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Sharpened nonsmooth maximum principle
for control problems in finite dimensional state

space.

by
Atle Seierstad, University of Oslo.

Department of Economics, Box 1095, 0317 Oslo, Norway

Abstract In a standard free end nonsmooth control problem in finite di-
mensional state space, a nonsmooth maximum principle is proved, in which
the adjoint inclusion is sharper than the usual one. For end constrained
problems, the same result holds, provided conditions ensuring local control-
lability are satisfied. The adjoint inclusion is expressed by means of a type
of generalized gradient of the pseudoHamiltonian smaller than the standard
one (Clarke’s generalized gradient). From the results in this paper, one can
recover the standard Pontryagin maximum principle in case of (not necessar-
ily continuous) differentiability with respect to the state. (In end constrained
problems, this still holds only if local controllability prevails.)

Mathematics Subject Classification 1991:
Primary 49K15;Secondary 49J52

Key word: Nonsmooth optimal control, nonsmooth maximum principle, smaller
generalized gradients.
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Introduction Various forms of nonsmooth maximum principles are found
in the references, (Hestenes (1966) and Seierstad (1995) excepted). The
aim of this paper is to obtain a sharper nonsmooth maximum principle,
in the sense that the generalized gradient in the standard adjoint inclusion
−ṗ(t) ∈ ∂xH(t, x∗(t), u∗(t), p(t)), for example found in Clarke (1983), is re-
placed by a smaller generalized gradient. The problems considered here do
not have restrictions on the time development of the state. First, free end
problems are treated, then end constrained problems are briefly discussed.
From the results in this paper, one can recover the standard Pontryagin max-
imum principle in case of (not necessarily continuous) differentiability with
respect to the state. (In end constrained problems, this still holds only if
conditions for local controllability hold.)

Notation and terminology For any locally Lipschitz continuous real-
valued function k(x) on R

n, let ∂k(x) = ∂xk(x) be the generalized gradient of
Clarke (1983), let d0k(x)(v) = d0

xk(x)(v) (rather than k0(x; v)) be his gener-
alized directional derivative, while dk(x)(v) = dxk(x)(v) is the ordinary (one
sided) directional derivative. Define

dαk(x)(v) := lim supt↘0, supy∈B(x,α){k(x+ tv + ty) − k(x+ ty)}/t,

d̃k(x)(v) := supα>0 d
αk(x)(v),

and
∂̃k(x) = {x∗ ∈ R

n, 〈v, x∗〉 ≤ d̃k(x)(v) for all v}.

(Evidently, d̃k(x)(v) ≤ d0k(x)(v), further comments on d̃ and ∂̃ are given
in Remark 4 below.) If h takes values in R

m, ∂h(x) = ∂xh(x) is the general-
ized Jacobian of Clarke (1983). A set F of functions f(t, x) : [0, T ] ×R

n → R
n

is switching closed if f1M(t) + (1 − 1M(t))g ∈ F whenever f, g ∈ F and M
is a measurable set in [0, T ]. Here1M is the indicator function of the set M.
B(a, α) is an open ball of radius α around a. The symbol cl denotes clo-
sure. It should be noted that ∂̃ is larger than the generalized gradient ∂B of
Treiman (1990).
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The control problem

Consider the following control problem:

maxx(.),f a · x(T ), a a fixed vector in R
n, (1)

(where a · x, also written 〈a, x〉 = 〈x, a〉, means scalar product), subject
to

ẋ(t) = f(t, x(t)) a.e. in J := [0, T ], x(0) = x0, f ∈ F, x(.) absolutely
continuous. (2)

Here, F is a fixed switching closed family of functions f(t, x) : J ×R
n → R

n,
and x0 ∈ R

n and T > 0 are fixed. Below, (x∗(.), f ∗) is a pair satisfying (2).
It is assumed that there exist positive constants M and ς such that, for all
f ∈ F, for all t, |f(t, x)| ≤ M for all x ∈ B(x∗(t), ς) and x → f(t, x) is
Lipschitz continuous on B(x∗(t), ς) with rank M. We assume that for any
pair (x(.), f) satisfying (2) and x(t) ∈ B(x∗(t), ς) for all t, we have that
a · x∗(T ) ≥ a · x(T ), (x∗(.) is called locally optimal in this case). The follow-
ing theorem holds:

Theorem 1 There exists an absolutely continuous function p(.), with p(T ) =
a, such that

∫
J
〈f(t, x∗(t)), p(t)〉dt ≤

∫
J
〈f ∗(t, x∗(t)), p(t)〉dt for all f ∈ F, (3)

and

−ṗ(t) ∈ ∂̃x〈f
∗(t, x∗(t)), p(t)〉 a.e. (4)

Of course, standard results says that −ṗ(t) belongs to the (larger) set ∂x〈f
∗(t, x∗(t)), p(t)〉.

The proof of the theorem, as well as of the remarks to follow, is presented
later on.

Remark 1 If the linear criterion a ·x(T ) is replaced by the criterion φ(x(T )),
where φ is Lipschitz continuous in B(x∗(t), ς), then replace the condition
p(T ) = a by p(T ) ∈ ∂̃φ(x∗(T )). ,

(A proof is obtained from Theorem 1, by enlarging the interval to [0, T + 1],
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and adding a new state variable y, governed by ẏ = φ(x(t))1[T,T+1], y(0) = 0,
with all f equal to 0 on (T, T + 1], and with criterion y(T + 1).)

Remark 2 In the case f ∗(t, x) has directional derivatives at x∗(t), then (4)
can be replaced by the stricter condition −ṗ(t) ∈ [∂v{dxf

∗(t, x∗(t))(v)}]v=0

a.e.

