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Nonsmooth maximum principle for control problems in Banach
state space.

by
Atle Seierstad

University of Oslo, Norway

Abstract Necessary conditions in the form of a maximum principle is
proved for the optimal control of solutions to nonsmooth nonlinear differen-
tial equations in Banach space. The conditions constitute a generalization
to infinite dimensions of the maximum principle of Clarke. The approach is
closely related to that of Yong (1990) and utilizes an approximating smoother
system that exhibits Gâteaux differentiability. The results are applicable to
Volterra integral equations and mild solutions of certain types of weakly non-
linear evolution equations.

1. Introduction The purpose of this paper is to give necessary conditions
in the form of a maximum principle for the optimal control of solutions to
nonsmooth nonlinear differential equations in Banach space. The conditions
constitute a generalization to infinite dimensions of the maximum principle
of Clarke, involving a sort of pseudoHamiltonian. The approach is closely
related to that of Yong (1990), but here a general Banach space is considered,
and the differential equation has no special structure. On the other hand,
Yong considers a semilinear (or weakly nonlinear) evolution equation. In a
remark below it is noted how the results in this paper can be translated to
be applicable to Volterra integral equations, and then to mild solutions of
certain types of semilinear evolution equations. As in the paper of Yong,
an approximating smoother system is utilized, which in the present paper
exhibits Gâteaux differentiability. The smoothing differs slightly from that
of Yong. A selection of references to control problems in Banach space is
included, mostly they involve applications to partial differential equations.
Works discussing nonsmooth problems include those of Barbu, Fattorini and
Frankowska (1991) and Fattorini (1993), (1999), (at least in the abstract
parts of these works).

2. Terminology and notation

Two real Banach spaces X and Y are given. For any set A, clA means the
norm-closure (or metric) closure of A. The topological dual of X is X∗, and
if A is a bounded linear map from X into Y, then A∗ is the topological dual
map from Y ∗ into X∗. For any locally Lipschitz continuous real-valued func-
tion Ψ(x) on X, d0Ψ(x)(w) is the Clarke generalized directional derivative,
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at x, in direction w, see Clarke (1983). The Clarke generalized gradient of a
real-valued locally Lipschitz continuous function f(x) on X is written ∂f(x).
If needed, we write ∂x when it is taken with respect to x. Measurability and
integrability of vector valued functions are used in the sense of Dunford and
Schwartz (1967), often called strong or Bochner measurability (integrability).
Let J := [0, T ], T a fixed number > 0. The set of (Lebesgue) measurable func-
tions for which

∫
J
|x(t)|p < ∞, p ∈ [1, ∞), is denoted Lp(J, X). If p = ∞,

L∞(J, X) consists of measurable essentially bounded functions. A function
x(.) : J → X, is defined to be antidifferentiable if it is absolutely continuous
and has a derivative a.e. which is integrable. (Then x(t) = x(0) +

∫ t

0
ẋ(s)ds.

) For any set M, 1M is the corresponding indicator function.

3. The control system

The control system is defined by the differential equation

dx(t)/dt = g(t, x(t), u(t)), t ∈ J, x(0) = x0 ∈ X. (1)

Here, x0 is a fixed point, g : J × X × U → X is a fixed function, and U
is a given metric space. The controls u(t) : J → U are (Lebesgue) mea-
surable, i.e. the u(.)s’ are a.e. limits of step functions. The set of all such
control functions is denoted Ũ . For each x and each u(.) ∈ Ũ , t → g(t, x, u(t))
is assumed to be (Lebesgue) measurable. The solutions x(t) of (1) are an-
tidifferentiable functions taking values in X. The constraints in the problem
are:

(i) G(x(T )) ∈ C, C a closed convex set, (ii) u(.) ∈ U . (2)

Here, G is a given locally Lipschitz continuous function from X into Y , C is a
fixed subset in Y, and U is given family of measurable functions u(.) : J → U,
( U is a subset of Ũ).
The criterion to be maximized is

φ(x(T )), where φ : X → R is a given locally Lipschitz continuous
function. (3)

The maximization problem is thus

maxx(.),u(.) φ(x(T )) subject to (1), G(x(T )) ∈ C, and u(.) ∈ U . (4)

A ”system pair” is a pair (x(.), u(.)) such that (1) and (2)(ii) are satisfied,
with x(.) antidifferentiable. If the system pair also satisfies G(x(T )) ∈ C,
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it is called ”admissible”. If x(.) is unique for a given u(.), we often write
x(.) = xu(.), (below, conditions will be imposed securing uniqueness for u(.)’s
close to the optimal u∗(.)). The control problem (4) amounts to maximizing
φ(x(T )) in the class of admissible pairs (x(.), u(.)).
A free end problem is a problem where the condition G(x(T )) ∈ C is omit-
ted, or, equivalently, where Y = {0} ⊂ R, (and C = {0}, G(.) ≡ 0). The free
end case is referred to as Y = {0}. Below, (x∗(.), u∗(.)) denotes an optimal
admissible pair, assumed to exist in the problem. Two assumptions are made:

For some number ς > 0,

for all u(.) ∈ U , there exist measurable functions Mu(.)(t) ∈ L1(J, R),
Mu(.)(t) ∈ L2(J, R) , such that, for all x ∈ B(x∗(t), ς) and for all t,
|g(t, x, u(t))| ≤ Mu(.)(t) and such that, for all t, x → g(t, x, u(t))
is Lipschitz continuous in x ∈ B(x∗(t), ς) of rank ≤ Mu(.)(t). Finally,

φ and G
are Lipschitz continuous in B(x∗(T ), ς) of ranks Mφ and MG, respectively.(5)

U is closed under switching, i.e. u1(.), u2(.) ∈ U , M measurable ⇒
u3(.) ∈ U ,

where u3(t) = u1(t) for t ∈ M, u3(t) = u2(t) for t /∈ M. Moreover, U
is essen-

tially closed in the pseudometric σ(u1(.), u2(.)) := meas{t : u1(t) 6=
u2(t)} (6)

The assumptions made about X, Y, φ, G, g, C, U, x∗(.), u∗(.) and U in this sec-
tion are used throughout this paper.

4. Necessary conditions

The following theorem holds in the free end, Gâteaux differential case, (for
the definition of the latter term, see Fattorini (1999), p. 310).

Theorem 1 (Free end, Gâteaux derivative in x.) Let Y = {0}. Assume
that for each t ∈ J, x̂ → g(t, x∗(t) + x̂, u∗(t)) has a Gâteaux derivative
gx(t, x

∗(t), u∗(t)) at x̂ = 0. Assume, furthermore, that φ has a Gâteaux
derivative at x∗(T ). Then the following maximum principle holds: For all
u(.) ∈ U , for t not in a null set Nu(.),

〈g(t, x∗(t), u(t)), p(t)〉 ≤ 〈g(t, x∗(t), u∗(t)), p(t)〉. (7)
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Here p(t) : J → X∗ is absolutely continuous and satisfies

p(T ) = [φx(x
∗(T ))] (8)

and, for all x̂ ∈ X,

d〈x̂, p(t)〉/dt = 〈−gx(t, x
∗(t), u∗(t))x̂, p(t)〉 (9)

for all t not in a null set Nx̂. �

The next theorem to be stated concerns the nondifferentiable case. To for-
mulate it, a few definitions are needed. Let →∗ denote weak* convergence
and → denote norm convergence.
For any locally Lipschitz continuous function f : X → Z, (Z a Banach
space), for any given β > 0, (x̂, ẑ∗) ∈ X × Z∗, |ẑ∗| ≤ β, define

dβ(f, x̂, ẑ∗)(w) := lim supz∗→∗ẑ∗,z∗∈clB(0,β),y→x̂,λ↘0〈λ
−1[f(y + λw) −

f(y)], z∗〉. (10)

Below, write dβ
x(g(t, x̂, u), x̂∗) := dβ(f, x̂, x̂∗) for f(x) = g(t, x, u), β(t) :=

(Mφ +MG) exp(
∫ T

t
M∗(s)ds) and γ(t) := M∗(t)β(t), (MG = 0 in the free end

case.)

Theorem 2 (Free end, local Lipschitz continuity in x.) Let Y = {0}. As-
sume that Mu(.)(.) ≤ M∗(.) and Mu(.)(.) ≤ M∗(.) for all u(.) ∈ U , where
M∗(.) ∈ L2(J, R), M∗(.) ∈ L1(J, R). There exists an absolutely continuous
function p(.) : J → X∗, such that, for all u(.) ∈ U , for t not in a null set
Nu(.), the inequality (7) holds. Moreover, |p(t)| ≤ β(t) for all t, and for all
w ∈ X, for t not in a null set Nw,

−d〈w, p(t)〉/dt ≤ d
β(t)
x (g(t, x∗(t), u∗(t)), p(t))(w), (11)

and, finally,

p(T ) ∈ ∂φ(x∗(T )). (12)

�

In the end constrained case, the following four conditions are needed in or-
der to formulate a constraints qualification (see (17) below), needed for our
necessary conditions to hold.
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σ(û, u∗) ≤ ε′. (13)

For all u(.) ∈ U ,
∫

J
{〈g(t, x(t), u(t)), p(t)〉−〈g(t, x(t), û(t)), p(t)〉}dt ≤

ε′ (14)

For all w ∈ X, for t /∈ Nw,û(.), (Nw,û(.) a null set),

−d〈w, p(t)〉/dt ≤ d
β(t)
x (g(t, x(t), û(t)), p(t))(w). (15)

For all w ∈ X, 〈w, p(T ) − p̂〉 ≤ dMG(G, x(T ), y∗)(w), |p̂| ≤ ε′,| y∗| >
1/2,

〈C − G(x(T )), y∗〉 ≥ 0. (16)

Theorem 3 (End constraint, local Lipschitz continuity in x.) Assume that
Mu(.)(.) ≤ M∗(.) and Mu(.)(.) ≤ M∗(.) for all u(.) ∈ U , where M∗(.) ∈
L2(J, R), M∗(.) ∈ L1(J, R). Assume also that there exists a vector y ∈ Y and
a number ε′ > 0, such that for any quintuple (x(.), û(.), p(.), p̂, y∗), where
p̂ ∈ X∗, y∗ ∈ Y ∗, (x(.), û(.)) is a system pair and p(.) : J → X∗ absolutely
continuous,

if (x(.), û(.), p(t), p̂, y∗) satisfies the four conditions (13)-(16), then
〈y,y∗〉 ≥ ε′. (17)

Then there exist a number λ0 ≥ 0, and elements p̂ and p̌ in X∗ and y∗

in Y ∗, (λ0, y
∗) 6= 0, and an absolutely continuous function p(.) : J → X∗,

|p(t)| ≤ β(t), such that (7) and (11) hold, together with the following condi-
tion:

〈C − G(x∗(T )), y∗〉 ≥ 0, p(T ) = p̂ + p̌, p̂ ∈ λ0∂φ(x∗(T )),
for all w ∈ X, 〈w, p̌〉 ≤ dMG(G, x∗(T ), y∗)(w) (18)

Remark 1 In the three theorems above, p(t) satisfies |p(t)−p(s)| ≤
∫ t

s
γ(s)ds, t >

s. There exists a scalarwise integrable function p̌(.) : J → X∗, with |p̌(t)| ≤
γ(t) a.e. and |p̌(.)| measurable, such that, for any w ∈ X, for a.e. t,
d〈w, p(t)〉/dt = 〈w, p̌(t)〉. Given absolute continuity, this equality, together
with p(T ) = pT , is equivalent to:

〈w, p(t)〉 = 〈w, pT 〉+
∫ t

T
〈w, p̌(s)〉ds for all t. (19)

The function p̌(t) is also written ṗ(t), and is called a ”scalarwise derivative”
of p(t). In the case X is separable or reflexive, ṗ(.) belongs to L2(J, X∗).
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Remark 2 If X is reflexive, then for some null set N , for t /∈ N,

