · · Σ−1 · · · 0m×m

...
. . .

...
. . .

...

0m×m · · · 0m×m · · · 0m×m


where the Σ−1 is in the g (i)× g (i)’th position. Let Ng

h denote the number of members in group h, and let

NG = diag (Ng
1 , . . . , Ng

G). Then

J ′
t

(
INt ⊗ Σ−1

t

)
Jt = NG ⊗ Σ−1.
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Hence the Kalman gain may be written as

Kt = Vt|t−1Z
′J ′

t

[
INt

⊗ Σ−1 −
(
INt

⊗ Σ−1
)
JtZ

(
V −1

t|t−1 + Z ′ (NG ⊗ Σ−1
)
Z

)−1

Z ′J ′
t

(
INt

⊗ Σ−1
)]

= Vt|t−1

[
In − Z ′ (NG ⊗ Σ−1

)
Z

(
V −1

t|t−1 + Z ′ (NG ⊗ Σ−1
)
Z

)−1
]

Z ′J ′
t

(
INt ⊗ Σ−1

)
=

(
V −1

t|t−1 + Z ′ (NG ⊗ Σ−1
)
Z

)−1

Z ′J ′
t

(
INt ⊗ Σ−1

)
,

and then

at|t − at|t−1 =
(
V −1

t|t−1 + Z ′ (NG ⊗ Σ−1
)
Z

)−1

Z ′J ′
t

(
INt

⊗ Σ−1
) (

ỹt − JtZat|t−1

)
.

Since

J ′
g(i)tΣ

−1
(
yit − Jg(i)tZat|t−1

)
=



0m×1

...

yit − Jg(i)tZat|t−1

...

0m×1


,

where the yit − Jg(i)tZat|t−1 is in the g (i)’th position, we have

J ′
t

(
INt ⊗ Σ−1

) (
ỹt − JtZat|t−1

)
=

Nt∑
i=1

J ′
g(i)tΣ

−1
(
yit − Jg(i)tZat|t−1

)
(22)

=
(
NG ⊗ Σ−1

) (
ȳG

t − Zat|t−1

)
where

ȳG
t ≡


1

Ng
1

∑
g(i)=1 yit

...
1

Ng
G

∑
g(i)=G yit


is the vector of stacked averages and we used the fact that (J ′

1t, . . . J
′
Gt)

′ = IGm. Consequently, the Kalman

updating becomes

at|t = at|t−1 +
(
V −1

t|t−1 + Z ′ (NG ⊗ Σ−1
)
Z

)−1

Z ′ (NG ⊗ Σ−1
) (

ȳG
t − Zat|t−1

)
, (23)

which is only a function of group averages, and where the matrix to be inverted is of dimension n× n. The

expression for updating the covariance simplifies to

Vt|t = Vt|t−1 −
(
V −1

t|t−1 + Z ′ (NG ⊗ Σ−1
)
Z

)−1

Z ′J ′
t

(
INt ⊗ Σ−1

)
JtZVt|t−1

=
[
In −

(
V −1

t|t−1 + Z ′ (NG ⊗ Σ−1
)
Z

)−1

Z ′ (NG ⊗ Σ−1
)
Z

]
Vt|t−1 (24)

=
(
V −1

t|t−1 + Z ′ (NG ⊗ Σ−1
)
Z

)−1 [
V −1

t|t−1 + Z ′ (NG ⊗ Σ−1
)
Z − Z ′ (NG ⊗ Σ−1

)
Z

]
Vt|t−1

=
(
V −1

t|t−1 + Z ′ (NG ⊗ Σ−1
)
Z

)−1

.

It is seen that (23) may now be rewritten as

at|t = at|t−1 + Vt|tZ
′ (NG ⊗ Σ−1

) (
ȳG

t − Zat|t−1

)
. (25)
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A.2 Proof of expressions (18)

Assume that ỹt is constructed such that the first Ng
1 m elements belong to group 1, the following Ng

2 m

elements to group 2 and so on. Define for each group h ∈ (1, . . . , G)

Jg
h = 1Ng

h×1 ⊗ Jh,

so that

Eỹt|Yt−1 =


Jg

1

...

Jg
G

 Zat|t−1.

Then the upper left Ng
1 m×Ng

1 m-block of Ωt contains the covariance of the elements from group 1; call

this sub-matrix Ω1
t . The upper left (Ng

1 + Ng
2 ) m× (Ng

1 + Ng
2 ) m-block contains the covariance between the

elements from group 1 and 2; call this sub-matrix Ω1:2
t . Generally, the covariance matrix of the elements

belonging to group 1 to h is

Ω1:h
t = Jg

1:hZVt|t−1Z
′Jg′

1:h + I(Ng
1 +...+Ng

h) ⊗ Σt

where

Jg
1:h =


Jg

1

...

