MEMORANDUM

No 05/99

The Composite Mean Regression as a Tool in Production Studies

By
 Eivind Bjontegård

This series is published by the
University of Oslo Department of Economics
P. O.Box 1095 Blindern

N-0317 OSLO Norway
Telephone: + 4722855127
Fax: $\quad+4722855035$
Internet: http://www.sv.uio.no/sosoek/
e-mail: econdep@econ.uio.no

In co-operation with
 The Frisch Centre for Economic Research

Gaustadalleén 21
N-0371 OSLO Norway
Telephone: $\quad+4722958820$
Fax: $\quad+4722958825$
Internet: http://www.frisch.uio.no/
e-mail: frisch@frisch.uio.no

List of the last 10 Memoranda:

No	23	by Tor Jakob Klette and Zvi Griliches: Empirical Patterns of Firm Growth and R\&D Investment: A Quality Ladder Model Interpretation. 32 p.	
No	24	by Torbjoern Haegeland and Tor Jakob Klette: Do Higher Wages Reflect Higher Productivity? Education, Gender and Experience Premiums in a Matched Plant-Worker Data Set. 37 p.	
No	25	by Karl Ove Moene and Michael Wallerstein: Inequality and Redistribution. 41 p.	
No	26	by Steinar Holden and Karl Ove Moene: Measures to improve Wage Formation in Sweden. 28 p.	
No	27	by Frode Johansen and Tor Jakob Klette: Wage and Employment Effects of Payroll Taxes and Investment Subsidies. 27 p.	
No	28	By Hilde Bojer: Equivalence Scales and Intra-household Distribution. 12 p.	
No	01	Gabriela Mundaca and Jon Strand: Speculative attacks in the exchange market with a band policy: A sequential game analysis. 45 p.	
No	02	By Pedro P.Barros and Tore Nilssen: Industrial Policy and Firm Heterogeneity. 18 p.	
No	03	By Steinar Strøm: The Economics of Screening Programs. 8 p.	
No	04	Kai Leitemo and Øistein Røisland: Choosing a Monetary Policy Regime: Effects on the Traded and Non-Traded Sectors	

A complete list of this memo-series is available in a PDF® format at:
http://www..sv.uio.no/sosoek/memo/

The Composite Mean Regression as a Tool in Production Studies

by Eivind Bjøntegård ${ }^{1}$
Department of Economics
University of Oslo

Abstract

Johansen (1972) explains how a short run macro production function can be derived on the basis of a distribution of micro production units with respect to fixed input coefficients. The present note points out that the composite mean regression, introduced by Frisch (1929), can be useful in analysing some of the production models in Johansen (1972). The focus is on complementary, alternative and marginally independent production factors at the macro level in a production model which assumes efficient allocation of given quantities of inputs.

Keywords: Composite mean regression, complementary, alternative and marginally independent production factors, macro production functions.

1. Introduction

The purpose of this note is to demonstrate that the composite mean regression in Frisch (1929) can be useful in analysing a production model in Johansen (1972). Johansen explains how a short run macro production function can be derived on the basis of a distribution of micro production units with respect to fixed input coefficients. Frisch (1965) introduces the concept of marginal dependency between production factors, i.e. complementary, alternative and marginally independent factors. The composite mean regression is applicable in discussing this dependency at the macro level within a production model stated in section 4.1 in Johansen. This model assumes efficient allocation of given input quantities among the micro production units. It may be denominated the standard model. In section 3.6 Johansen formulates a generalized model where the degree of capacity utilization in the micro units is a nondecreasing function of the quasi rent

[^0]the micro units are able to earn. It can be shown that the marginal productivities of the macro production function in this general model are equal to the regression coefficients in an appropriate composite mean regression. However, in order to save on symbols and formulas the presentation of this case is omitted from the present note.

The regression model is presented in section 2 and the production model in section 3 below. In this last section definitions of complementary, alternative and marginally independent factors are given together with a further discussion. The production model is restricted to three production factors and the regression model accordingly to two variables. Extension to an arbitrary number of factors and variables should be straighforward.