−ṗ(t) ∈ ∂̃
β(t)
x (g(t, x∗(t), u∗(t)), p(t)) : = {x∗ ∈ X∗ : for all w ∈

X, 〈w, x∗〉

≤ lim infδ↘0

∫ t

t−δ
d

β(t)
x (g(s, x∗(s), u∗(s)), p(s))(w)ds}. (20)

where the integral is a Lebesgue lower integral in case the integrand is non-
measurable, i.e. the supremum of the integrals of all measurable functions
smaller than or equal to the integrand for all t. The integrand is surely mea-
surable in t, if either X is separable, or if g is simultaneously continuous in
(t, u). If X is separable, then, for some null set Ñ , for t /∈ Ñ ,

−ṗ(t) ∈ ∂
β(t)
x (g(t, x∗(t), u∗(t)), p(t)) : = {x∗ ∈ X∗ : for all w ∈

X, 〈w, x∗〉

≤ d
β(t)
x (g(t, x∗(t), u∗(t)), p(t))(w). (20’)

Remark 3 (A weaker constraints qualification.) Theorem 3 holds even if (17)
is replaced by the weaker condition: There exist a finite dimensional subspace
Y ′ of Y, and, if Y \Y ′ 6= ∅, a vector y ∈ Y, and a number ε′ > 0 such that
for any quintuple (x(.), û(.), p(.), p̂, y∗),(p(.) absolutely continuous, x(.), û(.)
a system pair), if (x(.), û(.), p(t), p̂, y∗) satisfies the four conditions (13)-(16)
and |〈ŷ′, y∗〉| ≤ ε′|ŷ′| for all ŷ′ ∈ Y ′, then 〈y, y∗〉 ≥ ε′. (No constraints qualifi-
cation is needed when Y \Y ′ = ∅.) This weakened constraints qualification is
automatically satisfied if Y = Y ′+Y ′′, Y ′′ is a closed subspace, Y ′∩Y ′′ = {0},
and if for some z ∈ Y, some ε > 0, Π′′B(z, ε) ⊂ Π′′[(C −G(x∗(T )))∩B(0, 1)],
where Π′′ is the projection onto Y ′′.

Remark 4 (A different constraints qualification) A locally Lipschitz con-
tinuous function h : X → Y is said to have a ”directional multiderivative”
at x, if the set 4h(x)(w, r) := {λ−1{h(x + λw) − h(x)} : λ ∈ (0, r]} is norm-
compact for some r > 0, and its directional multiderivative is then defined
as Dh(x)(w) := ∩r>04h(x)(w, r). Assume in the situation of Theorem 3,
that C = {0}, that (17) does not hold, but that, for all u(.) ∈ U and all
t, x̂ → g(t, x̂, u(t)) has a directional multiderivative at all x ∈ B(x∗(t), ς).
Then, provided Mu(.)(.) = Mu∗(.)(.) = constant and Mu(.)(.) = Mu∗(.)(.) =
constant, and condition (3), p. 306 in Seierstad (1997) holds, then the con-
clusion of Theorem 3 still holds, even with λ0 = 1. For brevity, the condition
(3) just mentioned is not stated here, it contains a certain type of approx-
imate attainability condition on the directional multiderivatives of the end
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points xu(.)(T ), u(.) close to u∗(.), obtained by perturbing u(.) at small in-
tervals. From this result, a result for general closed convex sets C can be
obtained.

The proof consists in applying Theorem 2 to a free end problem where the
restriction G(x) = 0 is replaced by a penalization term, using the exact pe-
nalization result, Theorem 1, in Seierstad (1997). �

Remark 5 (A case where d
β(t)
x (g(t, x∗(t), u∗(t)), p(t)) can be replaced by

d0
x〈g(t, x, u∗(t)), p(t)〉.) Assume that, for any (t,w) ∈ J ×X, for any sequence

of pairs (xk,λk) converging to (x∗(t), 0), λk > 0, the sequence λ−1
k {g(t, xk +

λkw, u∗(t))− g(t, xk, u
∗(t))} contains a norm-convergent subsequence. Then,

in (11) and (20),

d
β(t)
x (g(t, x∗(t), u∗(t)), p(t))(w) can be replaced by d0

x〈g(t, x∗(t), u∗(t)), p(t)〉(w),
the Clarke generalized directional derivative of x → 〈g(t, x, u∗(t)), p(t)〉 at
x = x∗(t). Moreover, in this case, −ṗ(t) ∈ ∂x〈g(t, x∗(t), u∗(t)), p(t)〉 a.e., if X
is separable.

Remark 6 (Relation of (17) to another constraints qualification.) In the case
Mu(.)(.) = Mu∗(.)(.) = constant, Mu(.)(.) = Mu∗(.)(.) = constant, the con-
straints qualification (17) is implied by a standard one used in the continuous
Frechet derivative case (the case where Frechet derivatives of x → g(t, x, u)
(for all t, u), of φ(x), and of G(x) exist and are continuous in B(x∗(t), ς), re-
spectively, B(x∗(T ), ς)). In the continuous derivative case, (λ0, y

∗) 6= 0 if, for
some z ∈ Y , ε > 0, B(z, ε) ⊂ cl{(dG(x∗(T ))/dx)qu(T ) − c + G(x∗(T )) : u =
u(.) ∈ U , c ∈ C}, where qu(.) is the solution of dqu/dt = g(t, x∗(t), u(t)) −
g(t, x∗(t), u∗(t)) + (∂g(t, x∗(t), u∗(t))/∂x)q a.e., q(0) = 0. (A weakening simi-
lar to that of Remark 3 is possible.)

Remark 7 (Weakened boundedness and Lipschitz condition.) In (5) it can
be assumed that Mu(.) ∈ L1(J, R), and in Theorems 2 and 3, it can be as-
sumed that M∗(.) ∈ L1(J, X). Also, in Theorems 2 and 3, the definition of

β(t) can be changed to β(t) := (Mφ + MG) exp(
∫ T

t
Mu∗(.)(s)ds), (MG = 0 in

the free end case). A further generalization is that, in Theorems 2 and 3,
(and Remarks 1-3), the conditions Mu(.)(.) ≤ M∗(.) and Mu(.)(.) ≤ M∗(.) for
all u(.) ∈ U can be dropped, however it is then needed to replace U in (14)
by some subset Û for which the two inequalities hold for some M∗(.), M∗(.).

Remark 8 (Applications to Volterra integral equations.) The above results
can be applied to Volterra integral equations, and hence to mild solutions of
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certain abstract weakly nonlinear evolution equations: Consider the Volterra
integral equation

y(t) := x0(t) +
∫ t

0
g(t, s, y(s), u(s))ds, t ∈ J, (21)

where x0(.) ∈ C(J, X), g : J × J × X × U → X. Let πs : C(J, X) → X
be defined by πsx̂(.) = x̂(s), x̂(.) ∈ C(J, X). Next, consider for a moment
the integral equation

z(τ, t) := x0(t) +
∫ τ

0
g(t, s, z(s, s), u(s))ds, τ, t ∈ J (22)

This equation we may rewrite as

z(τ, .) := x0(.) +
∫ τ

0
g(., s, πsz(s, .), u(s))ds, τ ∈ J, (23)

where z(τ, .) : J → C(J, X). Taking the last space as our state space and
writing z(τ, .) = z(τ), this integral equation can equivalently be expressed as
an ordinary differential equation

dz/ds = ǧ(s, z(s), u(s)), z(0) = x0, ǧ(s, z(s), u(s)) := g(., s, πsz(s), u(s)),(24)

(x0 = x0(.)). For this to work, we have to assume that g is separately contin-
uous in t, that g(., s, x, u(s)) : J × X → C(J, X) is measurable in s, for each
x, u(.) ∈ Ũ , and that g(., s, x, u(.)) is bounded by an integrable Mu(.)(s) in
B(x∗(t), ς) and is Lipschitz continuous in x here, with integrable Lipschitz
rank Mu(.)(s). (Again (x∗(t), u∗(t)) is a given optimal pair.) The criterion to
be maximized is now φ(πT z(T )) = φ(y(T )), and the end constraint takes the
form G(πT z(T )) = G(y(T )) ∈ C. For each solution y(t) ∈ B(x∗(t), ς) of (21),
there is a solution z(.) with πtz(t) ∈ B(x∗(t), ς) of (24) with πtz(t) = y(t),
and vice versa. �

5. Proofs

The proof of Theorem 1 is closely parallel to that of Theorem 1 in Pallu
de la Barriere, p. 383, (1980). A proof is given in Appendix.

Proof of Theorem 2 (free end case) The proof is based on the use of The-
orem 1, and is structured as follows. First, by using suitable mollifiers, the
dependence on x in g is smoothened to such an extent that Gâteaux deriva-
tives exist. The control u∗(.) is approximately optimal in the smoothened
problem. Ekeland’s principle is used to obtain an optimal control u∗(.) in the
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smoothened problem. To this problem, Theorem 1 is applied, yielding an ad-
joint function p∗(t) satisfying the maximum condition (7) and the standard
adjoint equation (9), as well as the transversality condition (8). The molli-
fiers are then shrunk ”to nothing”, and a cluster point of the p∗(.)-functions
are shown to satisfy the conditions in Theorem 2. A lemma on mollifiers is
needed.

Lemma 1 Let X be a separable Banach space. Let f be a Lipschitz contin-
uous function on B(x̂, δ′) ⊂ X, with values in a Banach space Z. Let M f be
the Lipschitz rank of f. There exists a sequence of mollifications of f, written
f (k)(x), k = 1, 2, ..., defined on B(x̂, δ′/2), such that |f (k)(x)− f(x)| ≤ M f/k
for all x in B(x̂, δ′/2). Moreover, on B(x̂, δ′/2), f (k)(x) is Lipschitz continu-
ous of rank ≤ M f and is bounded by Mf := |f(x̂)| + δ′M f . In fact, f (k)(x)

is bounded on B(x̂, δ′/2) by any bound M̂f that f has on B(x̂, δ′). Further-
more, f (k)(x) has a Gâteaux derivative ∇f (k)(x) at each x ∈ B(x̂, δ′/2) and
|∇f (k)(x)| ≤ M f . Finally, let ẑ∗ be any element in clB(0, β) ⊂ Z∗ and let
D∗(f, x̂, ẑ∗) be the set of points x∗ ∈ X∗, with the property that there exists
a sequence (xk, z

∗
k) ∈ X × Z∗, where xk → x̂, z∗

k →∗ ẑ∗ , z∗
k ∈ clB(0, β),

such that x∗ is a weak* cluster point of a sequence of convex combina-
tions x̂∗

j :=
∑nj

n=1 θix̌
∗
kj

n
, all kj

n ≥ j, of the elements x̌∗
k := [∇f (k)(xk)]

∗z∗
k.

Then D∗(f, x̂, ẑ∗) ⊂ ∂β(f, x̂, ẑ∗), where ∂β(f, x̂, ẑ∗) := {x∗ ∈ X∗ : 〈w, x∗〉 ≤
dβ(f, x̂, ẑ∗)(w) for all w ∈ X}; (for dβ, see (10)).

Proof Let a0 = 0 ∈ X, and let ai, i = 1, 2, ..., be a sequence of unit vectors
in X such that ∪mEm is dense in X, where Em :=linspan{a1, ..., am}, m =
1, 2, ... . Let δ ∈ (0, δ′/2) be given, and define αn,δ(λ) := αn(λ), n = 1, 2, ..., to
be a Lipschitz continuous nonnegative function on (−∞, ∞) vanishing out-
side (−δ/2n, +δ/2n), bounded by 1/(δ/2n) and with

∫
R

αn(λ)dλ = 1. The
function is taken to be piecewise linear. (By necessity, the Lipschitz rank
goes to infinity with n.)