(This assertion follows from the fact that in Lemma 4 below, γ(s) ∈
[∂v{dxg(s, x

∗(s))(v),
∫

(s,T ]
dν(t)}]v=0 a.e. in case g(t, x) has directional deriva-

tives at x∗(t).)
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Remark 3 Can the above nonsmooth maximum principle be extended
to problems with end constraints? The answer is no in the general case, and
yes in particular cases. The ”no” in general, because the entity ∂̃x does not
have the stability (upper semicontinuity in x) needed for a proof in general
to go through. (That is, a proof using Ekeland’s theorem and perturbed
solutions being optimal in a perturbed problem is not working.) The ”yes in
particular cases”, because sometimes an exact penalization result pertaining
to the penalization of the end condition can be invoked.

To be more precise, add the requirement

Πx(T ) = x1 ∈ R
m,Π : (x1, ..., xn) → (x1, ..., xm),m < n. (5)

Then, for some K ′ > 0, f ∗ is optimal in the free end problem (penaliza-
tion problem) of maximizing a · xf (T ) − K ′|Πxf (T ) − x1| in D, provided
certain local controllability conditions are satisfied. Hence, (using Remark
1),

Theorem 2 In the case where (5) is added to the problem, and one of
the two types of local controllability conditions mentioned below holds, then
the conclusion of Theorem 1 still holds, with the modification that p(T ) = a
is replaced by p(T ) = a+ (b, 0), (b, 0) ∈ R

n, b some vector in R
m.

To describe the two local controllability conditions mentioned, assume that
F = {h(t, x, u(t)) : u(t) ∈ U ⊂ R

m∗

, u(t) measurable}, where h is piecewise
and left continuous in t, and Lipschitz continuous in u, with a rank indepen-
dent of (t, x). Let (x∗(.), u∗(.)) be optimal. The two conditions are:

1. h(t, x, U) = coh(t, x, U) for all (t, x), U is compact, and pseudonormality
in the sense of Clarke (1983), p.224 holds.

2. Condition (4) in Theorem 3 in Seierstad (1995) holds. If U is convex,
even weak variations are allowed in the latter condition, (then U must be
closed as well).

Som further explanations of the conditions are given:

Pseudonormality is defined as follows: For any control u∗∗(t) yielding x∗(t),
no multiplier p(.) exists, with p(T ) = (b, 0) ∈ R

n, b ∈ R
m, such that for

a.e. t, 〈h(t, x∗(t), u), p(t)〉 ≤ 〈h(t, x∗(t), u∗∗(t)), p(t)〉 for all u ∈ U, and
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−ṗ(t) ∈ ∂x〈h(t, x
∗(t), u∗∗(t)), p(t)〉 a.e.

In the simple case where h(t, x, u) has (one-sided) directional derivatives with
respect to x in B(x∗(t), ς) for any (t, u), Condition 2, when employing only
strong variations, reads as follows: For some K ′′ > 0, some δ ∈ (0,ς/2eMT ),
for any unit vector c ∈ R

m, for any û(t) ∈ {u(.) : meas{s : u(s) 6= u∗(t)} ≤ δ},
for some finite collection of points ui ∈ U, some time points ti ∈ (0, T ) be-
ing regulated points of û(t), and some positive numbers υi, the inequality
c ·Πq(T ) > K ′′{

∑
i υi} holds, where q(t) is the piecewise continuous solution

of q̇(t) = dxh(t, x̂(t), û(t))(q(t)) a.e., q(ti+) − q(ti−) =∑
j∈{j:tj=ti}

υj[h(tj, x̂(tj), uj) − h(tj, x̂(tj), û(tj))], q(0) = 0. Here, x̂(.) is the

solution corresponding to û(.), q(.) is continuous at all t /∈ {ti}.

For both Conditions 1 and 2, the following local controllability property
holds: For some δ′ > 0, for all x̂ ∈ clB(x1, δ

′) ⊂ R
m, for some f ∈ D,

Πxf (T ) = x̂.

(From this result, optimality of f ∗ in the penalization problem follows by
arguments similar to those employed in proving Lemma 1 below).

Proofs

In all proofs below, for simplicity, x0 = 0 will be assumed. Define
D = {f ∈ F : supx(.)∈B(x∗(.),ς)

∫ T

0
|f(t, x(t))dt− f ∗(t, x(t))|dt ≤ ς/2K}, where

K = eMT and B(x∗(.), ς) is a ball in C(J,Rn). By Gronwall’s inequality and
an existence and continuation argument, for any f ∈ D′ := coD, a unique
solution x(t) = xf (t) ∈ clB(x∗(t), ς/2) of the equation in (2) exists. Note
that f ∗ is even optimal in D′, (solutions xf (.), f ∈ D′ can be approximated
uniformly by solutions xf (.), f ∈ D). Some lemmas are needed.

Lemma 1 (Exact penalization) The pair (x∗(.), f ∗) maximizes

ψ(x(.), f)) := a · x(T ) −K|a| supt∈J |x(t) −
∫ t

0
f(s, x(s))ds|

for (x(.), f) in clB(x∗(.), ς/2) ×D′.

Proof Assume of the pair (x(.), f) ∈ clB(x∗(.), ς/2) ×D′ that ψ(x(.), f) >
ψ(x∗(.), f ∗). There exists an absolutely continuous function z(t) ∈ clB(x∗(t), ς/2)
such that ż(s) − f(s, z(s)) = 0 a.e. Let y(t) = x(t) −

∫ t

0
f(s, x(s))ds. Then,
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by Gronwall’s inequality, supt|z(t) − x(t)| ≤ K supt |y(t)|. Hence, a · x∗(T ) ≥
a · z(T ) ≥ a · x(T ) −K|a| supt |y(t)| = ψ(x(.), f) > ψ(x∗(.), f) = a · x∗(T ), a
contradiction. Thus, ψ(x(.), f) ≤ ψ(x∗(.), f ∗).

