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Abstract.  The paper presents a theory of entrepreneurial 

choice under uncertainty. An entrepreneur is an individual 

who manages a firm that produces one commodity with labor, 

an intermediate good, and capital.  He pays dividends to 

shareholders, invests in bonds and capital, and has an n-period 

planning horizon.  His aim is to maximize the expected value 

of a utility function that varies with the dividends he pays 

each period and with his firm’s balance sheet at the end of the 

planning horizon. The paper ends with an empirical formal-

econometric test of the theory.  The test demonstrates that the 

theory is empirically relevant.   
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1.  Introduction         

This paper presents a theory of entrepreneurial choice in a 

world in which the entrepreneur cannot foresee with certainty 

the behavior of prices during the periods of his planning 

horizon.  I introduced the theory in (Stigum, 1969).  Here, I 

develop the characteristics of entrepreneurial choice under 

uncertainty, and compare them with the way entrepreneurs act 

in the neo-classical theory of the firm. The characteristics 

which the two theories display differ in two important ways.  

Firstly, in the neo-classical theory the entrepreneur - with 

knowledge of prices and subject to the production constraints 

that he faces - maximizes the present value of the sum of 

profits which the firm earns each period during his planning 

horizon.  In my theory, the entrepreneur - subject to the 

production and financial constraints that he faces - maximizes 

the expected value of a utility function that varies with the 

dividends he pays each period to his shareholders and with his 

firm’s balance sheet at the end of his planning horizon.  

Secondly, in my theory the entrepreneur’s reaction to a 

change in the price of a variable, say capital, can be analysed 

in terms of a substitution effect, an income effect, and an 

expectations effect. The income effect and expectations effect 

are missing in the neo-classical theory (cf., Chapter 7 in D. M. 

Kreps, 1990).  

          The paper ends with an empirical test of the empirical 

relevance of my theory.  The test is formulated as an 

axiomatic system in which theory variables reside in a theory 

universe and data variables reside in a data universe. The 

universes are disjoint and connected by a bridge that relates 

theory variables to data variables in novel ways.  

            In this axiomatic system the data comprise four 

hundred observations of the components of a nineteen-
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dimensional random vector.  The probabiliy distribution of 

this vector, the TPD, is taken to be a true rendition of the data 

generating process.  In the TPD the data variables have finite 

means and finite positive variances. 

            Six of the axioms in the given axiomatic system 

present the economic theory that is at stake in the empirical 

analysis.  The theory is a family of models of these axioms 

that describes salient characteristics of entrepreneurial choice 

under uncerainty.  The variables of the theory comprise 

thirteen components of a random vector with a probability 

distribution, the RPD. In the RPD the theory variables have 

finite means and finite positive variances.    

             The RPD of the theory and the bridge principles 

induce a probability distribution of the data, the MPD, that 

may be very different from the TPD.  Different models of the 

theory axioms and the bridge principles induce different 

models of the MPD.  A model of the MPD that lies in a 95% 

confidence band of an estimate of the MPD is a data  

admissible MPD.   

              The theory is empirically relevanr in the given 

empirical context only if the bridge principles are empirically 

valid in that context.  In Section 4.4 I show that all the data 

adissible MPD’s are congruent models of the TPD.  From this 

and the so-called Status of bridge principles in applied 

econometrics (cf., p. 7 in (Stigum, 2016)), it follows that the 

paper’s bridge principles are empirically valid in the given 

empirical context.   

              The theory is empirically relevant if it contains an 

empirically relevant model.  Looking for an empirically 

relevant model in the present case is not meaningful.  Hence, I 

must estblish the empirical relevance of the theory in a 

different way.  I begin by showing that the characteristics of 

entrepreneurial choice which the theory claims that the 

members of a sample population must share are shared in my 

sample when the data are MPD distributed.  This I take to 
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mean that the theory is empirically relevant when the data are 

MPD distributed.  Thereafter, I show that the MPD and the 

TPD in a way mutually encompass each other.  That and the 

fact that all the data admissible MPDs are congruent models 

of the TPD ensure that the theory is empirically relevant, also, 

in the present empirical context, where the data are TPD 

distributed. 

 

 

            2. A Model of Entrepreneurial Choice under Uncertainty 

In this paper, the entrepreneur is an indvidual who operates a 

firm that is owned by many investors each one of which 

possesses a portion of the firm’s outstanding shares.  I assume 

that the entrepreneur owns one share himself, and that he 

under no circumstances will sell it. The shares and their price 

I denote by the letters, M and pM.   

          The firm produces one output, y, with three inputs, L, x, 

and K, in accord with the prescriptions of a production 

function, g(∙), as follows:   

           y = g(L, x, K), with (y, L, x, K) ε R+
3 ×  R++.             (1)                                                       

Here L is short for labor, x for an intermediate good, and K 

for capital. The function, g(∙), is an instantaneous point-input-

point-output variety production function. I assume that g(∙) is 

increasing, strictly concave, and twice differentiable with 

∂2g(L,x,K)∂L∂x > 0.  The prices of y, L, x, and K I denote by 

the letters, py, w, px, and pK. 