Write λn := (λ1, ..., λn), αn(λn) = α1(λ1) · .... · αn(λn) and let
∫ m

denote
an m-tuple integral over R

m. For any x ∈ B(x̂, δ′/2), define the n- multiple
integral Iδ,f

n,k(x) := In,k(x) :=
∫ n

f(x−
∑k

i=0 λiai)α
n(λn)dλn, k ≤ n. Note that

αn(λn) is non-vanishing only if |λi| < δ/2i, i = 1, ..., n, and |
∑k

i=0 λiai| ≤ δ
for such λi, so the calculation of In,k(x) involves only values of f on B(x̂, δ′/2+
δ), when x ∈ B(x̂, δ′/2). Now, |In+1,n+1(x) − In,k(x)| ≤

∫ n
|
∫ 1

f(x−
∑n+1

i=0 λiai)αn+1(λn+1)dλn+1 −f(x−
∑k

i=0 λiai)|α
n(λn)dλn ≤∫ n

{
∫ 1

|f(x−
∑n+1

i=0 λiai)−f(x−
∑k

i=0 λiai)|αn+1(λn+1)dλn+1}αn(λn)dλn ≤∫ n
(
∫ 1

{M f |
∑n+1

i=k+1 λiai|}αn+1(λn+1)dλn+1)α
n(λn)dλn ≤

9



∫ n
(
∫ 1

{M f
∑n+1

i=k+1 δ/2i}αn+1(λn+1)dλn+1)α
n(λn)dλn ≤ M fδ/2k. (25)

To obtain the next to last inequality, note that when integrating with re-
spect to λi , the integration can be confined to (−δ/2i), δ/2i). Write Iδ,f

n (x) :=
Iδ,f
n,n(x). By (25), |Iδ,f

n+1(x)−Iδ,f
n (x)| ≤ M fδ/2n, so, for each x ∈ B(x̂, δ′/2), {Iδ,f

n (x)}n

is a Cauchy sequence, with limit f (δ)(x), x ∈ B(x̂, δ′/2). When δ = 1/k, we
write f (k)(x) instead of f (1/k). We shall show that this sequence has the prop-
erties claimed in the lemma. Letting k = 0 in (25) yields |Iδ,f

n+1(x) − f(x)| ≤

M fδ, (f(x) = Iδ,f
n,0(x)), so, in the limit, for all x ∈ B(x̂, δ′/2), |f (δ)(x)−f(x)| ≤

M fδ.

It is trivial that Iδ,f
n (x) is bounded by M̂f , for x ∈ B(x̂, δ′/2). It is then

easily seen that in B(x̂, δ′/2), Iδ,f
n (x) has a Lipschitz rank ≤ M f , taking lim-

its, also f (δ) is seen to have a Lipschitz rank ≤ M f . The first claim in fact
follows from linearity of mollification: I

δ,(αf+βh)
n (x) = αIδ,f

n (x) + βIδ,h
n (x), so

I
δ,f(.+z)−f(.)
n (x) = I

δ,f(.+z)
n (x)−I

δ,f(.)
n (x) . Thus, for x̌, x̌+z ∈ B(x̂, δ′/2), since

|f(x+z)−f(x)| ≤ M f |z| for x, x+z ∈ B(x̂, δ′), then |Iδ,f
n (x̌+z)−Iδ,f

n (x̌)| =

|I
δ,f(.+z)
n (x̌) − I

δ,f(.)
n (x̌)| = |I

δ,f(.+z)−f(.)
n (x̌)| ≤ M f |z|.

Next, we turn to the proof of Gâteaux differentiability. Let x ∈ B(x̂, δ′/2).
Choose some natural number m, and let w :=

∑m
i=0 wiai ∈ Em . For n > m,

write

Im
n (x) :=

∫ n−m
f(x −

∑n
i=m+1 λiai) · αm+1(λm+1) · .... · αn(λn)dλm+1 · ... · dλn,

and let Im(x) = limn→∞ Im
n (x), (this limit exist for the same reasons as

I(x) exists, moreover Im
n (x) and Im(x) are bounded by M̂f and have Lips-

chitz rank M f ). Note that Iδ,f
n (x) =

∫ m
Im
n (x −

∑m
i=0 λiai)α

m(λm)dλm, and
by dominated convergence, that f (δ) =

∫ m
Im(x −

∑m
i=0 λiai)α

m(λm)dλm.

Evidently, (f (δ)(x + tw) − f (δ)(x))/t = limn t−1{Iδ,f
n (x + tw) − Iδ,f

n (x)} :=

limn

∫ m
t−1[Im

n (x + tw −
∑m

i=0 λiai) − Im
n (x −

∑m
i=0 λiai)]α

m(λm)dλm =∫ m
t−1[Im(x + tw −

∑m
i=0 λiai) − Im(x −

∑m
i=0 λiai)]α

m(λm)dλm =∫
...

∫
t−1Im(x +

∑m
i=0(twi − λi)ai)α1(λ1) · .... · αm(λm)dλ1 · ... · dλm−∫

...
∫

t−1Im(x −
∑m

i=0 λiai)α1(λ1) · .... · αm(λm)dλ1 · ... · dλm =∫
...

∫
t−1Im(x−

∑m
i=0 λiai)α1(λ1 + tw1) · .... ·αm(λm + twm)dλ1 · ... ·dλm−∫ m

t−1Im(x −
∑m

i=0 λiai)α
m(λm)dλm =∫ m

t−1Im(x −
∑m

i=0 λiai)[α
m(λm + twm) − αm(λm)]dλm =: ζ(t), (26)

where wm = (w1, ..., wm).
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Now, ∇αm(λm) exists for a.e. λm, hence limt↘0[α
m(λm+twm)−αm(λm)]/t =

∇αm(λm)wm exists for a.e. λm. By Lipschitz continuity, [αm(λm + twm) −
αm(λm)]/t has a bound independent of λm and t. Moreover, Im(x−

∑m
i=0 λiai)

is similarly bounded, hence, limt↘0 ζ(t) exists and equals
∫ m

Im(x−
∑m

i=0 λiai)∇αm(λm)wmdλm.
Because the last expression is linear in wm, w → f (δ)(x + w) has a Gâteaux
derivative at w = 0 on Em, in fact on ∪mEm. Moreover, as f (δ) has the
Lipschitz rank M f , then |ζ(t)| ≤ M f |w|, so |∇f (δ)(x)| ≤ M f . By density of
∪mEm in X, at w = 0, w → f (δ)(x + w) has a Gâteaux derivative on X, (see
Appendix, Lemma A).

Finally, let us prove that D∗(f, x̂, ẑ∗) ⊂ ∂β(f, x̂, ẑ∗). Let w be any given
unit vector in X. For any given ε > 0, there exist a κ ∈ (0, δ′/4) and a weak*
neighbourhood W of ẑ∗ in clB(0, β) such that 〈[f(y + λw) − f(y)]/λ, z̃∗〉 ≤
dβ(f, x̂, ẑ∗)(w) + ε when y ∈ B(x̂, 2κ), λ ∈ (0, κ), z̃∗ ∈ W. Let δ < κ, λ < κ.
Then, for x ∈ B(x̂, κ), z̃∗ ∈ W,

〈[f (δ)(x + λw) − f (δ)(x)]/λ, z̃∗〉 =
limn

∫ n
〈λ−1[f(x + λw −

∑n
i=0 λiai) − f(x −

∑n
i=0 λiai)], z̃

∗〉αn(λn)dλn ≤
limn

∫ n
(dβ(f, x̂, ẑ∗)(w) + ε)αn(λn)dλn = dβ(f, x̂, ẑ∗)(w) + ε.

Hence, letting λ ↘ 0, we get that 〈∇f (δ)(x)w, z̃∗〉 ≤ dβ(f, x̂, ẑ∗)(w) + ε
for all x ∈ B(x̂, κ), δ ∈ (0, κ), z̃∗ ∈ W.

Let x∗ ∈ D∗(f, x̂, ẑ∗). Then, by definition, there exists a sequence (xk, z
∗
k), xk →

x̂, z∗
k →∗ ẑ∗, z∗

k ∈ clB(0, β), such that x∗ is a weak* cluster point of a se-
quence of convex combination x̂∗

j :=
∑nj

n=1 θnx̌
∗
kj

n
, all kj

n ≥ j, of the elements

x̌∗
k := [∇f (k)(xk)]

∗z∗
k. For k large, (xk,z

∗
k) ∈ B(x̂, κ)×W. Thus, as all x̌∗

k satis-
fies 〈w, x̌∗

k〉 ≤ dβ(f, x̂, ẑ∗)(w)+ε for k large, then 〈w, x̂∗
j〉 ≤ dβ(f, x̂, ẑ∗)(w)+ε

for j large, hence 〈w, x∗〉 ≤ dβ(f, x̂, ẑ∗)(w) + ε. By the arbitraryness of ε and
w, x∗ ∈ ∂β(f, x̂, ẑ∗). �

Lemma 2 Let, in Lemma 1, f be Lipschitz continuous in B(x̂′, δ′′) with rank
Mf . Then, dβ(f, x̂, ẑ∗)(w) is upper semicontinuous in (x̂, ẑ∗) ∈ B(x̂′, δ′′) ×
clB(0, β), in the norm × weak∗ topology.

Proof: Let ẑ∗ ∈ clB(0, β), x̂ ∈ B(x̂′, δ′′), and let δ′ be so small that B(x̂, δ′) ⊂
B(x̂′, δ′′). For any given w ∈ B(0, 1), and any given ε > 0, there exist a
κ ∈ (0, δ′) and a weak* open neighbourhood W of ẑ∗ in clB(0, β) such that
〈[f(y + λw) − f(y)]/λ, z∗〉 ≤ dβ(f, x̂, ẑ∗)(w) + ε when y ∈ B(x̂, κ/2), λ ∈
(0, κ/2), z∗ ∈ W. Let (x̌, ž∗) ∈ B(x̂, κ/2) × W. Evidently, dβ(f, x̌, ž∗)(w) ≤
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supy∈B(x̂,κ/2),λ∈(0,κ/2),z∗∈W 〈[f(y+λw)−f(y)]/λ, z∗〉 ≤ dβ(f, x̂, ẑ∗)(w)+ε.�

Continued proof of Theorem 2 First, we assume that X is separable.
For δ = 1/k < ς/2, let gk(s, x, u) := f (k)(x), for f(x) = g(s, x, u). Simi-
larly, write φk for φ(δ), when δ = 1/k. Then, by Lemma 1, |gk(s, x, u(s)) −
g(s, x, u(s))| ≤ Mu(.)(s)/k ≤ M∗(s)/k, uniformly in (s, x), x ∈ B(x∗(s), ς/2)
and |φk(x) − φ(x)| ≤ Mφ/k, x ∈ B(x∗(T ), ς/2). Let xu,k(t) be the solution
of dxu,k/ds = gk(s, x, u(s)), xu,k(0) = x0. Consider first u = u∗. By a local
existence theorem, xu∗,k(.) exists in B(x∗(t), ς/2), at least on a small inter-
val [0, t′]. Write α(t) := 1 +

∫ t

0
M∗(s)ds exp(

∫ t

0
M∗(s)ds) and note that when

t ≤ t′, then |xu∗,k(t) − x∗(t)| =

|
∫ t

0
gk(s, xu∗,k(s), u∗(s)) − g(s, x∗(s), u∗(s))ds| ≤

|
∫ t

0
gk(s, xu∗,k(s), u∗(s)) − g(s, xu∗,k(s), u∗(s))ds|+

|
∫ t

0
g(s, xu∗,k(s), u∗(s)) − g(s, x∗(s), u∗(s))ds| ≤

(1/k)
∫ t

0
M∗(s)ds +

∫ t

0
M∗(s)|xu∗,k(s) − x∗(s)|ds.

Let 1/k < ς/4α(T ). By Gronwall’s inequality, |xu∗,k(t) − x∗(t)| ≤ α(t)/k ≤
α(T )/k ≤ ς/4, t ∈ [0, t′]. An existence and continuation argument gives that
xu∗,k(t) exists on all J in clB(x∗(t), ς/4) and the preceding inequalities hold
for t′ = T. Using this and |φk(x) − φ(x)| ≤ Mφ/k yield

|φk(xu∗,k(T )) − φ(x∗(T ))| ≤ |φk(xu∗,k(T )) − φk(x∗(T ))|+
|φk(x∗(T )) − φ(x∗(T ))| ≤ ξ/k, (27)

where ξ := Mφα(T ) + Mφ.