2. The composite mean regression

Frisch (1929) is working with discrete variables. Here his idea is adopted to a continuous distribution. The variables z_{1} and z_{2} are assumed to be distributed on the positive orthant according to the density function

The regression line whose coefficients g_{1} and g_{2} are to be determined, is written as

$$
g_{0}+g_{1} z_{1}+g_{2} z_{2}=0,
$$

where $g_{0} \neq 0$ is an arbitrarily fixed constant. Frisch requires the regression to satisfy some invariance conditions for transformation of the variables. This requirement can be disregarded here and g_{0} put equal to -1 without loss of generality. The regression line to be determined can thus be written as

$$
\begin{equation*}
-1+g_{1} z_{1}+g_{2} z_{2}=0 \tag{2.2}
\end{equation*}
$$

The composite mean regression is obtained by choosing g_{1} and g_{2} to minimize the expression

$$
\begin{equation*}
\iint\left(-1+g_{1} z_{1}+g_{2} z_{2}\right)^{2} h\left(z_{1} z_{2}\right) d z_{1} d z_{2}, \tag{2.3}
\end{equation*}
$$

where it is integrated for all positive values of $h\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$. The first order conditions for a minimum are

$$
\begin{aligned}
& \iint 2\left(-1+g_{1} z_{1}+g_{2} z_{2}\right) z_{1} h\left(z_{1}, z_{2}\right) d z_{1} d z_{2}=0 \\
& \iint 2\left(-1+g_{1} z_{1}+g_{2} z_{2}\right) z_{2} h\left(z_{1}, z_{2}\right) d z_{1} d z_{2}=0
\end{aligned}
$$

Assuming the second order conditions fulfilled and introducing the first and second order moments

$$
\begin{array}{lr}
M_{i}=M\left(z_{i}\right)=\iint z_{i} h\left(z_{1}, z_{2}\right) d z_{1} d z_{2} & i=1,2 \\
M_{i j}=M\left(z_{i} z_{j}\right)=\iint z_{i} z_{j} h\left(z_{1}, z_{2}\right) d z_{1} d z_{2} & i, j=1,2 \tag{2.4}
\end{array}
$$

the solutions for g_{1} and g_{2} can be obtained from the first order conditions

$$
g_{1}=\frac{1}{M_{11} M_{22}-M_{12}^{2}}\left(M_{1} M_{22}-M_{2} M_{21}\right)
$$

$$
\begin{equation*}
g_{2}=\frac{1}{M_{11} M_{22}-M_{12}^{2}}\left(M_{2} M_{11}-M_{1} M_{12}\right) . \tag{2.5}
\end{equation*}
$$

3. Marginal dependency - the standard model

Johansen assumes fixed input coefficients in the micro production units. Let $\xi_{1}, \xi_{2}, \xi_{3}$ indicate input per unit of output of the three inputs and let
be a continuous capacity distribution. The domain of $f()$ is in the interior of the positive orthant in the $\xi_{1}, \xi_{2}, \xi_{3}$-space. The meaning of (3.1) is that in a 3dimensional region $\Delta \xi_{1}, \Delta \xi_{2}, \Delta \xi_{3}$ around the point $\xi_{1}, \xi_{2}, \xi_{3}$, is located an output capacity approximately equal to $\mathrm{f}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \Delta \xi_{1} \Delta \xi_{2} \Delta \xi_{3}$. This capacity requires an amount of input no. i equal to $\xi_{\mathrm{i}} \mathrm{f}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \Delta \xi_{1} \Delta \xi_{2} \Delta \xi_{3}$ when operated.