Lemma 2 Let a ∈ R
m, C be a closed convex subset of C(J,Rn), g(t, x) :

J × R
n → R

m be, separately measurable in t and, on B(x∗(t), ς) bounded by
M and Lipschitz continuous in x of rank M , where x∗(.) is a given function
in C. Let P ∗ be the set of vector valued Radon measures ν taking values
in clB(0, 1) ⊂ R

m. Let ξ(x(.)) := supt |
∫ t

0
g(s, x(s))ds|, x(.) ∈ C(J,Xn). As-

sume that x∗(.) maximizes a ·x(T )−ξ(x(.)) in C. Then, for some measurable
β(t) ∈ ∂xg(t, x

∗(t)) a.e. and some ν ∈ P ∗, we have ζ(v(.)) ≤ 0 for all
v(.) ∈ C − x∗(.), where

ζ(v(.)) := a·v(T )+
∫

J
(
∫ t

0
β(s)v(s)ds)dν(t) = a·v(T )+

∫
J
〈β(t)v(t),

∫
(t,T ]

dν(τ)〉dt.

(Below, we shall, essentially, apply Lemma 2 to a situation in which supt |
∫ t

0
g(s, x∗(s))ds| =

0, so we drop additional information on ν).

Proof Choose a sequence of mollifiers ψi with respect to x, (see e.g. Rock-
afellar and Wets (1998), pp. 254, 409), vanishing outside B(0, ς/2i), with
corresponding C1− functions gi(t, x′) defined for x′ in B(x∗(t), ς/2), aver-
aging values of g(t, x), x ∈ B(x′, ς/2i) ⊂ B(x∗(t),ς), such that |gi(t, x′) −
g(t, x′)| ≤ Mς/2i, for x′ ∈ B(x∗(t), ς/2), t ∈ J . Then, for ξi(x(.)) :=
supt |

∫ t

0
gi(s, x(s))ds|, we have |ξi(x(.))−ξ(x(.))| ≤ T ′/i, where T ′ := TMς/2,

for x(.) ∈ B(x∗(t), ς/2). Let C ′ = C ∩ clB(x∗(t), ς/4). Using Ekeland’s vari-
ational principle, choose for each i, elements xi(.) ∈ C ′, |x∗(.) − xi(.)|∞ ≤
(T ′/i)1/2, maximizing

a · x(T ) − ξi(x(.)) − (T ′/i)1/2 · |x(.) − xi(.)|∞

in C ′. Let η(y(.)) = supt |y(.)|, y(.) ∈ C(J,Rm).Given any y∗(.) ∈ C(J,Rm), ∂y(.)η(y
∗(.)) ⊂

{w(.) →
∫

J
〈w(t), z∗(t)〉dµ(t) : µ is some probability Radon measure, z∗(t)

some function such that z∗(t) ∈ clB(0, 1), z∗(.) measurable with respect to
µ}, see, for example, Clarke (1983), 2.8.2, Corollary 1, combined with the
fact that [∂|y|]y=0 ⊂ clB(0, 1) ⊂ R

m, y ∈ R
m,

[∂|y|]y 6=0 = d|y|/dy ∈ clB(0, 1). Moreover, using Chain rule II, 2.3.10 in
Clarke (1983), for y(.) =

∫ .

0
gi(s, x(s))ds, y∗(.) =

∫ .

0
gi(s, xi(s))ds, we get

∂x(.)η(y
∗(.)) = ∂y(.)η(y

∗(.))◦
∫ .

0
gi

x(s, x
i(s))ds ⊂ {v(.) →

∫
J
〈
∫ t

0
gi

x(s, x
i(s))v(s)ds, zi(t)〉dµi(t) :

µi is some probability Radon measure, zi(t) some function such that
zi(t) ∈ clB(0, 1),
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zi(.) measurable with respect to µi}.

Thus, using optimality of xi(.), then for some νi, νi ∈ P ∗, ζ i(v(.)) ≤ 0 for any
v(.) ∈ C ′′ := C−x∗(.), where ζ i(v(.)) := a·v(T )+

∫
J
(
∫ t

0
gi

x(s, x
i(s))v(s)ds)dνi(t)+

(T ′/i)1/2 ·
∫

J
v(s)dνi(t), (the second term is obtained by letting νi(A) :=

−
∫

A
zi(t)dµi(t), the last term arises similarly.)

Using the Lipschitz rank M, (a bound on gi
x), choose a subsequence ij

such that g
ij
x (., xij(.)) converges weakly (L1, L∞) to some limit β(s), and

such that νij (∈ C(J,Rm)∗) converges weakly* to some limit ν. For sim-
plicity, assume (gi

x(., x
i(.)), νi) to converge in this manner. Then, β(s) :=

limi g
i
x(s, x

i(s)) ∈ ∂xg(s, x
∗(s)) a.e. To see this, let a sequence of convex

combinations hj(s) :=
∑nj

n=1 θ
j
ng

inj
x (s, xinj (s)), inj ≥ j, of elements in the se-

quence gi
x(s, x

i(s)) be L1−, and even a.e. − convergent, to β(.). Then, by
Rademacher’s theorem, (see 9(38) in Rockafellar and Wets (1998)), for a.e.
t, for any j,

hj(t) =
∑nj

n=1 θ
j
n

∫
Rn gx(t, x

inj −z)ψinj (z)dz ∈ clco∪x∈B(x∗(t),(T/j)1/2+ς/2j)∂xg(t, x).

By upper semicontinuity of x → ∂xg(t, x) = clco∂xg(t, x), β(t) = limj hj(t) ∈
∂xg(t, x

∗(t)), for a.e. t.

Moreover, using the Lipschitz rank M, {t →
∫ t

0
gi

x(s, x
i(s))v(s)ds}i is equiu-

niformly continuous, so
∫ t

0
gi

x(s, x
i(s))v(s)ds →

∫ t

0
β(s)v(s)ds uniformly in t,

and
∫

J
(
∫ t

0
gi

x(s, x
i(s))v(s)ds)dνi(t)

→
∫

J
(
∫ t

0
β(s)v(s)ds)dν(t).Hence, 0 ≥ limi ζ

i(v(.)) = ζ(v(.)), where ζ(v(.)) :=

a · v(T ) +
∫

J
(
∫ t

0
β(s)v(s)ds)dν(t) = a · v(T ) +

∫
J
〈β(s)v(s),

∫
(s,T ]

dν(t)〉ds.