Define σt(u, û) :=
∫ t

0
(1 + M∗(s))1{τ :u(τ)6=û(τ)}(s)ds. Note that |

∫ t

0
(ẋû,k(s) −

ẋu,k(s))ds| =

|
∫ t

0
gk(s, xû,k(s), û(s)) − gk(s, xu,k(s), u(s))ds| ≤

|
∫ t

0
gk(s, xû,k(s), û(s)) − gk(s, xû,k(s), u(s))ds|+

|
∫ t

0
gk(s, xû,k(s), u(s)) − gk(s, xu,k(s), u(s))ds| ≤

2σt(u, û) +
∫ t

0
M∗(s)|xû,k(s) − xu,k(s)|ds,

when k > 4α(T )/ς. For û = u∗, by these inequalities, Gronwall’s inequal-
ity, and an existence and continuation argument, for u ∈ DT := {u ∈ U ,

σT (u, u∗) ≤ ς/8 exp(
∫ T

0
M∗(s)ds)}, k > 4α(T )/ς, the solution xu,k(t) exists

on all J in clB(xu∗,k(t), ς/4) ⊂ clB(x∗(t), ς/2). In fact, the inequalities and
Gronwall’s inequality give, for u, û ∈ DT , that
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|xu,k(t) − xû,k(t)| ≤ 2σt(u, û) exp(
∫ t

0
M∗(s)ds). (28)

For the metric σT on U , the space U is complete, (we identify a.e. equal
functions). Even the closed ball DT is complete. Using (27), by Ekeland’s
variational principle, for any k > 4α(T )/ς, there exists a control uk ∈ DT ,

with σT (uk, u
∗) ≤ (ξ/k)

1

2 , which is optimal in the problem

maxu(.){φk(xu(T )) − (ξ/k)
1

2 σT (u, uk)}, (29)

subject to

dxu/dt = gk(s, x, u(s)), x(0) = x0, u(.) ∈ DT . (30)

Below, k is > 4α(T )/ς. Let yu(t) be the solution of dy/dt = (1+M∗(t))1{τ :u(τ)6=uk(τ)}(t)

a.e., y(0) = 0, and write φ∗(x, y) := φk(x) − (ξ/k)
1

2 y. Then uk maximizes
φ∗(xu(T ), yu(T )) for u ∈ DT . Applying Theorem 1 in the present situa-
tion yields an adjoint function p̃k(t):= (pk(t), Pk(t)) such that, for any given
u(.) ∈ DT , for t not in a null set Nu(.),uk(.),

〈(gk(t, xuk(t), u(t)), (1 + M∗(t))1{τ :u(τ)6=uk(τ)}(t)), (pk(t), Pk(t))〉 ≤
〈(gk(t, xuk(t), uk(t)), 0), (pk(t), Pk(t))〉. (31)

Here pk(t) is an absolutely continuous function from J into X∗, satisfying,
for all w ∈ X, for t not in a null set Nw,

d〈w, pk(t)〉/dt = 〈−∇gk(t, xuk(t), uk(t))w, pk(t)〉 (32)

where here, (and below), ∇ denotes a Gâteaux derivative with respect to
x. Moreover, Pk(t) ∈ R

∗ = R, dPk/dt = 0 a.e., and

(pk(T ), Pk(T )) = (∇φk(xuk(T )), −(ξ/k)
1

2 ) (33)

Note that, by Gronwall’s inequality, (32) and (33), |pk(t)| ≤ Mφ exp(−
∫ t

T
M∗(s)ds) =:

β(t), (MG = 0), so, recalling γ(t) := M∗(t)β(t), we get d〈w, pk(t)〉/dt ∈
clB(0, γ(t)|w|).

Let {bi}
∞
i=1 be dense in the unit ball in X. Note that the derivative d〈bi, pk(t)〉/dt

exists in a set J \N∗, where N∗ is a null set independent of i and k, and
γi,k(t) := d〈bi, pk(t)〉/dt ∈ L2(J, R), (more precisely, let γi,k(t) := 0 · 1N∗ +
d〈bi, pk(t)〉/dt · 1J\N∗). In fact, for t /∈ N∗, |γi,k(t)| ≤ γ(t)|bi| ≤ γ(t), (im-
plying uniform countable addtivity of E →

∫
E

γi,k(s)ds), k = 1, 2, ...), and
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|γi,k(t) − γi′,k(t)| ≤ γ(t)|bi − bi′ |. Below, a certain subsequence km of the se-
quence k = 1, 2, ... is introduced. By diagonal selection, we can find a subse-
quence γi,kmj

(.) of γi,km
(.) such that γi,kmj

(.) is weakly convergent in L1(J, R)

to some p̌i(.) ∈ L1(J, R), for all i. We can also assume that 〈bi, pkmj
(T )〉 is

convergent for each i. For simplicity, assume that these convergence proper-
ties hold for the sequence km itself. Since {γi,km

(.)}m is weakly convergent,
for each fixed i, a sequence of convex combination of the functions γi,km

(.)
converges in L1−norm, to p̌i(.). By diagonal selection, a sequence of convex
combinations {p̂i,j(.)}j, p̂i,j(.) :=

∑nj

n=1 θ
n
γi,kj

mn
(.), all kj

mn
≥ j, exists such

that for all i, {p̂i,j(.)}j converges in L1−norm to p̌i(.) ∈ L1(J, R). We may
even assume pointwise convergence on a set J\N ′, N ′ a null set. Evidently,
γi,k(t) ∈ clB(0, γ(t)) a.e. ⇒ p̌i(t) ∈ clB(0, γ(t)) a.e.

Let N = N ′ ∪ N∗. For each t /∈ N, it is easily seen that there exists an
element p̌(t) ∈ X∗ such that p̌i(t) = 〈bi, p̌(t)〉 for all i. To give some details of
the argument, let bij be a subsequence of linearly independent vectors such
that, for each k, bk ∈ linspan{bij : ij ≤ k} = Ek. On ∪kE

k we define the
linear functional p̌(t) by p̌(t)(x) =

∑
βj p̌

ij(t), if x =
∑

βjbij (a finite sum).
Fortunately, consistency holds: If x = bi and bi =

∑
βjbij , then, for a.e. t,

p̌i(t) = limk γi,k(t) = limk d〈
∑

βjbij , pk(t)〉/dt =
∑

βj limk d〈bij , pk(t)〉/dt =∑
βj limk γij ,k(t) =

∑
βj p̌

ij(t) = p̌(t)(bi). From now on, we write 〈x, p̌(t)〉
instead of p̌(t)(x). For all i, |〈bi, p̌(t)〉| ≤ γ(t) for t /∈ N. By density of {bi}

∞
i=1

in the unit ball in X and Lipschitz continuity of x → 〈x, p̌(t)〉 on the set
{bi}

∞
i=1, p̌(t) has an extension to all X, such that |〈x, p̌(t)〉| ≤ γ(t)|x| for all

x ∈ X, t /∈ N.

Let p̂k(t) ∈ X∗ be defined by 〈bi, p̂
k(t)〉 = γi,k(t), (the extension to X is

again trivial). Then |〈x, p̂k(t)〉| ≤ γ(t)|x| for all x ∈ X, t /∈ N∗. Evidently,
by density of the bi’s, p̌(t) is a weak* limit point of the sequence p̂j(t) :=
∑nj

n=1 θ
n
p̂kj

mn (t), t /∈ N . Moreover, by density of the bi’s, pkm
(T ) converges

weakly* to some limit pT and, for any t, p(t) := pT +
∫ t

T
p̌(s)ds is a weak* limit

of pkm
(t), (by weak convergence of {γi,km

(.)}m). All the properties in Remark
1 hold for p(.). Moreover, by applying Lemma 1 to φ, (with Z = R, ẑ∗ = 1),
it is obtained that pT belongs to ∂Mφ(φ, x∗(T ), 1) = ∂φ(x∗(T )).

Now, a subsequence ukm(.) of uk(.) satisfies σT (ukm
, u∗) ≤ 1/2m+1. Then

Cj = ∪m≥j{s : ukm(s) 6= u∗(s)} satisfies meas(Cj) ≤ 1/2j, by definition of σT .
Let C = ∩jCj. For simplicity write um(.) = ukm(.), xm(.) = xkm(.), Pm(.) =
Pkm

(.), and pm(.) = pkm(.). Observe that, for any t, for any ε′ > 0,

|gkm(t, xum(t), u(t)) − g(t, x∗(t), u(t))| ≤ ε′ (34)
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when m is large, uniformly in u(.). To see this, note that, for any t,

|gkm(t, xum(t), u(t)) − g(t, x∗(t), u∗(t))| ≤
|gkm(t, xum(t), u(t))−gkm(t, x∗(t), u(t))|+|gkm(t, x∗(t), u(t))−g(t, x∗(t), u(t))|.

The first term is small by Lipschitz continuity and the fact that xum(t) →
x∗(t), (see (28)), and the second term is small due to the construction of the
mollifier, (see Lemma 1). Moreover, for any ε′′ > 0 and for any t, for m large
enough,

(1 + M∗(t))(ξ/km)1/2 ≤ ε′′ , so |Pm(t)|(1 + M∗(t)) ≤ ε′′, (35)

by (33). Let ε > 0, ε arbitrary. For any t /∈ Nu(.), Nu(.) := ∪kNu(.),uk(.),
for m large, the following inequalities can be shown:

〈g(t, x∗(t), u(t)), pm(t)〉 − 2ε ≤ 〈gkm(t, xum(t), u(t)), pm(t)〉 − ε ≤
〈gkm(t, xum(t), u(t)), pm(t)〉 + (1 + M∗(t))1{τ :u(τ)6=um(τ)}(t)Pm(t) ≤
〈(gkm(t, xum(t), um(t)), pm(t)〉 ≤ 〈g(t, x∗(t), um(t)), pm(t)〉 + ε.

The first inequality follows from (34), the second one from (35), the third
one from
optimality of um(.), ((31)), and the fourth one from (34). (Also the bound
β(t) on all functions pm(t) has been used.)