Letting $\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}$ be input prices in terms of output, the quasi rent earned by micro units with input coefficient $\xi_{1}, \xi_{2}, \xi_{3}$ can be defined as

$$
\begin{equation*}
r=1-q_{1} \xi_{1}-q_{2} \xi_{2}-q_{3} \xi_{3} \tag{3.2}
\end{equation*}
$$

and a zero quasi rent plane as

$$
\begin{equation*}
q_{1} \xi_{1}+q_{2} \xi_{2}+q_{3} \xi_{3}=1 \quad \text { or } \quad \xi_{1}=\frac{1}{q_{1}}\left(1-q_{2} \xi_{2}-q_{3} \xi_{3}\right) . \tag{3.3}
\end{equation*}
$$

Efficient allocation of variable inputs is obtained when micro units earning a positive quasi rent are operated at full capacity while the others are left idle. Total output, X , and total factor use, V_{i}, for the production sector as a whole can then be written as

$$
\begin{gather*}
X=\iint_{0}^{\frac{1}{q_{1}}\left(1-q_{2} \xi_{2}-q_{3} \xi_{3}\right)} \int_{0} f\left(\xi_{1}, \xi_{2}, \xi_{3}\right) d \xi_{1} d \xi_{2} d \xi_{3} \\
V_{i}=\iint_{1_{1}}^{\frac{1}{q_{1}}\left(1-q_{2} \xi_{2}-q_{3} \xi_{3}\right)} \int_{0} \xi_{i} f\left(\xi_{1}, \xi_{2}, \xi_{3}\right) d \xi_{1} d \xi_{2} d \xi_{3} \quad i=1,2,3 .
\end{gather*}
$$

In (3.4) the limits of integration for ξ_{2} and ξ_{3} may be set equal to 0 and ∞. After having integrated over ξ_{1} from 0 to $1 / \mathrm{q}_{1}\left(1-\mathrm{q}_{2} \xi_{2}-\mathrm{q}_{3} \xi_{3}\right)$ the integrand of the integral over ξ_{2} and ξ_{3} is zero for values of these variables close to the origin or above the plane (3.3).

Assuming that a matrix, M , to be defined later, is nonsingular (positive definite), q_{1}, q_{2}, q_{3} may be conceived of as functions of V_{1}, V_{2}, V_{3} in the last equations of (3.4). Inserting into the first equation gives

$$
\begin{equation*}
X=F\left(V_{1}, V_{2}, V_{3}\right) . \tag{3.5}
\end{equation*}
$$

This is the short run macro production function in Johansen.
Frisch (1965, p. 58) defines the product accelerations as the second order derivatives of F . Two factors are complementary if an increase in the quantity of one factor increases the marginal productivity of the other, i.e. if $\frac{\delta^{2} F\left(V_{1} V_{2}, V_{3}\right)}{\delta V_{j} V_{j}}>0, i \neq j$. The factors are alternative when this second order derivative is negative and marginally independent when it is zero.

According to some remarks on page 192 and 193, Frisch (1965) considers the definitions above to be technical concepts as opposed to complementarity and
alternativity in demand. The definition will be applied here although the Johansen macro production function (3.5) is a highly economic concept.

Regarding X and $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ in (3.4) as functions of $\mathrm{q}_{1}, \mathrm{q}_{2}$ and q_{3} and letting $\delta \mathrm{X} / \delta \mathrm{q}_{1}$ and $\delta \mathrm{V}_{\mathrm{i}} / \delta \mathrm{q}_{1}$ denote partial derivatives, one gets

$$
\begin{aligned}
& \frac{\delta X}{\delta q_{1}}=-\frac{1}{q_{1}} \iint \xi_{1} f\left(\xi_{1}, \xi_{2}, \xi_{3}\right) d \xi_{2} d \xi_{3} \\
& \frac{\delta V_{i}}{\delta q_{1}}=-\frac{1}{q_{1}} \iint \xi_{1} \xi_{i} f\left(\xi_{1}, \xi_{2}, \xi_{3}\right) d \xi_{2} d \xi_{3}, i=1,2,3
\end{aligned}
$$