           The entrepreneur is a price taker in all markets.  He 

uses the firm’s profit, pyy – wL – pxx, to pay the shareholders 

dividends, d, to invest in capital and in bonds that mature in 

one period, μ, and to adjust the number of outstanding shares.  

In a given period, i, the budget constraint for this activity is 

    pyiyi –wiLi –pxixi – di – (pμiμi−μi−1) – pKi(Ki−Ki−1) + 

                                             pMi(Mi−Mi−1) ≥ 0,                   (2)              
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where μi−1, Ki−1, and Mi−1 record, respectively, the bonds and 

capital that the firm owns and the number of outstanding 

shares at the beginning of period i.  I take bonds and shares to 

be continuous variables.  Moreover, I take capital to be a fixed 

factor of production.  Hence, the entrepreneur’s investment in 

new capital in one period cannot be used in the production of 

y before the next period.  Finally, I assume that there is no 

market for Ki−1 in period i, and that there is no storage facility 

for commodities and intermediate goods. 

            A period is a week or a month.  I assume that the 

entrepreneur has an n-period planning horizon, a utility 

function, V, and a subjective probability distribution, Q(dP), 

of the values which the respective prices assume in each 

period.  The utility function is a function of the dividends that 

the entrepreneur pays the shareholders in each period and of 

the firm’s balance sheet at the end of his planning horizon. 

Thus,  

              V = V(d1, …, dn, μn, Kn, Mn),                                (3)                                             

where the function, V(∙):R+
n × [−Nμ,Nμ] × R+ × [1,NM) → R+, 

is taken to be twice differentiable, strictly concave, increasing 

in the dis, μn, and Kn, and decreasing in Mn,.  Moreover, a 

positive value of μn is an investment.  A negative value of μn 

is a one-period loan. The interest rate in period n on such 

loans, rn, equals ((1/pμn) – 1).  Finally, Nμ and NM are finite 

positive constants with NM > 1. 

           Let a circumstance be a vector of positive prices.  I 

assume that the entrepreneur in the first period of his planning 

horizon chooses an optimal expenditure plan – that is a family 

of vectors,     

     (y1, L1, x1, d1, μ1, K1, M1, …, yn, Ln, xn, dn, μn, Kn, Mn), 

that, for i = 1, …, n, and for each and every circumstance that 

may occur, satisfies the conditions, 

     (yi, Li, xi, di, Ki) ≥ 0, Nμ ≥ μi ≥ −Nμ, NM ≥ Mi  ≥ 1,           (4)                       

                      yi = g(Li, xi, Ki−1),                                            (5)                                                                                                  
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      Ki  ≥ Ki−1, with K0 equal to a positive constant, and    (6)                                                                 

                 pyiyi –wiLi –pxixi–di–(pμiμi−μi−1) –  

                               pKi(Ki−Ki−1)+pMi(Mi−Mi−1) ≥ 0.            (7) 

and maxmizes the expected value of V(∙) with respect to 

Q(dP) conditional upon the observed values of (py1,w1,px1, pμ1, 

pK1, pM1).   

          Formulating an optimal expenditure plan is a 

cumbersome way to determine what the entrepreneur’s 

optimal first-period choice of variables is.  However, under 

reasonable conditions on Q(dP), one can show - cf., Theorem 

T 30.5, p. 813 in (Stigum, 1990) - that there exists a function, 

U(∙), such that the first-period part of an optimal expenditure 

plan, (y1, L1, x1, d1, μ1, K1, M1), is a vector that maximizes the 

value of U(∙) subject to the first-period production and budget 

constraints.  Specifically, there is a function, 

  U(∙):R++
6   ×  R+  ×  [−Nμ,Nμ]  ×  R+   ×  [1, NM) → R+,      (8)     

of ((py1, w1, px1, pμ1, pK1, pM1), d1, μ1, K1, M1), such that the 

entrepreneur in the first period of his planning horizon 

chooses a vector, (y1, L1, x1, d1, μ1, K1, M1), that maximizes 

the value of U(∙) subject to the conditions, 

(y1, L1, x1, d1, K1−K0) ≥ 0, Nμ ≥ μ1 ≥ −Nμ, NM ≥ M1  ≥ 1,   (9)                                         

                          y1 = g(L1 , x1, K0), and                              (10)                                             

            py1y1–w1L1–px1x1–d1–(pμ1μ1−μ0) –pK1(K1−K0) 

                                 +pM1(M1−M0) ≥ 0,                             (11) 

where K0 , μ0 , M0, Nμ , and NM are suitable positive constants.  