Now, for any t /∈ C ∪ Nu(.), for some jt, t /∈ Cjt
, and um(t) = u∗(t) for

m ≥ jt, so
〈g(t, x∗(t), u(t)), pm(t)〉−2ε ≤ 〈g(t, x∗(t), u∗(t)), pm(t)〉+ε for m ≥ jt,(36)

m large, and, by (32),

p̂km(t) = −[∇gkm(t, xum(t), u∗(t))]∗pm(t) for m ≥ jt. (37)

From (36), it follows that the cluster point p(t) must also satisfy 〈g(t, x∗(t), u(t)), p(t)〉−
2ε ≤ 〈(g(t, x∗(t), u∗(t)), p(t)〉 + ε, for t /∈ C ∪ Nu(.). By the arbitraryness of
ε, (7) holds for all u(.) ∈ DT , for t /∈ C ∪ Nu(.). But then, (7) holds a.e. for
any û(.) in U , since it holds for u(.) = û(.)1I + u∗(.)(1 − 1I), where I is any
interval so small that u(.) ∈ DT . By (37) and the last part of Lemma 1, the
limit p̌(t) satisfies (20’) for a.e. t, which implies (11).
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Let us now remove the assumption of separability of X. Let U ′ be a finite set
of controls, let U ′′ := {

∑
j 1Mj

uj(.) : uj(.) ∈ U ′, {Mj} is a finite measurable
partition of J}, (U ′′ is the ”switching closure” of U ′), and let U ′′′ be the
subset of U ′′ obtained by requiring the Mj’s to be intervals with rational end
points. (Then U ′′′ is countable.) Let U∗ be the σ−closure of the set U ′′. Then
there exists a countable subset XU ′

of X, containing x0, such that, a.e., ẋu(t)
belongs to clXU ′

for all u := u(.) ∈ DT ∩ U ′′′. We shall assume that the sub-
set XU ′

is so chosen that linspanXU ′

⊂ clXU ′

. This can always be arranged
by replacing XU ′

by the countable set of finite sums Q(XU ′

) := {
∑

λixi : λi

rational, xi ∈ XU ′

}. By (28), Lipschitz continuity of g in x, and σ−density
of U ′′′ in U∗ , for all u ∈ U∗ ∩DT , ẋu(t) ∈ clXU ′

for a.e. t. Then also xu(t) ∈
clXU ′

for such u. For simplicity, assume that an open set A exists such that
B(x∗(t), ς/4) ⊂ A ⊂ B(x∗(t), ς) for all t. (At least, there exist a finite num-
ber of points ti, i = 1, ..., i∗ , increasing in i, t0 = 0, ti∗+1 = T, such that
B(x∗(t), ς/4) ⊂ Ai := B(x∗(ti), ς/2) ⊂ B(x∗(t), ς), for t ∈ [ti, ti+1] =: Ji. The
below construction can then be carried out on each Ji.) For each x ∈ XU ′

∩A,
for a.e. t, for all u(.) ∈ U ′′′, g(t, x, u(t)) takes values in the closure clXx, of
some countable set Xx. Let X̌1

U ′ := Q(XU ′

∪ {∪x∈XU′∩AXx}). Assuming the
countable set X̌k

U ′ defined, then, by induction, let for each x ∈ X̌k
U ′ ∩ A,

for a.e. t, for all u(.) ∈ U ′′′, g(t, x, u(.)) take values in the closure clXk
x ,

where Xk
x is countable, and let X̌k+1

U ′ = Q(X̌k
U ′ ∪ {∪x∈X̌k

U′
∩AXx}). Finally,

let X̌U ′ := ∪∞
k=1X̌

k
U ′ . Note that Q(X̌U ′) = X̌U ′ , (X̌k

U ′ is increasing in k),
and note that for any x in the countable set X̌U ′ ∩ A, for a.e. t, for all
u(.) ∈ U ′′′, g(t, x, u(t)) takes values in clX̌U ′ . By continuity in x, for t not in
a null set NU ′ , ( NU ′ not dependent on x), for all x ∈ (clX̌U ′)∩B(x∗(t), ς/4),
for all u(.) ∈ U ′′′, g(t, x, u(t)) takes values in clX̌U ′ . (We in this case say that
clX̌U ′ is g, U ′-invariant.) This even holds for all u(.) ∈ U∗, for t not in a null
set NU ′,u(.) independent of x.

Let U ′ be the family of finite sets U ′ that contain u∗(.). For any such finite set
U ′, and any countable subset V of X, let XU ′,V be the set clX̌U ′ obtained
by including V in the set XU ′

with which we started the above construc-
tion. If, in the definition of d

β(t)
x (g(t, x, u), p)(w), see (10), y is restricted

to belong to a subset X ′ of X, we write d
β(t),X′

x (g(t, x, u), p)(w). The latter
expression is written dX′

(t, p(t))(w) when p = p(t), u = u∗(t), x = x∗(t). Ap-
plying the necessary conditions for the separable case to U∗ instead of U ,
with XU ′,V as state space, and using the notation of Remark 1, we obtain a
pT,U ′,V ∈ (XU ′,V )∗ and a ṗU ′,V (.) ∈ Ls

2(J, (XU ′,V )∗), the topscript s indicating
scalarwise integrability, such that (39) below holds, such that (7) holds for
p(.) replaced by pU ′,V (.) (given in (41) below), for all u(.) ∈ U∗, a.e., and
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such that, for a.e. t, |ṗU ′,V (t)| ≤ γ(t). Thus, we have,

∫
J
〈x(t), ṗU ′,V (t)〉dt ≤

∫
J
γ(t)|x(t)|dt for all x(.) ∈ L∞(J, XU ′,V ), (38)

for all w ∈ XU ′,V , for a.e. t, −〈w, ṗU ′,V (t)〉 ≤ dXU′,V

(t, pU ′,V (t))(w),
(39a)

〈w, pT,U ′,V 〉 ≤ d0,XU′,V

φ(x∗(T ))(w) for all w ∈ XU ′,V , (39b)

where d0,XU′,V

ϕ(x∗(T ))(w) is the generalized directional derivative at x∗(T )
of φ restricted to XU ′,V . Below, we will apply the integrated version of the
maximum condition, namely:

∫
J
〈g(t, x∗(t), u(t)), pU ′,V (t)〉dt ≤

∫
J
〈g(t, x∗(t), u∗(t)), pU ′,V (t)〉dt, u(.) ∈

U∗. (40)

Of course,

pU ′,V (t) = pT,U ′,V +
∫ t

T
ṗU ′,V (s)ds. (41)

The function ṗU ′,V (.) represents a continuous linear functional on L2(J, XU ′,V ).
By the Hahn-Banach Theorem, this functional has an extension to all L2(J, X),
preserving its norm |γ(.)|2. By a general representation theorem (Dunford-
Pettis theorem), the extended functional can be represented by a function
ṗU ′,V (.) ∈ Ls

2(J, X∗), with |ṗU ′,V (.)|2 ≤ |γ(.)|2, see e.g. Fattorini (1999),
p.668. Similarly, the functional pT,U ′,V has an extension pT,U ′,V to X, pre-
serving its norm Mφ. Let Γ be the directed set of pairs (U ′, V ), U ′ ∈ U ′,
V a countable set in X, ordered by the relation (Ǔ ′, V̌ ) � (U ′, V ) iff Ǔ ′ ⊃
U ′, V̌ ⊃ V. To each γ := (U ′, V ), there corresponds a pair (pT

γ , ṗγ(.)) :=
(pT,U ′,V , ṗU ′,V (.)). Since {(pT

γ , ṗγ(.)) : γ ∈ Γ} is bounded in X∗ × Ls
2(J, X∗),

the generalized sequence (pT
γ , ṗγ(.)), γ ∈ Γ, has a weak* cluster point (pT , ṗ(.))

∈ X∗ × Ls
2(J, X∗). Let p(t) := pT +

∫ t

T
ṗ(s)ds. Then, for each t, the gener-

alized sequence pγ(t) := pT
γ +

∫ t

T
ṗ

γ
(s)ds, has p(t) as a weak* cluster point,

so (38),(39b) and (41) immediately imply two of the three properties below,
namely (42) and (44).

∫
J
〈x(t), ṗ(t)〉dt ≤

∫
J
γ(t)|x(t)|dt for all x(.) ∈ L∞(J, X). (42)

For all w ∈ X, −〈w, ṗ(t)〉 ≤ dX(t, p(t))(w) for t not in a null set Nw.
(43)
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p(t) = pT +
∫ t

T
ṗ(s)ds, 〈w, pT 〉 ≤ d0,Xφ(x∗(T ))(w) for all w ∈ X.(44)

(The inequality in (42) follows from the fact that , for any x(.) ∈ L∞(J, X),
there exists a countable set V with the property that x(t) ∈ clV a.e., so for
such a V, x(.) ∈ L∞(J, XU ′,V ) and (38) holds.) When p(.) is suitably chosen,
|ṗ(.)| can be assumed to be measurable, in fact all properties in Remark 1
hold. For any u(.) ∈ U , (40) holds for any γ � ({u(.), u∗(.)},∅), so (40) holds
for any such u(.), for the cluster point p(t). Hence, (7) holds.

Finally, let us prove (43). (We don’t want to address the question if dX(t, p(t))(w)
is measurable, this explains part of the route of proof taken). At this point
we need the property that if Ǔ ′ ⊂ U ′, V̌ ⊂ V, then X Ǔ ′,V̌ ⊂ XU ′,V . This can
be assumed to hold: We can assume that when we chose XU ′

, for all subsets
Ǔ ′ ⊂ U ′, we arranged it so that X Ǔ ′

⊂ XU ′

.

Let w ∈ X, X0 = X{u∗},{w}, let {x0
n(.)}∞

n=0 be dense in L2(J, X0) and let
{x0

n}
∞
n=0 be dense in X0. There exists a pair (pT

1 , ṗ1(.)) := (pT
γ1

, ṗγ1
(.)), γ1 �

({u∗}, {w}), such that the following condition holds for k = 1: For i, n ∈
{0, ..., k − 1},

|
∫

〈xi
n(t), ṗk(t)〉dt −

∫
〈xi

n(t), ṗ(t)〉dt| ≤ 1/k, |〈xi
n, p

T
1 〉 − 〈xi

n, p
T 〉| ≤ 1/k,

(45)

Define by induction elements γk′′ = (U ′
k′′ , Vk′′) ∈ Γ, k′′ ∈ {1, ..., k}, γk′′+1 �

γk′′ , closed separable g, U ′
k′′−1-invariant linear subspaces Xk′′−1 := XU ′

k′′
−1

,Vk′′
−1

increasing in k′′, and sequences {xk′′−1
n (.)}∞

n=0, {xk′′−1
n }∞

n=0 dense in L2(J, Xk′′−1)
and Xk′′−1, respectively, such that (45) holds for k replaced by any k′′ ∈
{1, ..., k}, with (pT

k′′ , ṗk′′(.)) := (pT
γk′′

, ṗγk′′
(.)). Thus, given that (45) holds

for k′′ ≤ k, then, let Xk = Xγk , let {xk
n(.)}∞

n=0 be dense in L2(J, Xk) and
{xk

n}
∞
n=0 be dense in Xk, choose a γk+1 � γk such that (45) holds for k + 1,

for ṗk+1(.) := ṗγk+1
(.), pT

k = pT
γk+1

.

Let Q := |γ(.)|2 and X0 :=cl∪kXk, and observe that for a.e. t, x ∈ (∪kXk) ∩
B(x∗(t), ς/4) ⇒ g(t, x, u∗(t)) ∈ ∪kXk ⊂ X0, so for a.e. t, x ∈ X0 ∩
B(x∗(t), ς/4) ⇒ g(t, x, u∗(t)) ∈ X0. Note that for any x(.) ∈ L2(J, X0),
for any ε > 0, there exists a step function x̂(.) with values in ∪kXk, such
that |x(.) − x̂(.)|2 ≤ ε/6Q, in fact x̂(J) ⊂ Xk for some k = k′. By den-
sity of {xk′

n (.)}n in L2(J, Xk′), for some n = n′, |x̂(.) − xk′

n′(.)|2 ≤ ε/6Q, so
|x(.) − xk′

n′(.)|2 ≤ ε/3Q. For k > max{k′, n′}, so large that 1/k ≤ ε/3, by
(45), |

∫
J
〈xk′

n′(t), ṗk(t)〉dt −
∫

J
〈xk′

n′(t), ṗ(t)〉dt| ≤ ε/3. Evidently,
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|
∫

J
〈x(t), ṗk(t)〉dt−

∫
J
〈x(t), ṗ(t)〉dt| = |

∫
J
〈x(t), ṗk(t)〉dt−

∫
J
〈xk′

n′(t), ṗk(t)〉dt|+

|
∫

J
〈xk′

n′(t), ṗk(t)〉dt−
∫

J
〈xk′

n′(t), ṗ(t)〉dt|+|
∫

J
〈xk′

n′(t), ṗ(t)〉dt−
∫

J
〈x(t), ṗ(t)〉dt| ≤

ε/3 + ε/3 + ε/3

= ε. Hence, {ṗk(.)}, for each t restricted to X0, is weakly* convergent in
Ls

2(J, (X0)∗), i.e. for the duality L2(J, X0), Ls
2(J, (X0)∗). Denote the restric-

tions {ṗ′
k(.)}, and let ṗ′(t) having a corresponding meaning. Similarly, {pT

k },
restricted to X0 is weakly* convergent, denote the restrictions {p′T

k }. This
implies that for each t, the sequence of corresponding restrictions {p′

k(t)} is
weakly* convergent in (X0)∗, (i.e. for the duality X0, (X0)∗). Now, for any
k, m, k ≥ m, we have −〈w, ṗ′

k(t)〉 ≤ supn≥m −〈w, ṗ′
n(t)〉 := αm(t), and so

−
∫

J
〈w, ṗ′

k(t)〉χ(t)dt ≤
∫

J
αm(t)χ(t)dt, for any χ(t) ∈ L∞(J, R), χ(t) ≥ 0 a.e.