Let us further introduce the integral

$$
\begin{equation*}
J=\frac{1}{q_{1}} \iint f\left(\xi_{1}, \xi_{2}, \xi_{3}\right) d \xi_{2} d \xi_{3} . \tag{3.7}
\end{equation*}
$$

In the integrals (3.6) and (3.7) ξ_{1} is to be set equal to $1 / \mathrm{q}_{1}\left(1-\mathrm{q}_{2} \xi_{2}-\mathrm{q}_{3} \xi_{3}\right)$ according to (3.3). Replacing (3.3) by (3.2) in (3.4) X can also be considered a function of r . Partial derivation gives

$$
\frac{\delta X}{\delta r}=-J, \text { when } r=0 .
$$

J can be interpreted as total capacity density along the plane (3.3).
Let us also introduce the density function.

$$
\begin{equation*}
\frac{1}{q_{1} J} f\left(\frac{1}{q_{1}}\left(1-q_{2} \xi_{2}-q_{3} \xi_{3}\right), \xi_{2}, \xi_{3}\right) \tag{3.8}
\end{equation*}
$$

and first and second order moments

$$
\begin{align*}
& M_{i}=M\left(\xi_{i}\right)=\frac{1}{q_{1} J} \iint \xi_{i} f\left(\xi_{1}, \xi_{2}, \xi_{3}\right) d \xi_{2} d \xi_{3} \quad i=1,2,3 \\
& M_{i j}=M\left(\xi_{i} \xi_{j}\right)=\frac{1}{q_{1} J} \iint \xi_{i} \xi_{j} f\left(\xi_{1}, \xi_{2}, \xi_{3}\right) d \xi_{2} d \xi_{3} \quad i, j=1,2,3 \tag{3.9}
\end{align*}
$$

where ξ_{1} again is to be replaced by $1 / \mathrm{q}_{1}\left(1-\mathrm{q}_{2} \xi_{2}-\mathrm{q}_{3} \xi_{3}\right)$.

Using the definitions above and differentiating in (3.4) gives

$$
\begin{align*}
& d X=-J M_{1} d q_{1}-J M_{2} d q_{2}-J M_{3} d q_{3} \\
& d V_{i}=-J M_{i 1} d q_{1}-J M_{i 2} d q_{2}-J M_{i 3} d q_{3}, \quad i=1,2,3 . \tag{3.10}
\end{align*}
$$

It is convenient to rewrite (3.10) with vector and matrix notations
(3.11) $d X=-J m^{\prime} d q$
(3.12) $d V=-J M d q$
where $\mathrm{m}=\left[\mathrm{M}_{\mathrm{i}}\right]_{3 \times 1}$, $\mathrm{dq}=\left[\mathrm{dq}_{\mathrm{i}}\right]_{3 \times 1}, \mathrm{dV}=\left[\mathrm{dV}_{\mathrm{i}}\right]_{3 \times 1}, \mathrm{M}=\left[\mathrm{M}_{\mathrm{ij}}\right]_{3 \times 3}$, and for later use we write $\mathrm{q}=\left[\mathrm{q}_{\mathrm{i}}\right]_{3 \times 1}$.
It can be shown that the matrix M is positive definite provided there is sufficient spread among the marginal input coefficients in (3.3).

Since $\xi_{1}, \xi_{2}, \xi_{3}$ satisfy (3.3), one can derive

$$
\begin{align*}
& 1=q^{\prime} m \tag{3.13}\\
& m=M q .
\end{align*}
$$

From (3.12), (3.13) and the fact that $\mathrm{M}=\mathrm{M}^{\prime}$

$$
\begin{equation*}
q^{\prime} d V=-J q^{\prime} M d q=-J m^{\prime} d q \tag{3.14}
\end{equation*}
$$

which together with (3.11) gives

$$
\begin{equation*}
d X=q^{\prime} d V \tag{3.15}
\end{equation*}
$$

which proves that the marginal productivities are equal to the factor prices, $\frac{\left.\delta F F V_{1}, V_{V} V_{3}\right)}{\delta V_{i}}=q_{i}$

Since the factor prices are functions of the factor quantities, the second order derivatives of F or the product accelerations in the terminology by Frisch, can be obtained from (3.10) or (3.12) as $\frac{\delta q_{i}\left(V_{1} V_{V} V_{3} V_{3}\right.}{\delta V_{j}}$.