Jg
h

 .

Hence for each h ≥ 1

Ω1:h+1
t =

 Ω1:h
t Jg

1:hZVt|t−1Z
′Jg′

h+1

Jg
h+1ZVt|t−1ZJg′

1:h Jg
h+1ZVt|t−1Z

′Jg′
h+ + INg

h+1
⊗ Σt

 ,

which means that

∣∣Ω1:h+1
t

∣∣ =
∣∣Ω1:h

g

∣∣ ∣∣∣Jg
h+1ZVt|t−1Z

′Jg′
h+ + INg

h+1
⊗ Σt − Jg

1:hZVt|t−1Z
′Jg′

h+1

(
Ω1:h

t

)−1
Jg

h+1ZVt|t−1ZJg′
1:h

∣∣∣ . (26)

Furthermore, the matrix inversion lemma yields

(
Ω1:h

t

)−1
= I(Ng

1 +...+Ng
h) ⊗ Σ−1

t −(
I(Ng

1 +...+Ng
h) ⊗ Σ−1

t

)
Jg

1:hZ
[
V −1 + Z ′Jg′

1:h

(
I(Ng

1 +...+Ng
h) ⊗ Σ−1

t

)
Jg

1:hZ
]

×Z ′Jg′
1:h

(
I(Ng

1 +...+Ng
h) ⊗ Σ−1

t

)
.

12



Hence

Jg
1:hZVt|t−1Z

′Jg′
h+1Ω

−1
p Jg

h+1ZVt|t−1Z
′Jg′

1:h

= Jg
h+1ZVt|t−1Z

′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZVt|t−1Z
′Jg′

h+1

−Jg
h+1ZVt|t−1Z

′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
[
V −1

t|t−1 + Z ′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

×Z ′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZVt|t−1Z
′Jg′

h+1

= Jg
h+1ZVt|t−1Z

′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ{
In −

[
V −1

t|t−1 + Z ′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z ′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ

}
Vt|t−1Z

′Jg′
h+1

= Jg
h+1ZVt|t−1Z

′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
[
V −1

t|t−1 + Z ′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z ′Jg′
h+1.

Consequently,

Jg
h+1ZVt|t−1Z

′Jg′
h+1 + INg

h+1
⊗ Σt − Jg

1:hZVt|t−1Z
′Jg′

h+1Ω
−1
p Jg

h+1ZVt|t−1Z
′Jg′

1:h

= Jg
h+1ZVt|t−1Z

′Jg′
h+1

+INg
h+1

⊗ Σt − Jg
h+1ZVt|t−1Z

′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
[
V −1

t|t−1 + Z ′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z ′Jg′
h+1

= Jg
h+1ZVt|t−1

{
In − Z ′Jg′

1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
[
V −1

t|t−1 + Z ′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

}
Z ′Jg′

h+1 + INg
h+1

⊗ Σt

= Jg
h+1Z

[
V −1

t|t−1 + Z ′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z ′Jg′
h+1 + INg

h+1
⊗ Σt.

It is difficult to calculate the determinant of this expression directly, but a Gauss-Jordan transformation

yields ∣∣∣∣Jg
h+1Z

[
V −1

t|t−1 + Z ′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z ′Jg′
h+1 + INg

h+1
⊗ Σt

∣∣∣∣
=

∣∣∣∣1Ng
h+1×Ng

h+1
⊗ Jh+1Z

[
V −1

t|t−1 + Z ′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z ′J ′
h+1 + INg

h+1
⊗ Σt

∣∣∣∣
=

∣∣∣∣∣∣∣∣
Jh+1Z

[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
J

g
1:hZ

]−1
Z′J′h+1 + Σt

.

.

. 11×N
g
h+1−1 ⊗ Jh+1Z

[
V −1

t|t−1 + Z′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
J

g
1:hZ

]−1
Z′J′h+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
N

g
h+1−1×1 ⊗ (−Σt)

.

.

. I
N

g
h+1−1 ⊗ Σt

∣∣∣∣∣∣∣∣
=

∣∣∣INg
h+1−1 ⊗ Σt

∣∣∣ ∣∣∣∣Jh+1Z
[
V −1

t|t−1 + Z ′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z ′J ′
h+1 + Σt

−
(
Ng

h+1 − 1
)
Jh+1Z

[
V −1

t|t−1 + Z ′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z ′J ′
h+1 (−Σt) Σ−1

t

∣∣∣∣
= |Σt|N

g
h+1−1

∣∣∣∣Ng
h+1Jh+1Z

[
V −1

t|t−1 + Z ′Jg′
1:h

(
Ip ⊗ Σ−1

t

)
Jg

1:hZ
]−1

Z ′J ′
h+1 + Σt

∣∣∣∣ .