Lemma 3 Let k(x) be real-valued and locally Lipschitz continuous on R
n.

Let ďk(x)(v) := limj

∑nj

n=1 θ
j
n[k(x + λj

nv) − k(x)]/λj
n, λ

j
n ∈ (0, 1/j], θj

n ≥
0,

∑
n θ

j
n = 1, θj

n and λj
n being entities for which this limit, by assumption,

holds for all v. Then [d0
v{ďk(x)(v)}(w)]v=0 ≤ d̃k(x)(w).

Proof For any m, there exists a pair (y, µ) := (ym, µm) ∈ B(0, 1/m) ×
(0, 1/m) such that [d0

v{ďk(x)(v)}(w)]v=0 − 1/m ≤ [ďk(x)(y+µw)−ďk(x)(y)]/µ.
Next, for all j large enough, (j ≥ jm,y,w), |ďk(x)(y + µw) −

∑nj

n=1 θ
j
n[k(x +

λj
n(y + µw)) − k(x)]/λj

n| ≤ 1/m and |ďk(x)(y) −
∑nj

n=1 θ
j
n[k(x + λj

ny) −
k(x)]/λj

n| ≤ 1/m. Write y′
m := y′ := y/µ. Then, [d0

v{ďk(x)(v)}(w)]v=0−
3/m ≤
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{
∑nj

n=1 θ
j
n[k(x+λj

n(y+µw))−k(x)]/λj
n−

∑nj

n=1 θ
j
n[k(x+λj

ny)−k(x)]/λ
j
n]/λj

n}/µ =
{
∑nj

n=1 θ
j
n[k(x+ λj

n(y + µw)) − k(x+ λj
ny)]/λ

j
n}/µ

= {
∑nj

n=1 θ
j
n[k(x+ λj

nµ(y′ + µw)) − k(x+ λj
nµy

′)]/λj
n}/µ

≤
∑nj

n=1 θ
j
n supλ∈(0,1/j] supy′′≤|y′|{k(x+ λµy′′ + λµw) − k(x+ λµy′′)}/λµ =

supλ∈(0,1/j] supy′′≤|y′|{k(x+ λµy′′ + λµw) − k(x+ λµy′′)}/λµ.

This holds for all large j, so [d0
v{ďk(x)(v)}(w)]v=0 − 3/m ≤

lim supλ↘0 supy
′′

≤|y′|{k(x+λµy′′ +λµw)−k(x+λµy′′)}/λµ = d|y′

m|k(x)(w) ≤

d̃k(x)(w).
Since this holds for all m, [d0

v{ďk(x)(v)}(w)]v=0 ≤ d̃k(x)(w).

Lemma 4 Let ξ(x∗(.)) = 0 in Lemma 2. Then the inequality 0 ≥ ζ ′′(v(.))
holds for v(.) ∈ C − x∗(.), where ζ ′′(v(.)) := a · v(T ) +

∫
J
〈γ(t), v(t)〉dt, for

some ν ∈ P ∗ and some measurable γ(s) ∈ ∂̃x〈g(s, x
∗(s)),

∫
(s,T ]

dν(τ)〉 a.e.

Proof For any v(.) ∈ C(J,Rn), there exists a sequence of numbers λn ↘ 0,
such that 4g(., λn, v(.)) := [g(., x∗(.) + λnv(.)) − g(., x∗(.))]/λn converges
weakly (L1, L∞) to some weak limit hv(.)(.) (= t → hv(.)(t)). By diagonal
selection, the sequence may even be taken to be one and the same for all v(.)
in a countable dense set V in C(J,Rn). For each v(.) ∈ V, a sequence of con-

vex combinations hj(., v(.)) =
∑ij

i=1 θ
j
i 4g(., λj

ni
, v(.)), λj

ni
≤ 1/j, converges in

L1−norm, to the weak limit hv(.)(t). By diagonal selection, for θj
i , λ

j
ni

suitably

chosen, one obtains a sequence
∑ij

i=1 θ
j
i 4g(., λj

ni
, v(.)) of convex combinations

of elements from the sequence 4g(., λn, v(.)) that converges in L1−norm to
hv(.)(.), for all v(.) ∈ V. In fact, we can even obtain pointwise convergence
to hv(.)(.) on a set of full measure J ′, and for all v(.) ∈ C(J,Rn), J ′ inde-
pendent of v(.). For t ∈ J ′, define h(t, v) = hv(.)(t), for v(.) ≡ v ∈ R

n, and
note that h(t, v) is Lipschitz continuous in v of rank M. Moreover, by op-
timality of x∗(t) and ξ(x∗(.)) = 0, for v(.) ∈ C − x∗(.), λ ∈ (0, 1], we have
0 ≥ a·(λv(T )+x∗(T ))−supt |

∫ t

0
g(s, x∗(s)+λv(s))ds|−{a·x∗(T )−ξ(x∗(.))} =

λa·v(T )−λ supt |
∫ t

0
4g(s, λ, v(s))ds|, or 0 ≥ a·v(T )−supt |

∫ t

0
4g(s, λ, v(s))ds|.

Since, by the Lipschitz rank M , {t →
∫ t

0
4g(s, λn, v(s))ds}n is equiuniformly

continuous, then
limλn supt |

∫ t

0
4g(s, λn, v(s))ds| = supt |

∫ t

0
h(s, v(s))ds|. Hence, v(.) = 0 is

optimal in the problem

maxv(.)∈C−x∗(.) a · v(T ) − supt |
∫ t

0
h(s, v(s))ds|.