Let $\quad W=\left[\frac{\delta^{2} F()}{\delta V_{j} \delta V_{i}}\right]=\left[\frac{\delta q_{i}()}{\delta V_{j}}\right] \quad$ be the Hessian of F. From (3.12)
(3.16) $W=-\frac{1}{J} M^{-1}$.

Since M is positive definite, W is negative definite.

From (3.16):
(3.17) $\frac{\delta q_{2}}{\delta V_{1}}=\frac{1}{J|M|}\left|\begin{array}{ll}M_{12} & M_{13} \\ M_{32} & M_{33}\end{array}\right|$.

It is easily seen that with only two factors, no. 1 and no. 2, (3.17) becomes

$$
\begin{equation*}
\frac{\delta q_{2}}{\delta V_{1}}=\frac{M_{12}}{J\left(M_{11} M_{22}-M_{12}^{2}\right)}>0 \tag{3.18}
\end{equation*}
$$

where J and M_{ij} are defined for the two factor case as in Johansen p 57.

It is clear that in the two factor case, the factors are always complementary.
Returning to (3.17), using (3.13) and manipulating the determinant in the numerator ${ }^{2}$ gives:

$$
\begin{aligned}
& K=\left|\begin{array}{ll}
M_{12} & M_{13} \\
M_{32} & M_{33}
\end{array}\right|=\frac{1}{q_{1}}\left|\begin{array}{cc}
q_{1} M_{12} & q_{1} M_{13} \\
M_{32} & M_{33}
\end{array}\right| . \\
& K=\frac{1}{q_{1}}\left|\begin{array}{cc}
q_{1} M_{12}+q_{3} M_{32} & q_{1} M_{13}+q_{3} M_{33} \\
M_{32} & M_{33}
\end{array}\right| . \\
& K=\frac{1}{q_{1}}\left(\left|\begin{array}{ll}
M_{2} & M_{3} \\
M_{32} & M_{33}
\end{array}\right|-q_{2}\left|\begin{array}{ll}
M_{22} & M_{23} \\
M_{32} & M_{33}
\end{array}\right|\right) .
\end{aligned}
$$

Adding q_{3} times the second row to the first

Using $q_{1} M_{12}+q_{3} M_{32}=M_{2}-q_{2} M_{22}$ and $q_{1} M_{13}+q_{3} M_{33}=M_{3}$ $\mathrm{q}_{2} \mathrm{M}_{23}$ from (3.13)

Putting $\left|\mathrm{M}_{1}\right|=\mathrm{M}_{22} \mathrm{M}_{33}-\mathrm{M}_{32}{ }^{2}$ outside the parenthesis

$$
K=\frac{\left|M_{1}\right|}{q_{1}}\left(\frac{\left|\begin{array}{ll}
M_{2} & M_{3} \\
M_{32} & M_{33}
\end{array}\right|}{\left|M_{1}\right|}-q_{2}\right) .
$$

$$
\frac{\delta q_{2}}{\delta V_{1}}=\frac{\left|M_{1}\right|}{q_{1} J|M|}\left(\frac{\left|\begin{array}{ll}
M_{2} & M_{3} \tag{3.19}\\
M_{32} & M_{33}
\end{array}\right|}{\left|M_{1}\right|}-q_{2}\right), \quad \begin{aligned}
& \text { where }\left|\mathrm{M}_{1}\right| \text { is the principal minor } \mathrm{M}_{22} \mathrm{M}_{33} \\
& -\mathrm{M}_{23}{ }^{2}>0 .
\end{aligned}
$$

Comparing the first expression in the parenthesis in (3.19) with (2.5) it is seen that this is equal to the regression coefficient g_{2} in the composite mean regression
(3.20) $-1+g_{2} \xi_{2}+g_{3} \xi_{3}=0$
when the density function (3.8) and definitions (3.9) are applied.
(3.19) can thus be written as
(3.21) $\frac{\delta q_{2}}{\delta V_{1}}=H\left(g_{2}-q_{2}\right) \quad$ where H is a positive number.