Substituting into (26), we get

∣∣Ω1:h+1
t

∣∣ =
∣∣Ω1:h

t

∣∣ |Σt|N
g
h+1−1

∣∣∣∣∣∣Ng
h+1Jh+1Z

[
V −1

t|t−1 +
h∑

i=1

Ng
i Z ′J ′

iΣ
−1
t JiZ

]−1

Z ′J ′
h+1 + Σt

∣∣∣∣∣∣ . (27)

13



Furthermore,

∣∣Ω11
t

∣∣ =
∣∣∣1Ng

1×Ng
1
⊗ J1ZVt|t−1Z

′J ′
1 + INg

1
⊗ Σt

∣∣∣
=

∣∣∣∣∣∣ J1ZVt|t−1Z
′J ′

1 + Σt 11×Ng
1−1 ⊗ J1ZVt|t−1Z

′J ′
1

1Ng
1−1×1 ⊗ (−Σt) INg

1−1 ⊗ Σt

∣∣∣∣∣∣ (28)

= |Σt|N
g
1−1 ∣∣Ng

1 J1ZVt|t−1Z
′J ′

1 + Σt

∣∣ .

Consequently, we may rewrite |Ωt| as

|Ωt| = |Σt|Nt−G ∣∣Ng
1 J1ZVt|t−1Z

′J ′
1 + Σt

∣∣ G∏
h=2

∣∣∣∣∣∣Ng
h+1JhZ

[
V −1

t|t−1 +
h−1∑
i=1

Ng
i Z ′J ′

iΣ
−1
t JiZ

]−1

Z ′J ′
h + Σt

∣∣∣∣∣∣ , (29)

which is clearly a tractable expression.

A.3 Proof of expressions ( 19)

Next, we want to simplify the expression for Ψt. Using the result from (21), we get

Ψt =
(
ỹt − JtZat|t−1

)′ (
INt ⊗ Σ−1

t

) (
ỹt − JtZat|t−1

)
−

(
ỹt − JtZat|t−1

)′ (
INt

⊗ Σ−1
t

)
JtZ

[
V −1

t|t−1 + Z ′J ′
t

(
INt

⊗ Σ−1
t

)
JtZ

]−1

×Z ′J ′
t

(
INt ⊗ Σ−1

t

) (
ỹt − JtZat|t−1

)
.

Furthermore, yit − Jg(i)Zat|t−1 =
(
yit − ȳg(i)t

)
+

(
ȳg(i)t − Jg(i)Zat|t−1

)
where ȳgt is the average value of y

in group g at date t. Hence

(
ỹt − JtZat|t−1

)′ (
INt

⊗ Σ−1
t

) (
ỹt − JtZat|t−1

)
=

Nt∑
i=1

[(
yit − ȳg(i)t

)′ Σ−1
t

(
yt− ȳg(i)t

)
+

(
ȳg(i)t − Jg(i)Zat|t−1

)′ Σ−1
(
ȳg(i)t − Jg(i)Zat|t−1

)]
=

G∑
g=1

tr
[
Ng

g Σ−1 Cov
gt

yit

]
+

(
ȳG

t − Zat|t−1

)′ (NG ⊗ Σ−1
t

) (
ȳG

t − Zat|t−1

)
where the last line uses the fact that the trace of a scalar is the scalar. >From (22) it follows that

(
ỹt − JtZat|t−1

)′ (
INt

⊗ Σ−1
t

)
JtZ

[
V −1

t|t−1 + Z ′J ′
t

(
INt

⊗ Σ−1
t

)
JtZ

]−1

×Z ′J ′
t

(
INt ⊗ Σ−1

t

) (
ỹt − JtZat|t−1

)
=

(
ȳG

t − Zat|t−1

)′ (NG ⊗ Σ−1
t

)
Z

[
V −1

t|t−1 + Z ′J ′
t

(
INt

⊗ Σ−1
t

)
JtZ

]−1

×Z ′ (NG ⊗ Σ−1
t

) (
ȳG

t − Zat|t−1

)
.
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Consequently,

Ψt =
G∑

g=1

tr
[
Ng

g Σ−1 Cov
gt

yit

]
+

(
ȳG

t − Zat|t−1

)′ (NG ⊗ Σ−1
t

) {
IGm − Z

[
V −1

t|t−1 + Z ′J ′
t

(
INt

⊗ Σ−1
t

)
JtZ

]−1

(30)

× Z ′ (NG ⊗ Σ−1
t

)} (
ȳG

t − Zat|t−1

)
=

G∑
g=1

tr
[
Ng

g Σ−1 Cov
gt

yit

]
+

(
ȳG

t − Zat|t−1

)′ (NG ⊗ Σ−1
t

) {
IGm − Z

[
V −1

t|t−1 + Z ′ (NG ⊗ Σ−1
t

)
Z

]−1

× Z ′ (NG ⊗ Σ−1
t

)} (
ȳG

t − Zat|t−1

)
.