Applying Lemma 2 gives ζ∗(v(.)) ≤ 0, v(.) ∈ C−x∗(.), for ζ∗(v(.)) := a·v(T )+
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∫
J
〈β(t)v(t), (

∫
(t,T ]

dν(s)〉dt = a · v(T ) +
∫

J
〈
∫

(t,T ]
dν(s), β(t)v(t)〉dt,

β(s) ∈ [∂vh(s, v(s))]v=0 a.e. Write w(t) =
∫

(t,T ]
dν(s). Then, a.e., w(t)β(t) ∈

[∂v〈w(t), h(t, v)〉]v=0 = [∂v〈h(t, v), w(t)〉]v=0.Now, 〈h(t, v), w(t)〉 = ďx〈g(t, x
∗(t)), w(t)〉(v),

where ď〈g(t, x∗(t)), w(t)〉(v) = limj〈
∑ij

i=1 θ
j
i 4g(t, λj

ni
, v), w(t)〉. Hence, by

Lemma 3,
[d0

v{〈h(t, v), w(t)〉}(v′)]v=0 = [d0
v{ďx〈g(t, x

∗(t)), w(t)〉(v)}(v′)]v=0 ≤
d̃x〈g(t, x

∗(t))(w(t)〉(v′). Thus, a.e., γ(t) := w(t)β(t) ∈ ∂̃x〈g(t, x
∗(t)), w(t)〉.

Lemma 5 In Lemmas 2 and 4, change ξ(x(.)) to ξ(x(.)) = supt |
∫ t

0
g(s, x(s))ds−

Πx(t)| where Π : (x1, ..., xn) → (x1, ..., xm),m < n. If x∗(.) is optimal in C
for this definition of ξ(x(.)), and ξ(x∗(.)) = 0, then 0 ≥ ζ̂(v(.)) holds for
v(.) ∈ C − x∗(.), where ζ̂(v(.)) := a · v(T ) +

∫
J
〈γ(t), v(t)〉dt−

∫
J

Πv(s)dν(s),

for some ν ∈ P ∗ and some measurable γ(s) ∈ ∂̃x〈g(s, x
∗(s)),

∫
(s,T ]

dν(τ)〉 a.e.

Proof The proof is an obvious modification of the proofs of lemmas 2 and
4, (note that for the present definition of ξ(x(.)), the functions ζ i(v(.)) in the
proof of Lemma 2 would become equal to a·v(T )+

∫
J
[(
∫ t

0
gi

x(s, x
i(s))v(s)ds)−

Πv(t)]dνi(t) + (T ′/i)1/2
∫

J
v(s)dνi(t)).

Lemma 6 Let the locally Lipschitz continuous real-valued function a(x, y),
x ∈ R

n, y ∈ R
m be linear in y. Then d̃x,ya(x̂, ŷ)(v, v

′) = d̃xa(x̂, ŷ)(v)+a(x̂, v
′).

Proof Let (v, v′) ∈ R
n × R

m, (w,w′) ∈ B(0, α) ⊂ R
n × R

m. Note that
[a(x̂+ λw + λv, ŷ + λw′ + λv′) − a(x̂+ λw, ŷ + λw′)]/λ =
[a(x̂+ λw + λv, ŷ) − a(x̂+ λw, ŷ)]/λ+ a(x̂, λv′)/λ+
[a(x̂+λw+λv, λw′)/λ−a(x̂+λw, λw′)/λ]+[a(x̂+λw+λv, λv′)/λ−a(x̂, λv′)/λ]
where the two last square bracket terms are smaller thanK∗λ|v| andK∗λ|w+
v|, respectively, K∗ being the Lipschitz rank of a(x, y) near (x̂, ŷ). From this
the assertion immediately follows.

Continued proof of Theorem 1 Let F 0 = {f i(t, x)} be a finite subset
of D′, with m members. Define Λm := {λ = (λ1, ..., λm) : λi ∈ [0, ς/4m]. De-
fine g(t, x, λ) := f ∗(t, x)+

∑
i λi[f

i(t, x)−f ∗(t, x)], C = {v̂(.) ∈ (C(J,Rn+m) :
v̂i(.) ∈ clB(x∗

i (t), ς/4n), i ≤ n,
(v̂n+1(t), ..., v̂n+m(t)) ∈ Λm, v̂i(.) constant for i > n}. By Lemma 1, for
(x(.), λ) ∈ C, (x∗(.), 0) maximizes a · x(T ) − K|a| supt |

∫ t

0
g(s, x(s), λ)ds −

x(t)|, or a′ · x(T ) − supt |
∫ t

0
g(s, x(s), λ)ds − x(t)|, where a′ = a/K|a|. By

Lemma 5, for some ν ∈ P ∗,(with m = n), and some γ(t) = (γ′(t), γ′′(t)) ∈
∂̃x,λ〈g(t, x

∗(t), 0), w(t)〉, w(t) =
∫

(t,T ]
dν(s), we have, for v̂(.) = (v(.), λ′) ∈
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C−(x∗(.), 0), that 0 ≥ ζ̃(v(.), λ′), where ζ̃(v(.), λ′) = a′·v(T )+
∫

J
(〈γ′(t), v(t)〉+

〈γ′′(t), λ′〉)dt−
∫

J
v(s)dν(s). Now, by Lemma 6, and the obvious rule d̃(h1 +

h2) ≤ d̃h1 + d̃h2, at x = x∗(t), λ = 0, we get

d̃x,λ〈g(t, x
∗(t), 0), w(t)〉(v, λ′) ≤ d̃x〈f

∗(t, x∗(t)), w(t)〉(v)+〈f(t, x∗(t))λ′, w(t)〉,

where f(t, x) = (f 1(t, x) − f ∗(t, x), ..., fm(t, x) − f ∗(t, x)) and f(t, x)λ′ =∑
i λ

′
i(f

i(t, x) − f ∗(t, x)), ([d̃x,λ

∑
i λi{f

i(t, x) − f ∗(t, x)}]x=x∗(t),λ=0(v, λ
′) =

f(t, x)λ′, by Lemma 6). Thus, a.e.

(γ′(t), γ′′(t)) ∈ ∂̃x,λ〈g(t, x
∗(t), 0), w(t)〉 ⊂ (∂̃x〈f

∗(t, x∗(t)), w(t)〉, 〈f(t, x∗(t)), w(t)〉).