The next to last inequality also holds in the limit, which entails −〈w, ṗ′(t)〉 ≤
αm(t) a.e. Since this holds for all m, then for a.e. t,−〈w, ṗ(t)〉 = −〈w, ṗ′(t)〉
≤ limm αm(t) ≤ lim supn{dXn(t, p′

n(t))(w)} ≤ lim supn{dX0

(t, p′
n(t))(w)} ≤

dX0

(t, p′(t))(w) = dX0

(t, p(t))(w) ≤ dX(t, p(t))(w). The last equality follows
from the fact that, a.e., g(t, x, u∗(t)) ∈ X0 when x ∈ B(x∗(t), ς/4) ∩ X0,
the next to last inequality follows from p′(t) = limn p′

n(t) (weak*) and upper
semicontinuity, (see Lemma 2), and the next to first one from (39a). Hence,
(43), i.e. (11), holds. �

For later use, let us make the observation that, from the arguments above,
it follows that for any w ∈ X, there exists a closed separable subspace Xw

containing w, and a null set Nw such that the following properties hold. For
all t /∈ Nw,

−〈w, ṗ(t)〉 ≤ d
β(t),Xw
x (g(t, x∗(t), u∗(t)), p(t))(w) and g(t, Xw∩B(x∗(t), ς/4), u∗(t)) ⊂

Xw (46)

Proof of Theorem 3, (the end constrained case)
It is possible to reduce the proof to the case where G = I, (the identity map).
The general case is then obtained by applying the results for this case to a
control problem where J is replaced by [0, T + 1], and in which an auxiliary
control variable z is introduced, governed by ż = G(x)1(T,T+1](t), z(0) = 0,
with g = 0 on (T, T +1], and with end condition (x(T +1), z(T +1)) ∈ X×C.

Thus, assume that G = I, (Y = X). For any given ε > 0, define

Ψ(x) := max(0, φ(x∗(T )) − φ(x) + ε2)+dist(x, C) (47)
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Now, for any system pair (x(.), u(.)) with u(.) ∈ DT , we have Ψ(x(T )) > 0,
(otherwise, if Ψ(x(T )) ≤ 0 then x(T ) satisfies x(T ) ∈ C, and φ(x∗(T ))+
ε2 ≤ φ(x(T )), which contradicts the optimality of x∗(.)). Since Ψ(x∗(T )) =
ε2, then Ψ(x∗(T )) ≤ Ψ(x(T )) + ε2 for all system pairs (x(.), u(.)). By Eke-
land’s theorem, there exists a system pair (xε(.), uε(.)) , uε(.) ∈ DT , such
that σT (uε(.), u

∗(.)) ≤ ε and uε(.) minimizes

Ψ∗(u(.)) := Ψ(xu(T )) + εσT (u(.), uε(.)) (48)

for u(.) in DT . Thus, uε(.) gives minimum in a free end problem with criterion
Ψ∗. Let ε = 2−m, and then write uε(.) = um(.).

For a free end problem we have already found necessary conditions. To
apply them, the auxiliary state y has to be reintroduced. Let yu(t) be the
solution of

dy/dt = (1 + M∗(t))1{τ :u(τ)6=um(τ)}(t), a.e. , y(0) = 0,

and write φ∗(x, y) := Ψ(x) + y2−m. Then um minimizes φ∗(xu(T ), yu(T ))
for u ∈ DT . Now, xum(t) ∈ B(x∗(t), ς/2), by definition of DT . Applying The-
orem 2 to um(.), ς/2 instead of u∗(.), ς, with (46), yields an adjoint function
p̃m(t):= (pm(t), Pm(t)) such that, for any u(.) ∈ DT , for a.e. t,

〈(g(t, xum(t), u(t)), (1 + M∗(t))1{τ :u(τ)6=um(τ)}(t)), (pm(t), Pm(t)〉 ≤
〈(g(t, xum(t), um(t)), 0), (pm(t), Pm(t)〉. (49)

Here pm(t) is an absolutely continuous function from J into X∗, with
scalarwise derivative ṗ(t), such that pm(t) = pm(T ) +

∫ t

T
ṗm(s)ds, such that

∫
J
〈x(t), ṗm(t)〉dt ≤

∫
J
γ(t)|x(t)|dt for all x(.) ∈ L∞(J, X), (50)

and such that, for all w ∈ X, a closed separable subspace Xm
w exists, such

that, for t not in a null set Nm
w ,

−〈w, ṗm(t)〉 ≤ d
β(t),Xm

w
x (g(t, xum(t), um(t)), pm(t))(w),

g(t, Xm
w ∩ B(x∗(t), ς/8), u∗(t)) ⊂ Xm

w . (51)

Moreover, dPm/dt = 0 a.e., and (pm(T ), Pm(T )) = −(∂Ψ(xum(T )), 2−m).
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(Note that Ψ is Lipschitz continuous of rank ≤ Mφ + 1.)

Now, at any x = x̂ ∈ B(x∗(T ), ς), ∂Ψ(x̂) ⊂ ∂ max(0, φ(x∗(T )) − φ(x̂) +
ε2) + ∂dist(x̂, C). Hence, any x∗ ∈ ∂Ψ(x̂) can be written x∗ := x̂∗ + x̌∗,
where x̂∗ ∈ y0∂(−φ(x̂)), y0 ∈ [0, 1], and x̌∗ ∈ X∗ satisfies |x̌∗| ≤ 1, and
〈c, x̌∗〉 ≤ 〈x̂, x̌∗〉 for all c ∈ C.

Thus, write pm(T ) = y0
mp̂T

m + p̌T
m, where p̂T

m ∈ ∂φ(xum(T )), y0
m ∈ [0, 1], |p̌T

m| ≤
1, p̌T

m ∈ X∗, and 〈c, p̌T
m〉 ≥ 〈xum(T ), p̌T

m〉 for all c ∈ C. Since Ψ(xum(T )) > 0,
either φ(x∗(T ))−φ(xum(T ))+ε2 > 0, in which case y0

m = 1, or dist(xum(T ), C) >
0, in which case p̌T

m 6= 0. Normalizing, we can assume y0
m + |p̌T

m| = 1 for all
m.

Choose a convergent subsequence y0
mj

of y0
m, j = 1, 2, ..., and let (y0, p̂T , p̌T , ṗ(t))

be a weak∗ cluster point of (y0
mj

, p̂T
mj

, p̌T
mj

, ṗmj
(t)) in R×X∗ ×X∗ ×Ls

2(J, X∗).

Then y0 ∈ [0, 1], p̂T ∈ ∂φ(x∗(T )), and p̌T satisfies 〈c, p̌T 〉 ≥ 〈x∗(T ), p̌T 〉 for
all c ∈ C. Moreover, if y0 = 0, then for all large j, |p̌T

mj
| > 1/2. Now, (13)-

(16) are satisfied for y∗ = p̌T
m, x(.) = xmj

(.), û(.) = umj
(.), p(.) = pmj

(.) for j
large, in particular, y0

mj
|p̂T

mj
| < ε′ for j large, so (16) holds. Then, by (17), for

all large j, 〈y, p̌T
mj

〉 ≥ ε′, hence 〈y, p̌T 〉 ≥ ε′. Hence, in any case, (y0, p̌T ) 6= 0.

Evidently, for each t, p(t) := y0p̂T + p̌T +
∫ t

T
ṗ(s)ds is a weak* cluster

point of pmj
(t). It is easily seen that the integrated version of the maxi-

mum condition holds for the cluster point p(t), so the pointwise maximum
condition (7) is satisfied by p(t). Furthermore, (50) entails the inequality∫

〈x(t), ṗ(t)〉dt ≤
∫

γ(t)|x(t)|dt for all x(.) ∈ L∞(J, X) for the cluster point
p(.) so |ṗ(t)| ≤ γ(t) a.e. holds. (Again ṗ(.) can be chosen such that
|ṗ(.)| is measurable, in fact all properties of Remark 1 then hold.) Fi-
nally, consider the ”adjoint inequality” (11). Let w ∈ X be given. For each
j = 1, 2, ..., we can imagine that a null set Nj and a closed separable sub-
space X0

j containing w is constructed such that for all t /∈ Nj, −〈w, ṗmj
(t)〉 ≤

d
β(t),X0

j
x (g(t, xmj

(t), umj
(t)), pmj

)(w) and g(t, X0
j ∩ B(xumj (t), ς/8), umj

(t)) ⊂
X0

j , see (51). We can even assume that X0
j is increasing in j. To see this, if

X0
j is defined, let X0

j+1 be the closed separable subspace X{umj+1
},X̃0

j where

X̃0
j is a countable and dense set in X0

j ∪Xj+1
w , X0

1 = Xm1

w . Define X̂ :=cl∪jX
0
j ,

and note that, for a.e. t, for any x ∈ (∪jX
0
j ) ∩ B(x∗(t), ς/16), for j large

enough, g(t, x, umj
(t)) ⊂ X0

j ⊂ X̂. Restricting ṗmj
(t) to the separable space

X̂, a subsequence ṗmji
(.) of ṗmj

(.) is weakly* convergent to ṗ(.) (restricted

to X̂) in Ls
2(J, X̂∗). We also assume that pmji

(T ), when restricted to X̂, is
weakly* convergent to p(T ). Then, for each t, also pmji

(t), when restricted
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to X̂, is weakly* convergent to p(t). Now, for any i, n, i ≥ n, we have
−〈w, ṗmji

(t)〉 ≤ supi≥n −〈w, ṗmji
(t)〉 := αn(t), so

∫
J
〈−w, ṗmji

(t)〉χ(t)dt ≤∫
J
αn(t)χ(t)dt, for any χ(t) ∈ L∞(J, R), χ(t) ≥ 0 a.e. The next to last in-

equality also holds in the limit ṗ(.), which entails −〈w, ṗ(t)〉 ≤ αn(t) a.e.
For any t not in the null set C = ∩kCk, Ck = ∪i≥k{t : umji

6= u∗(t)},
we have that t /∈ Ckt

for some kt. Thus, for i ≥ kt, u∗(t) = umji
(t) and

d
β(t),X0

ji
x (g(t, xmji

(t), umji
(t)), pmji

(t))(w) = d
β(t),X0

ji
x (g(t, xmji

(t), u∗(t)), pmji
(t))(w).

Hence, for a.e. t, we have that

−〈w, ṗ(t)〉 ≤ limn αn(t) ≤ lim supi d
β(t),X0

ji
x (g(t, xmji

(t), u∗(t)), pmji
(t))(w) ≤

lim supi d
β(t),X̂
x (g(t, xmji

(t), u∗(t)), pmji
(t))(w) ≤ dX̂(t, p(t))(w) ≤ dX(t, p(t))(w).