B Estimation by the EM-algorithm

An alternative approach to standard maximum likelihood estimation, which is very robust

although somewhat slow, is the EM-algorithm developed by Dempster et al. (1977), intro-

duced to the estimation of state space models by Engle and Watson (1983) and Shumway and

Stoffer (1982). In some cases, this algorithm is superior to Simplex initially, but it should

be supplemented with a more efficient algorithm when it starts converging. The idea of the

EM-algorithm is to treat AT ≡ (α′
1, . . . .α

′
T ) as missing data. From an initial estimate Θ0

of the hyper-parameters, we can use the Kalman smoother to obtain estimates of the latent

AT . Instead of considering the ordinary likelihood function, the EM-algorithm employs the

joint likelihood function, which for model (11) is

L (YT ,AT ; Θ) = −
∑T

t=1 Nt

2
ln (2π)−

∑
t Nt

2
ln |Σ|

− 1

2

T∑
t=1

Nt∑
i=1

(
yit − Jg(i)tZαt

)′
Σ−1

t

(
yit − Jg(i)tZαt

)
−

∑
t Nt

2
ln |Q| − 1

2

T∑
t=1

Nt∑
i=1

(αt − Fαt−1)
′ Q−1 (αt − Fαt−1)

− 1

2
ln |Q0| −

1

2
(α0 − a0)

′ Q−1 (α0 − a0) .
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Having obtained estimates of At from an estimate Θj,the next step in the algorithm is to

maximize the expected joint likelihood function with regard to Θ. In this case, we get

E
[
L (YT ,AT ; Θ)

∣∣Θi
]
∝ (31)

−
∑

t Nt

2
ln |Σ| − 1

2

T∑
t=1

Nt∑
i=1

tr

{
Σ−1

t

[(
yit − Jg(i)tZaj

t|T

) (
yit − Jg(i)tZaj

t|T

)′
+ Jg(i)tZV j

t|T Z ′J ′
g(i)t

]}

−
∑

t Nt

2
ln |Q| − 1

2

T∑
t=1

Nt∑
i=1

tr

{
Q−1

[(
aj

t|T − Faj
t−1|T

) (
aj

t|T − Faj
t−1|T

)′
]}

+V j
t|T + FV j

t−1|T F ′ − FBj
t V

j
t|T − V j

t|T Bj
t F

′
]

− 1

2
ln |Q0| −

1

2
tr

{
Q−1

[(
a0 − aj

0|T

) (
a0 − aj

0|T

)′
+ V j

0|T

]}
where Bj

t = V j
t−1|t−1F

′V j−1
t|t−1 and the parameters with superscript j are estimates from the

Kalman smoother conditional on Θj, the hyper-parameters from the j’th iteration of the

EM-algorithm. Calculating the first order conditions and simplifying, we obtain a new set

of parameters Θj+1:

Σj+1
t =

1

Nt

Nt∑
i=1

[(
yit − Jg(i)tZaj

t|T

) (
yit − Jg(i)tZaj

t|T

)′
+ Jg(i)tZV j

t|T Z ′J ′
g(i)t

]
(32)

=
G∑

g=1

N g
g

Nt

[
Cov

gt
(yit) +

(
ȳgt − Jg(i)tZaj

t|T

) (
ȳt − Jg(i)tZaj

t|T

)′
+ JgtZV j

t|T Z ′J ′
gt

]

Qj+1 =
1∑
t Nt

T∑
t=1

Nt

[(
aj

t|T − Faj
t−1|T

) (
aj

t|T − Faj
t−1|T

)′
(33)

+V j
t|T + FV j

t−1|T F ′ − FBj
t V

j
t|T − V j

t|T Bj
t F

′
]

aj+1
0 = aj

0|T Qj+1
0 = V j

0|T (34)

If Σ is time-invariant, an obvious estimator is

Σj+1 =
1∑T

t=1 Nt

T∑
t=1

NtΣ
j+1
t .

We can then go on to calculate a new estimate of At, a new expression for the expected joint

likelihood value from (31), and then calculate new estimates of the hyper-parameters from

(32-34). As shown by Dempster at al. (1977), each step in this iteration will increase the

likelihood value, and the estimated hyper-parameters will converge towards a local maximum

of the likelihood function.
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It is clear that consistent estimates of a0 and Q0 are not available since we do not gain

further information on these parameters from a longer time series. Also, it seems that Q0 is

not well identified since it tends towards zero in most applications of the algorithm. Following

Shumway and Stoffer (1982: 257), it is then probably advisable to choose a reasonable value

for Q0 rather than trying to estimate it.
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