As 0 ≥ ζ̃(v(.), 0) is satisfied for ±v(.), 0 = ζ̃(v(.), 0) = a′·v(T )+
∫

J
〈γ′(t), v(t)〉dt−

∫
J
v(s)dν(s). In particular, for v(t) =

∫ t

0
v̌(s)ds, vi(t) ∈ clB(0, ς/4n), (v̌i(.)

otherwise arbitrary, integrable), this equality is satisfied. Inserting this v(t)
and partially integrating the last term yield

0 =
∫

J
[〈a′ + w(t), v̌(t)〉 + 〈γ′(t), v(t)〉]dt. (6).

But then, by duBois Reymond’s lemma, see Hestenes (1966), p.50, for a.e.
t, a′ +w(t) =

∫ t

0
γ′(s)dt. Now, w(t) is absolutely continuous in (0, T ), by the

last equality. In fact, ẇ(t) = γ′(t) a.e. Since w(t) =
∫

(t,T ]
dν(t), ẇ = −ν̇(t),

t ∈ (0, 1), and w(t) =
∫

{T}
dν(t) +

∫
(t,T )

ν̇(s)ds =
∫

{T}
dν(t) −

∫
(t,T )

ẇ(s)ds.

Inserting this expression for w(t) in (6) and partially integrating the term
containing v̌(.), we get 0 = (a′−w(T−)) ·v(T ) = 0, hence w(T−) = a′. Then,
for p(t) = K|a|w(t−), we get the conclusions p(T ) = a and (4) in Theorem
1. Moreover, for (0, λ′) ∈ C − (x∗(.), 0), 0 ≥ ζ̃(0, λ′) =

∫
J
〈γ′′(t), λ′〉dt =∫

J
〈
∑

i λ
′
i(f

i(t, x∗(t)) − f ∗(t, x∗(t))), w(t)〉dt, so the maximum condition (3)
follows for f ∈ F 0.

Let P F 0

be the nonempty set of absolutely continuous functions p(.) sat-
isfying p(T ) = a, (4), and (3) for F replaced by F 0. This set is compact
in the |.|∞− topology: Given any sequence pn(.), a subsequence nj exists
such that {ṗnj

(.)}j ⊂ L1(J,R
n) is weakly convergent with limit ṗ(.) ∈

L1(J,R
n) and pnj

(t) is |.|∞− convergent to limjpnj
(T ) +

∫ t

T
ṗ(s)ds. By

∂̃x〈f
∗(t, x∗(t)), p(t)〉 = clco∂̃x〈f

∗(t, x∗(t)), p(t)〉 and upper semicontinuity of
y∗ → ∂̃x〈f

∗(t, x∗(t)), y∗〉, the weak limit p(.) satisfies (4). (To see this, con-
sider again a L1−convergent sequence of convex combinations of elements
from {ṗnj

(.)}j.) Let F be the set of finite collections F 0. The sets P F 0

,

F 0 ∈ F , obviously have the finite intersection property. Hence, ∩F 0∈FP
F 0

is
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nonempty. An element p(.) ∈ ∩F 0∈FP
F 0

evidently satisfies p(T ) = a and (3)
and (4).

Remark 4 For any locally Lipschitz continuous real-valued function k(x),
we have d̃k(x)(v) ≤ d0k(x)(v) and ∂̃k(x) ⊂ ∂k(x). If k(x) is differentiable at
x̂, then ∂̃k(x̂) is the one point set {dk(x̂)/dx}. These properties as well as
all properties mentioned below hold even if x belongs to a real normed space
X. (Then differentiability must be in the Frechet sense.)

The function v → d̃k(x)(v) is finite, positively linearly homogeneous, sub-
additive, and is Lipschitz continuous with rank K if k(.) has this Lipschitz
rank near x. Moreover, d̃k(x)(−v) = d̃(−k(x))(v), and d̃(k(x) + k∗(x))(v) ≤
d̃k(x)(v)+ d̃k∗(x)(v) if k∗(.) is another locally Lipschitz continuous function.
For any real λ, ∂̃(λk(x)) = λ∂̃k(x). If x is a local maximum or a local mini-
mum of k(x), then 0 ∈ ∂̃k(x). Moreover, ∂̃k(x)(v) 6= ∅, by the Hahn-Banach
theorem. From the theory of support functions, x∗ ∈ ∂̃k(x) ⇔ 〈v, x∗〉 ≤
d̃k(x)(v) for all v.

Lebourg’s mean value theorem is satisfied even for ∂ replaced by ∂̃, (i.e.
k(y) − k(x) ∈ 〈∂̃k(u), y − x〉 for some u ∈ [x : y],(the segment between
x and y). We have the following chain rule: Let F : X → R

n be Lipschitz
continuous near x, let g: R

n → R be Lipschitz continuous near F (x), and
let f(x) = g(F (x)). Then ∂̃f(x) ⊂ cl∗co{∂̃〈F (x), y∗〉 : y∗ ∈ ∂g(F (x))}, cl∗

being weak* closure.

Of course, upper semicontinuity of x → ∂̃k(x) fails to hold. At least in
finite dimensions, ∩ε>0 ∪x∈B(x̂,ε) ∂̃k(x) = ∂k(x̂), (cf. Clarke (1983), 2.5.1).

Proofs are given in the Appendix.

Appendix

Proofs of assertions in Remark 4 The proof of subadditivity of d̃k is as
follows: Let v, w ∈ X. For any α, dαk(x)(v+w) := lim supt↘0, supy∈B(0,α){k(x+
t(v + w) + ty) − k(x+ ty)}/t ≤
lim supt↘0 supy∈B(0,α){k(x+ tv + t(w + y)) − k(x+ t(w + y))}/t+
lim supt↘0 supy∈B(0,α){k(x+ t(w + y)) − k(x+ ty)}/t ≤
lim supt↘0 supy̌∈B(0,α+|w|){k(x+ tv + ty̌) − k(x+ ty̌)}/t+
lim supt↘0 supy∈B(0,α){k(x+ t(w + y)) − k(x+ ty)}/t ≤
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d̃k(x)(v) + d̃k(x)(w)

Positive linear homogeneity of d̃: For λ > 0, lim supt↘0 supy∈B(0,α){k(x+tλv+
ty)−k(x+ty)}/t = lim supt↘0 supy∈B(0,α/λ) λ{k(x+tλv+tλy)−k(x+tλy)}/tλ.
Taking supα on both sides yields the homogeneity.