The second inequality follows from (51) and X0
ji

⊃ X
mji
w and the fourth one

from upper semicontinuity (Lemma 2) and the implication: For a.e. t /∈ Ckt
,

x ∈ (∪jX
0
j ) ∩ B(x∗(t), ς/16) ⇒ g(t, x, u∗(t)) ⊂ X̂. �

Proof of Remark 2 Proof of −ṗ(t) ∈ ∂̃
β(t)
x (g(t, x∗(t), u∗(t)), p(t)) a.e . It is

claimed that this property holds when X is reflexive. Evidently, δ−1
∫ t

t−δ
〈−w, ṗ(s)〉ds

≤ δ−1
∫ t

t−δ
dX(s, p(s))(w)ds. When X is reflexive, ṗ(.) can be assumed to be-

long to L2(J, X∗), hence ṗ(.) has a Lebesgue point a.e. Let t > 0 be such a
point. Then, for any w,

−〈w, ṗ(t)〉 ≤ lim infδ↘0 δ−1
∫ t

t−δ
dX(s, p(s))(w)ds.

Proof of Remark 3 A proof of the assertion in Remark 3 is obtained
by choosing a convergent subsequence (y0

mj
, y′

mj
) of (y0

m, y′
m) in the proof of

Theorem 3, where y′
m is the restriction of p̌T

m to Y ′, and considering the two
cases: limj(y

0
mj

, y′
mj

) = 0, limj(y
0
mj

, y′
mj

) 6= 0, (norm limits). In the former

case, the existence of y again yields a nonvanishing limit p̌T , in the latter
case, trivially, (y0, p̌T ) 6= 0.

Proof of Remark 5 For any given w, we have shown that there exists
a closed separable space X̂ = Xw containing w and ẋ∗(t) for a.e. t, which,
for a.e. t, is g, u∗−invariant, and for which (46) holds. The lemma below

shows that dX̂(t, p(t))(w) = d0,X̂〈g(t, x∗(t), u∗(t)), p(t)〉(w) ≤
d0,X〈g(t, x∗(t), u∗(t)), p(t)〉(w), so the assertion in Remark 5 follows.

Lemma 3 Let X be separable. Let h be Lipschitz continuous in B(x, ξ)
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of rank K, with values in X. For any w ∈ X, assume that for any se-
quence xk converging to x, and for any sequence λk ↘ 0, the sequence
∆h(xk)(w, λk) := [h(xk + λkw) − h(xk)]/λk contains a norm-convergent sub-
sequence. Then, for any β > 0, dβ(h, x, x∗)(w) = d0〈h(x), x∗〉(w).

Proof: Given w ∈ X. For some sequence (xk, x
∗
k, λk) converging to (x, x∗, 0),

(xk → x, x∗
k →∗ x∗), x∗

k ∈clB(0, β), we have dβ(h, x, x∗)(w) = limk→∞〈∆h(xk)(w, λk), x
∗
k〉.

We may assume that ∆h(xk)(w, λk) is norm-convergent, with limit x′. Then
〈∆h(xk)(w, λk), x̂

∗〉−〈x′, x̂∗〉 is small, uniformly in x̂∗ ∈clB(0, β), so d0〈h(x), x∗〉(w) ≥
limk〈∆h(xk)(w, λk), x

∗〉 = 〈x′, x∗〉 = limk〈x
′, x∗

k〉 = limk〈∆h(xk)(w, λk), x
∗
k〉.�

Proof of Remark 7 We shall merely indicate proofs of the assertions in
Remark 7. The first assertion, (i.e. Mu(.)(.), M∗(.) ∈ L1(J, R)), follows from
this idea: Let γn(t) = γ(t)1{t:n≤γ(t)<n+1}(t). Then each γn(.)ṗU ′,V (.) represents
a continuous linear functional on L2(J, XU ′,V ), with extension γn(.)ṗU ′,V (.) to
L2(J, X). The corresponding cluster point is denoted ṗn(.), it vanishes out-
side {t : n ≤ γ(t) < n+1} and satisfies (42), and so |ṗn(.)| ≤ γ(.). Evidently,
ṗ(t) =

∑
n ṗn(t) (a Ls

1−limit) also satisfies the last inequality, and in fact
is a weak cluster point of the generalized sequence

∑
n γn(.)ṗU ′,V (.) for the

duality L∞(J, X), Ls
1(J, X∗). In the proof of (43), as well as in the proof of

Theorem 3, the terms weak* limits and weak* cluster points of functions in
L2(J, X∗) used can be replaced by corresponding weak terms referring to the
duality L∞(J, X), Ls

1(J, X∗).

The second assertion follows from the fact that it suffices to prove the neces-
sary conditions for u(.) ∈ Uε := {u(.) ∈ U :

∫ T

0
M∗(s)1{s:u(s)6=u∗(s)}(s)ds ≤ ε},

for any given ε > 0 so small that Uε ⊂ DT . But then, in fact, |∇gk(t, xuk(t), uk(t))|
≤ M∗∗(s) := M∗(s)1{s:uk(s)6=u∗(s)}(s)+Mu∗(.)(s)1{s:uk(s)=u∗(s)}(s), so from (32)

and (33), |pk(t)| ≤ Mφ exp(
∫ T

t
M∗∗(s)ds) ≤ Mφ exp(ε +

∫ T

t
Mu∗(.)(s)ds).

Hence, (11) holds for β(t) replaced by (Mφ + MG) exp(ε +
∫ T

t
Mu∗(.)(s)ds),

(with MG = 0, in the free end case). Since ε is arbitrary, (11) holds even for

ε = 0. I.e., (11) holds for β(t) = (Mφ + MG) exp(
∫ T

t
Mu∗(.)(s)ds).

The third assertion follows from the fact that for any finite set U ′ ∈ U ′ ,
functions M∗(.) and M∗(.) exist in L1(J, R), bounding the functions Mu(.)(.)
and Mu(.)(.) for all u(.) ∈ U ′ ∪ Û . Thus, Theorem 3 holds for U replaced by

the switching- and σ−closure U∗ of U ′ ∪ Û , for p(.) := pU ′(.), for β(t) as just
defined. A cluster point p(.) of the generalized sequence pU ′(.) (the sets U ′

∈ U ′ directed by inclusion), then yields that Theorem 3 also holds for U , (for
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β(t) as just defined). �

A few proofs of assertions contained in the Remarks, can be found in Ap-
pendix.

Appendix

Lemma A If h : X → Y is Lipschitz continuous in B(x′, δ′) and has a
Gâteaux derivative at x′ when restricted to a dense linear subspace X ′ in X
containing x′, then h has a (bounded) Gâteaux derivative at x′ with respect
to X.

Proof: Let K be the Lipschitz rank of h. Then, |∇h(x′)[x]| ≤ K|x|, for all
x ∈ X ′, so, evidently, ∇h(x′)[x] has an extension to all X. Next, let w ∈ X,
and choose w′ ∈ X ′ such that |w − w′| ≤ ε/3K. Next choose δ so small
that |λ−1{h(x′ + λw′) − h(x′)} − ∇h(x′)w′| ≤ ε/3K when λ ∈ (0, δ). Now,
|λ−1{h(x′ +λw′)−h(x′)}−λ−1{h(x′ +λw)−h(x′)}| ≤ K|w′ −w| ≤ ε/3 and
|∇h(x′)w′ − ∇h(x′)w| ≤ ε/3. Hence, |λ−1{h(x′ + λw) − h(x′)} − ∇h(x′)w| ≤
ε, λ ∈ (0, δ).

Let g : J × X → X be separately measurable in t, and Lipschitz continuous
in B(x∗(t), ς) of rank κ(t), (κ(t) integrable), where x∗(t) is an antidifferen-
tiable function satisfying ẋ∗(t) = g(t, x∗(t)) a.e., x∗(0) = v∗. Assume that the
Gâteaux derivative ∇2g(t, x∗(t)) exists for all t. Consider the equation

dx/dt = g(t, x(t)), x(0) = v, (52)

and the corresponding variational equation

dq/dt = ∇2g(t, x∗(t))(q(t)), q(0) = v. (53)

By standard theory, the unique solution q(t) := q(t, v) to (53) can be written
q(t,v) = C(t, 0)v, where C(t, 0) is a bounded linear operator with C(0, 0) = I,
continuous in t in operator norm. In fact, |C(t, 0)| ≤ exp(

∫ t

0
κ(s)ds) ≤ eκ∗

,

where κ∗ :=
∫ T

0
κ(s)ds.

Lemma B For γ′ = ςe−κ∗

/2, (52) has a solution x(t) := x(t, v) in clB(x∗(t), ς/2)
for all v ∈ B(v∗, γ′). Moreover, v → x(t, v) has a bounded linear Gâteaux
derivative ∇2x(t, v∗), and q(t, v) = ∇2x(t, v∗)v. The resolvent C(t, 0) of (53)
equals ∇2x(t, v∗).
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Proof Write x(t) = x∗(t) = x(t, v∗). For simplicity, assume v∗ = 0. By
Gronwall’s inequality, a local existence and continuation argument, a solu-
tion x(s, v) exists and belongs to clB(x(s), ς/2), for |v| ≤ γ′. Let v ∈ X be
arbitrary, and, below, let λ ∈ (0, γ′/|v|]. Define

z(v, t, λ) := [x(t, λv)−x(t)]/λ =
∫ t

0
{[g(s, x(s)+λz(v, s, λ))−g(s, x(s))]/λ}ds,

the norm of the integrand being ≤ κ(s)|z(v, s, λ)|. Then, by Gronwall’s
inequality, |z(v, t, λ)| ≤ |v|eκ∗

, so |∂z(v, s, λ)/∂s| ≤ κ(s)|v|eκ∗

. Note that
|∂q(s, v)/∂s| ≤ κ(s)|q(s, v)|. By Gronwall’s inequality, |q(t, v)| ≤ |v|eκ∗

, so
|∂q(s, v)/∂s| ≤ κ(s)|v|eκ∗

.
Let ε > 0 (ε arbitrary), and α(v, s, λ) := |z(v, s, λ) − q(s, v)| . Then

α(v, 0, λ) = 0. Define γ(v, s, λ) := |a(s, λ)−∇2g(s, x(s))q(s, v)|, where a(s, λ) :=
[g(s, x(s) + λq(s, v)) − g(s, x(s))]/λ. Note that limλ↘0 γ(v, s, λ) = 0. Because
|a(s, λ)| ≤ κ(s)|q(s, v)| ≤ κ(s)|v|eκ∗

, |∇2g(s, x(.))(q(s, v))| ≤ κ(s)|q(s, v)| ≤
κ(s)|v|eκ∗

≤ and γ(v, s, λ) ≤ 2κ(s)|v|eκ∗

, then, by dominated convergence,
for some r > 0,

∫
J
γ(v, s, λ)ds < ε when λ ≤ r. Evidently,

|[g(s, x(s)+λz(v, ., λ))−g(s, x(s))]/λ−[g(s, x(s)+λq(s, v))−g(s, x(s))]/λ|

≤ κ(s)α(v, s, λ).
Now,

|[g(s, x(s) + λq(s, v)) − g(s, x(s))]/λ − ∂q(s, v)/∂s| ≤ γ(v, s, λ),
so

|∂z(v, s, λ)/∂s − ∂q(s, v)/∂s| = |[g(s, x(s) + λz(v, s, λ)) − g(s, x(s))]/λ
−∂q(s, v)/∂s| ≤ γ(v, s, λ) + κ(s)α(v, s, λ),