The following conclusions can be drawn from (3.21): Factors no. 1 and no. 2 are complementary when $g_{2}>q_{2}$. If $g_{2}<q_{2}$ they are alternative and they are marginally independent if $\mathrm{g}_{2}=\mathrm{q}_{2}$. ${ }^{3}$

By computing $\frac{\delta q_{3}}{\delta V_{1}}$ we will get similar conclusions for factors no. 1 and no. 3. However, factor no. 1 cannot be alternative to both no. 2 and no. 3. If this were the case, the regression line (3.20) will lie northeast of the line

$$
1=q_{2} \xi_{2}+q_{3} \xi_{3}
$$

in the ξ_{2}, ξ_{3}-plane and wholly outside the region where the density function (3.8) takes on positive values. In such a situation the measured deviations from the regression line cannot be minimized. It can thus be concluded that factor no. 1 is complementary to either no. 2 or no. 3 . If factor no. 1 and no. 2 are alternative, then factor no. 3 is

Letting q_{1} be exogenous and V_{1} endogenous in (3.4) one gets $X=F^{*}\left(q_{1}, V_{2}, V_{3}\right)$ and $V_{1}=v\left(q_{1}, V_{2}, V_{3}\right)$.
It can be shown that g_{2} in (3.21) satisfies

$$
g_{2}=\frac{\delta F^{*}\left(q_{1}, V_{2}, V_{3}\right)}{\delta V_{2}},
$$

but proceeding along these lines doesn't give more insight into marginal dependency than can be derived from a general production function independently of its origin.
complementary to both no. 1 and no. 2 .
The conclusion that factor no. 1 is complementary to at least one of the other factors can reasonably be assumed to hold for an arbitrary number of n factors. When every factor is complementary to at least one of the others, there must be at least $\mathrm{n}-1$ positive cross accelerations. This is a minimum requirement that leaves wide scope for alternativity when the number factors becomes large. The number of negative cross accelerations may then be quite large. On page 59 in Frisch (1965) the number of different cross accelerations is stated to be $n(n-1) / 2$. Deducting the minimum number of positive accelerations according to the reasoning above, we get the highest possible number of negative cross accelerations

$$
k=(n-1)\left(\frac{n}{2}-1\right) .
$$

When $\mathrm{n}=2, \mathrm{k}=0$ and when $\mathrm{n}=3, \mathrm{k}=1$. This is in accordance with the previous results. For $\mathrm{n}=4,5,10$ and 20 k becomes 3, 6, 36 and 171 respectively.

We conclude the note by repeating the results for the two and three factor cases remembering that the numbering of factors is arbitrary: When there are only two production factors, these are always complementary. In the three factor case factor no. 1 is complementary to either no. 2 or no. 3 . If factor no. 1 and no. 2 are alternative, factor no. 3 is complementary to both no. 1 and no. 2 .

References:

Frisch, Ragnar, 1929. Correlation and scatter in statistical variables, Nordisk Statistisk Tidsskrift, Vol 8, also in Nordisk Statistical Journal, Vol. 1, and Memorandum fra Universitetets socialøkonomiske institutt, Oslo, 8. mai 1951.

Frisch, Ragnar, 1965. Theory of production, D. Reidel Publishing Company, Dordrecht - Holland.

Johansen, Leif, 1972. Production functions. North-Holland Publishing Company, Amsterdam - London.

[^0]: 1 I am indebted to Per Meinich for helpful comments on an earlier draft of this note and Norsk Tekstsenter Anne Sofie Tolfsby for secretarial assistance.