Proof of d̃(−k(x))(v) = d̃k(x))(−v). We have dαk(x)(−v) =
lim supt↘0 supy∈B(0,α){k(x+ t(−v) + ty) − k(x+ ty)}/t =
lim supt↘0 supy∈B(0,α){−k(x+ tv + t(y − v)) + k(x+ t(y − v))}/t ≤

lim supt↘0 supy̌∈B(0,α+|v|){−k(x+ tv + ty̌)) − [−k(x+ ty̌)]}/t ≤ d̃(−k(x))(v).

Hence, d̃k(x)(−v) ≤ d̃(−k(x))(v). By symmetry, d̃(−k(x))(v) ≤ d̃k(x)(−v).

A local extreme point of k is a local extreme point of −k, and if x is a
local minimum of one of them, the generalized direction derivative d̃ of it is
≥ 0 for all v, which gives that 0 belongs to the generalized gradient ∂̃ of it.

For any α, supt∈(0,ε), supy∈B(0,α){k(x+ tv + ty) − k(x+ ty)}/t ≤
supt∈(0,ε),y̌∈B(0,εα){k(x+ tv + y̌) − k(x+ y̌)}/t, (t ∈ (0, ε), y ∈ B(0, α) ⇒ y̌ =

εy ∈ B(0, εα)). Taking infε>0 on both sides yields d̃k(x)(v) ≤ d0k(x)(v).

To show Lebourg’s theorem, first it is proved that if φ(τ) = k(x+ τ(y − x))
and v ∈ R, then d̃φ(τ)(v) ≤ d̃k(x+τ(y−x))(v(y−x)). To show this, note that

lim supt↘0 supy̌∈B(0,α){φ(τ + tv + ty̌) − φ(x+ ty̌)}/t =
lim supt↘0 supy̌∈B(0,α){k(x+ τ(y − x) + tv(y − x) + ty̌(y − x)) − k(x+ τ(y −
x) + ty̌(y − x))}/t ≤
lim supt↘0 supỹ∈B(0,α|y−x|){k(x+ τ(y−x)+ tv(y−x)+ tỹ)− k(x+ τ(y−x)+
tỹ)}/t ≤
d̃k(x+ τ(y − x))(v(y − x)),

(The first two balls are balls in R, the last one is a ball in X.) Next, de-
fine θ(τ) = φ(τ) + τ(φ(0) − φ(1)). Then θ(0) = θ(1) and there is an extreme
point τ ∗ ∈ (0, 1) of θ(.). Then 0 ∈ ∂̃θ(τ ∗). Now, ∂̃φ(τ ∗) ⊂ {ζ ∈ R : vζ ≤
d̃k(x + τ ∗(y − x))(v(y − x)) for all v ∈ R}. Now, for any ζ in the last set,
let ζ∗ be a linear functional defined on linspan{(y − x)} by 〈w, ζ∗〉 := vζ if
w = v(y−x). By Hahn-Banach’s theorem, ζ∗ can be extended to all X, with
wζ∗ ≤ d̃k(x + τ ∗(y − x))(w) holding for all w ∈ X, hence the extended ζ∗

belongs to ∂̃k(x+ τ ∗(y−x)). Thus, ∂̃φ(τ ∗) ⊂ 〈∂̃k(x+ τ ∗(y−x)), y−x)〉 and
0 ∈ ∂̃θ(τ ∗) ⊂ 〈∂̃k(x+ τ ∗(y − x)), y − x)〉 + φ(0) − φ(1).
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The chain rule is proved as follows. For each i = 1, 2, ..., let ti ∈ (0, 1/i), yi

∈ B(0, α), have the property that dαf(x)(v) + 1/i ≥ {f(x + tiv + tiyi) −
f(x+ tiyi)}/ti ≥ dαf(x)(v) − 1/i. The mean value theorem furnishes a pair
(ui, y

∗
i ), y

∗
i ∈ (Rn)∗ = R

n, y∗
i ∈ ∂g(ui), ui ∈ [F (x + tiyi) : F (x + tiv + tiyi)],

the segment between F (x+ tiyi) and F (x+ tiv + tiyi), such that

{f(x+ tiv+ tiyi)− f(x+ tiyi)}/ti = 〈{F (x+ tiv+ tiyi)−F (x+ tiyi)}/ti, y
∗
i 〉.

A subsequence y∗
ij

of yi converges to some limit y∗
α ∈ ∂g(F (x)), (ui →

F (x)). Lipschitz continuity gives the boundedness needed to conclude that
dαf(x)(v) =
limi〈{F (x+ tiv + tiyi) − F (x+ tiyi)}/ti, y

∗
i 〉 =

limi〈{F (x+ tiv + tiyi) − F (x+ tiyi)}/ti, y
∗
α〉 ≤

lim supt↘0 supy∈B(0,α)〈{F (x+ tv+ ty) −F (x+ ty)}/t, y∗
α〉 = dα〈F (x), y∗

α〉(v).

Hence, d̃f(x)(v) ≤ supy∗∈∂g(F (x)) d̃〈F (x), y∗〉(v) = supy∗∈∂g(F (x)) sup〈v, ∂̃〈F (x), y∗〉〉.

Let κ(v) := sup〈v,K〉, K := ∪y∗∈∂g(F (x))∂̃〈F (x), y∗〉. As d̃f(x)(v) ≤ κ(v),
then
∂̃f(x)(v) ⊂ cl∗coK.

Proof of k(x) differentiable ⇒ ∂̃k(x) ⊂ {dk(x)/dx}. We have, for all w ∈
clB(0, α), that k(x + λv + λw) − k(x + λw) = k(x + λv + λw) − k(x) −
[k(x+ λw) − k(x)] = k′(x)[λv + λw] − k′(x)[λw] plus two second order term
in λ, the sizes of which are independent of w. From this it follows that
dαk(x)(v) = k′(x)[v] and d̃k(x)(v) = k′(x)[v].