Hence, by Gronwall’s inequality, α(v, s, λ) ≤ ε exp(κ∗), when λ ∈ (0, r). �

Proof of Theorem 1 Let u(.) ∈ U , and let t be a Lebesgue point (see
Lebesgue set in Dunford and Schwartz, (1967)) of both g(., x(.), u(.)) and
g(., x∗(.), u∗(.)), and let uδ(.) = u(.)1[t−δ,t]+u∗(.)(1−1[t−δ,t]), δ > 0. For δ small
enough, the solution xδ(t) of dx/ds = g(s, x(s), uδ(s)) a.e., x(0) = x0 exists
in clB(x∗(t), ς/2). Moreover, by Gronwall’s inequality, for some constant C,
|xδ(s) − x∗(s)| ≤ Cδ, (see (28)). Let a = g(t, x∗(t), uδ(t)) − g(t, x∗(t), u∗(t)).
Then, |xδ(t) − x∗(t) − δa| =

|
∫

[t−δ,t]
g(s, xδ(s), uδ(s))ds −

∫
[t−δ,t]

g(s, x∗(s), u∗(s))ds − δa|

≤ |
∫

[t−δ,t]
g(s, xδ(s), uδ(s))ds −

∫
[t−δ,t]

g(s, x∗(s), uδ(s))ds+
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∫
[t−δ,t]

g(s, x∗(s), uδ(s))ds −
∫

[t−δ,t]
g(s, x∗(s), u∗(s))ds − δa| ≤

∫
[t−δ,t]

Mu(.)(s)Cδds+|
∫

[t−δ,t]
g(s, x∗(s), uδ(s))ds−

∫
[t−δ,t]

g(s, x∗(s), u∗(s))ds−

δa|

Using these inequalities and that t is a Lebesgue point, it follows that lim δ−1|xδ(t)−
x∗(t)−a| = 0, so lim δ−1(xδ(t)−x∗(t)) = a. By Lemma B, xδ(T ) = C(T, t)a,
where C(T, t) is the resolvent of q̇ = gx(s, x

∗(s), u∗(s))q, (C(t, t) = I).By
optimality, at δ = 0, dφ(xδ(T ))/dδ ≤ 0, hence (dφ(x∗(T ))/dx)C(T, t)a ≤ 0.
Defining p(T ) = (dφ(x∗(T ))/dx) and p(t) = p(T )C(T, t), the maximum con-
dition (7) in Theorem 1 follows. Standard theory gives that p(t) is a weak∗

solution of the adjoint equation.

Comment on Remark 1 The existence of ṗ(.) comes out of the proof
of Theorems 2 and 3. However, it is also an easy consequence of abso-
lute continuity and (the stronger property) |p(t) − p(s)| ≤

∫ t

s
γ(ρ)dρ, t > s.

Let J ′ be the Lebesgue set of γ(.). For each w ∈ X, 〈w, p(t)〉 is absolutely
continuous. Then, for all t ∈ J ′ not in a null set Nw, there exists a real
number p̌w(t) such that (d/dt)〈w, p(t)〉 = p̌w(t), where |p̌w(t)| ≤ γ(t)|w|. As-
sume that t ∈ J ′ also belongs to J\Nw′ . Then, (d/dt)〈(αw + βw′), p(t)〉
=αp̌w(t) + βp̌w′(t). In fact, w → p̌w(t) is linear on the set (in fact lin-
ear subspace) Wt for which (d/dt)〈w, p(t)〉 exists, t ∈ J ′. By the Hahn-
Banach theorem, for each t ∈ J ′, p̌w(t) has an extension to all X, denoted
p̌(t), satisfying |p̌(t)| ≤ γ(t). Trivially, (d/dt)〈w, p(t)〉 = 〈w, p̌(t)〉 is mea-
surable, and

∫ s

0
〈w, p̌(t)〉 =

∫ s

0
(d/dt)〈w, p(t)〉 = 〈w, p(t) − p(0)〉. The last

equality determines p̌(t) uniquely in the sense that the continuous linear
functional it represents is unique: If, for all s,

∫ s

0
〈x̂, p̌(t)〉dt =

∫ s

0
〈x̂, p̂(t)〉dt,

p̌(.), p̂(.) ∈ Ls
2(J, X∗), then for any countable set X ′ ⊂ X, for some set JX′ of

full measure, for all t ∈ JX′ , x̂ ∈ X ′, 〈x̂, p̌(t)〉 = 〈x̂, p̂(t)〉. This also holds for
x̂ ∈ clX ′. Now, any x(.) ∈ L2(J, X) can be assumed to take values in a set
of the form clX ′, so 〈x(t), p̌(t)〉 = 〈x̂(t), p̂(t)〉, for t ∈ JX′ , which shows the
uniqueness claimed.

Proof of y /∈ C ⇒ 0 /∈ ∂dist(y, C). Choose c ∈ C, such that |y − c| ≤
3dist(y, C)/2. Write yλ = λy + (1 − λ)c. Evidently, dist(y1/2, C) ≤ |y1/2 −
c| = |y − c|/2 ≤ 3dist(y, C)/4. Since λ → dist(yλ, C) =: α(λ) is convex,
d0α(y1)(−1) = d′α(y1)(−1) ≤ {α(1/2) − α(1)}/(1/2) ≤ {3dist(y, C)/4 −
α(1)}/(1/2) = −dist(y, C)/2 < 0, (y → dist(y, C) is convex, d′ = d0,
see Clarke 1983 p. 53, p. 40). Hence, [d0dist(x, C)]x=y(c − y) < 0, so
0 /∈ [∂dist(x, C)]x=y.
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Proof of measurability of d
β(t)
x (g(t, x∗(t), u∗(t)), p(t))(w). This function

is surely measurable if g is simultaneously continuous in (t, u) and X is
separable. To see this, it suffices to note that by Lusin’s theorem, there exists
an increasing squence of closed sets Jk, meas(J\Jk) < 1/k, such that u∗(t)
is continuous on Jk. Then, for all x ∈ B(0, ς), g(t, x∗(t) + x, u∗(t)) is contin-
uous on Jk, and for any δ > 0 and weak* neigbourhood W in clB(0, β(t)),
Θ(δ, W ) := supx∈B(0,δ),x∗∈W,λ∈(0,δ)〈λ

−1[g(t, x∗(t)+x+λw, u∗(t))− g(t, x∗(t)+
x, u∗(t)), x∗)], x∗〉 is lower semicontinuous on each Jk. The weak* topology
on clB(0, β(t)) is metric when X is separable, so when taking lim Θ(δ, W ),
we can confine ourselves to a sequence, δn,Wn.

The function d
β(t)
x (g(t, x∗(t), u∗(t)), p(t)〉)(w) is convex in w, (the proof is

similar to the proof of convexity of d0
x〈g(t, x∗(t), u∗(t)), p(t)〉(w), see Clarke

(1983), p.26. ).

Proof of the last assertion in Remark 3. If Y = Y ′ +Y ′′, Y ′ ∩Y ′′ = {0},
and if for some z ∈ Y, some ε ∈ (0, 1], Π′′B(z, ε) ⊂ Π′′[(C − G(x∗(T ))) ∩
B(0, 1)], chooce ε′ > 0 so small that ε′ ≤ 〈ε/16K ′〉, where K ′ ∈ [1, ∞)
is greater or equal to the operator norm on Π′, the projection onto Y ′. Let
y ∈ clB(0, 1) be such that 1/2 ≤ 〈y, y∗〉. Then, by the additional condition in
Remark 3, |〈Π′ŷ, y∗〉| ≤ ε′|Π′ŷ| ≤ Kε′ ≤ 1/4, for all ŷ ∈ clB(0, 1) ⊂ Y. Thus,
1/2 ≤ 〈y, y∗〉 = 〈Π′y, y∗〉 + 〈Π′′y, y∗〉, so 1/4 ≤ 〈Π′′y, y∗〉. Now, by (16) 0 ≥
〈(C −G(x∗(T )))∩B(0, 1), y∗〉 = 〈(Π′ +Π′′)[(C −G(x∗(T )))∩B(0, 1)], y∗〉, so
K ′ε′ ≥ 〈Π′′[(C −G(x∗(T )))∩B(0, 1)], y∗〉 ≥ 〈Π′′B(z, ε), y∗〉. Now, z + εy/2 ∈
B(z, ε), so ε/16 ≥ K ′ε′ ≥ 〈Π′′(z + εy/2), y∗〉 ≥ 〈Π′′z, y∗〉 + 〈Π′′εy/2, y∗〉, or
−ε/16 ≥ ε/16 − 〈Π′′εy/2, y∗〉 ≥ 〈Π′′z, y∗〉. Hence, ε′ ≤ 〈−Π′′z, y∗〉.

Proof of Remark 6 Assume Mu(.)(t) ≡ Mu∗(.) ≡ M∗, Mu(.) ≡ Mu∗(.)(.) ≡
M∗. Let us prove that the property B(z, ε) ⊂ cl{G′(x∗(T ))qu(T ) − c +
G(x∗(T )) : u ∈ U , c ∈ C} implies (17): Note that for ε′ ∈ (0, ε/64(1 +
M∗∗)], where M∗∗ := 2M∗ exp(M∗T ), ε′ small enough, for any given set M
with meas(M) < ε′, B(z, ε/2) ⊂ cl{G′(x∗(T ))qu(T ) − c + G(x∗(T )) : c ∈
C, u ∈ U , u = u∗ on M}. Moreover, B(z,ε/4) ⊂ cl{G′(x∗(T ))qu(T ) − c +
G(x∗(T )) : c ∈ C, u ∈ U , u = û on M} even if qu is redefined to satisfy
dqu/dt = g(t, x∗(t), u(t)) − g(t, x∗(t), û(t)) + g′

x(t, x
∗(t), û(t)), q(0) = 0, when

{s : û(s) 6= u∗(s)} ⊂ M, when ε′ is small enough. Finally, for any con-
tinuous function x(.) close enough to x∗(.), B(z,ε/8) ⊂ cl{G′(x(T ))qu(T ) −
c + G(x(T )) : c ∈ C, u ∈ U , u = û on M} even if qu is redefined to sat-
isfy dqu/dt = g(t, x(t), u(t)) − g(t, x(t), û(t)) + gx(t, x(t), û(t))q, q(0) = 0.
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Thus, the last inclusion holds for ε′ small enough, for (x(.), û(.)) being a
system pair, with σ(û, u∗) < ε′. We then write qu(t) = q̂u(t). Given any quin-
tuple (x(.), û(.), p(.), p̂, y∗) satisfying (13)-(16). Now, (14) is equivalent to
〈q̂u(T ), p(T )〉 ≤ ε′. By (16), [G′(x(T ))]∗y∗ = p(T )−p̂, so, 〈q̂u(T ), [G′(x(T ))]∗y∗〉−
〈q̂u(T ), p(T )〉 ≤ ε′|q̂u(T )|, by |p̂| ≤ ε′ in (16). Thus, 〈q̂u(T ), [G′(x(T ))]∗y∗〉 ≤
〈q̂u(T ), [G′(x(T ))]∗y∗〉 − 〈q̂u(T ), p(T )〉
+〈q̂u(T ), p(T )〉 ≤ ε′(1 + M∗∗). Since, by (16), 〈−C + G(x(T )), y∗〉 ≤ 0, then
〈G′(x(T ))q̂u(T )−C +G(x(T )), y∗〉 ≤ ε′(1+M∗∗), so 〈B(z, ε/8), y∗〉 ≤ ε′(1+
M∗∗) . As 〈y′, y∗〉 ≥ 1/2 for some y′ ∈ clB(0, 1) and z + εy′/16 ∈ B(z, ε/8),
then 〈z + εy′/16, y∗〉 ≤ ε′(1 + M∗∗). Hence, 〈z, y∗〉 ≤ −〈εy′/16, y∗〉 + ε′(1 +
M∗∗) ≤ −ε/32 + ε′(1 + M∗∗) ≤ −ε/64. I.e., 〈−z, y∗〉 ≥ ε′.
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