More details of certain proofs

a. The existence in Lemma 4 of hj(t, v(.)) :=
∑ij

i=1 θ
j
i 4g(., λj

ni
, v(.)),

L1−convergent to hv(.)(.) for each v(.) ∈ V := {vk(.)}. There exists a sequence

of convex combinations hj1(., v1(.)), j1 = 1, 2, ..., hj1(., v(.)) =
∑ij1

i=1 θ
j1
i 4g(., λj1

ni
, v(.)),

all ni ≥ j1 ≥ 1, hj1(., v1(.)) converging in L1− norm to hv1(.)(.). In fact, we
can arrange it so that |hj1(., v1(.)) − hv1(.)(.)|1 ≤ 1/j1, for all j1. Evidently,
hj1(., v2(.)), j1 = 1, 2... converges weakly to hv2(.)(.). Hence, a convex combi-

nation hj2(., v2(.)) =
∑ij2

i=1 θ
j2
i hj1i

(., v2(.)), all j1i
≥ j2, j2 = 2, 3, ..., satisfies

|hj2(., v2(.)) − hv2(.)(.)|1 ≤ 1/j2. Evidently, also v1(.) satisfies the same in-

equality. Moreover, we can write hj2(., v(.)) =
∑ij2

i=1 θ̂
j2
i 4g(., λj2

ni , v(.)), θ̂
j2
i ≥

0,
∑

i θ̂
j2
i = 1, ni ≥ j2. Continuing in this manner, for any m, for any jm =

m,m+1, ..., we can find a convex combination hjm(., v(.)) =
∑ijm

i=1 θ̂
jm

i 4g(., λjm

ni , v(.))

such that |hjm(., vm′(.)) − hvm′ (.)(.)|1 ≤ 1/jm for all m′ ≤ m,λni = λjm

ni
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satisfying ni ≥ jm. Then, in particular for all m, for jm = m, we get
|hm(., vm′(.))−hvm′ (.)(.)|1 ≤ 1/m for m′ ≤ m. By diagonal selection, a subse-
quence mj has the property that for each m′, hmj

(t, vm′
(t)) → hvm′ (.)(t), for

all t ∈ J ′, J ′ having full measure and being independent of m′.

b. In Lemma 4, hmj
(t, v(t)) → hv(.)(t) for all v(.) ∈ C(J,Rn), not only for

v(.) ∈ V : Let v(.) ∈ C(J,Rn), ε > 0, and let t ∈ J ′. Choose vk(.) ∈ V such
|v(.)−vk(.)|

∞ < ε/3M. Next, choose mj such that |hmj
(t, vk(t))−hvk(.)(t)| <

ε/3. By Lipschitz continuity of v → hmj
(t, v) and v(.) → hv(.)(t) of rank

M, |hmj
(t, v(t)) − hmj

(t, vk(t))| < ε/3, and |hv(.)(t) − hvk(.)(t)| < ε/3. Hence,

|hmj
(t, v(t)) − hv(.)(t)| < ε.

c. Upper semicontinuity of y∗ → ∂̃〈f ∗(t, x∗(t)), y∗〉, (used in Continued
proof of theorem 1). It suffices to prove the closed graph property: Let
yn ∈ ∂̃〈f ∗(t, x∗(t)), y∗

n〉, yn → y, y∗
n → y∗. We need to show that y ∈

∂̃〈f ∗(t, x∗(t)), y∗〉. This follows if we prove 〈v, y〉 ≤ d̃〈f ∗(t, x∗(t)), y∗〉(v) for
all v. By the Lipschitz rank M, for any λ > 0, |[f ∗(t, x∗(t) + λv + λw) −
f ∗(t, x∗(t) + λw)]/λ| ≤ M |v|, so for any z∗, ž∗ ∈ R

n,

〈[f ∗(t, x∗(t) + λv + λw) − f ∗(t, x∗(t) + λw)]/λ, z∗〉 ≤
〈[f ∗(t, x∗(t) + λv + λw) − f ∗(t, x∗(t) + λw)]/λ, ž∗〉 +M |v||z∗ − ž∗|.

Taking supa lim supλ↘0 supw∈B(0,α) on both sides yields d̃x〈f
∗(t, x∗(t)), z∗〉(v) ≤

d̃x〈f
∗(t, x∗(t)), ž∗〉(v) +M |v||z∗ − ž∗|. By symmetry, d̃x〈f

∗(t, x∗(t)), ž∗〉(v) ≤
d̃x〈f

∗(t, x∗(t)), z∗〉(v)+M |v||z∗−ž∗|.Hence, |d̃x〈f
∗(t, x∗(t)), z∗〉(v)−d̃x〈f

∗(t, x∗(t)), ž∗〉(v)| ≤
M |v||z∗ − ž∗|.

Then, evidently, d̃x〈f
∗(t, x∗(t)), y∗

n〉(v) → d̃x〈f
∗(t, x∗(t)), y∗〉(v). Thus, from

〈v, y∗
n〉 ≤

d̃〈f ∗(t, x∗(t)), y∗
n〉(v), we obtain 〈v, y∗〉 ≤ d̃〈f ∗(t, x∗(t)), y∗〉(v).

Proof of ∂B ⊂ ∂̃ : Using Theorem 2.2 in Treiman (1990), it suffices to
show

supλ>0 lim supx′→x[f(x′ +λ|x′ −x|h−f(x′)]/λ|x−x′| ≤ d̃(x)(v). Now, letting
α = 1/λ and t = λ|x′ − x|, supx′∈B(x,ε)[f(x′ + λ|x′ − x|h− f(x′)]/λ|x− x′| =
supt∈(0,ε/α) supx′∈{y:||y−x||=αt}[f(x′ + th− f(x′)]/t ≤
supt∈(0,ε/α) supx′∈B(x,αt)[f(x′ + th− f(x′)]/t.

From this the asserted inequality easily follows.
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