In this paper I assume that U(∙) is twice differentiable, strictly 

concave in (d1, μ1, K1, M1), increasing in (d1, μ1, K1), and 

decreasng in M1. 

             Here an example may be of help.  The example 

describes a two-period model of the theory of entrepreneurial 

choice under uncertainty that I sketched above. 
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Example 1 In this example, n = 2, μ0 = A, K0 = 5, M0 = 25, 

and for i = 1,2, (yi,Li,xi) € R+
3. (di,μi,Ki) € R+

3, and Mi €       

[1, 49]. The corresponding prices are 

     P1 = (py1,w1,px1,pμ1,pK1,pM1), P2 = (py2,w2,px2,pμ2,pK2,pM2),  

with Pi € R++
6, i = 1,2, (pμ1,pK1) < 1, and (pμ2,pK2) < 1.  

For i = 1,2, the production and budget constraints are, 

respectively, 

         yi = g(Li,xi,Ki−1) = Li
(1/4) ∙ xi

(1/4) + γ log Ki−1, 

                               Ki  ≥ Ki−1, and                                      (12)  

         pyiyi–wiLi–pxixi–di–(pμiμi−μi−1)–pKi(Ki−Ki−1) 

                            +pMi(Mi−Mi−1) ≥ 0,                                 (13)  

Finally, the two-period utility function, V(∙), is   

        V(d1,d2,μ2,K2,M2) = d1
(1/3)∙(d2∙μ2∙K2∙(50−M2))

(1/6)          (14)                  

             Subject to the pertinent production and budget 

constraints, one obtains the constrained maximum value of the 

second-period part of V(∙) by maximizing the function,  

 (d2∙μ2∙K2∙(50−M2))
(1/6) + λ1(y2 – L2

(1/4) ∙ x2
(1/4) – γlogK1)  

+ λ2(py2y2 –w2L2 –px2x2 – d2 – (pμ2μ2−μ1) – pK2(K2−K1) 

                                             +pM2(M2−M1)). 

The necessary conditions for a maximum of this function are, 

first, 

                 λ1  = −λ2py2; λ1(1/4)∙L2
(−3/4)∙x2

(1/4) = −λ2w2;  

                       λ1(1/4)∙L2
(1/4)∙x2

−(3/4)  = −λ2px2; and 

                         y2 = L2
(1/4) ∙ x2

(1/4) + γlogK1.                   (15)                                

for production.  Then,  

                       (1/6) d2
−(5/6)(μ2∙K2∙(50−M2))

(1/6)  = λ2;  
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                       (1/6) μ2
−(5/6) (d2∙K2∙(50−M2))

(1/6)   = λ2pμ2;  

                       (1/6) K2
−(5/6)∙ (d2∙μ2∙(50−M2))

(1/6)  = λ2pK2; 

                       (1/6) (50−M2)
−(5/6)∙(d2∙μ2∙K2)

(1/6)  = λ2pM2; and 

         py2y2–w2L2–px2x2−d2−(pμ2μ2−μ1)−pK2(K2−K1) 

                                  +pM2(M2−M1) = 0.                             (16)  

for the budget. 

                 In a solution of these conditions the entrepreneur 

chooses a y2, L2, and x2  that maximizes the firm’s profit. 

Their values are 

         L2 = (py2/4)2w2
(−3/2)∙px2

(−1/2); x2 = (py2/4)2px2
(−3/2)w2

(−1/2): 

                   y2 =  (py2/4)w2
(−1/2)∙px2

(−1/2) + γ log K1. 

In addition, with π(py2,w2,px2) = py2y2 –w2L2 –px2x2 being - for 

a given value of K1 - the corresponding profit, and with  

          π* = π(py2,w2,px2)+μ1+pK2K1-pM2M1, and  

                            π** = π*+50pM2,                                   (17) 

the entrepreneur maximizes his utility by choosing λ2, d2, μ2, 

K2, and M2 so that λ2 =
 (2/3)∙(d2∙μ2∙K2∙(50−M2))

(1/6) /π**; and 

        d2 = π**/4; μ2 = π**/4pμ2; K2 = π**/4pK2,  

                                         (50−M2) = π**/4pM2.              (18)        

From this it follows that the utility function, U(∙), to be      

maximized in the first priod satisfies the equation,  

       U(py1,w1,px1,pμ1,pK1,pM1, d1, μ1, K1, M1) =  

   ed1
(1/3) ∙ E{(pμ2.pK2∙pM2)

−(1/6)[π(py2,w2,px2)+μ1+pK2K1 

                                                     +pM2(50−M1)](2/3)│P1},                  (19)           

where e = (1/4)(2/3),  E{(∙)│P1} denotes the conditional  

expected value of (∙) given the observed value of P1, the 



9 
 

 expectation is taken with respect to the values of the   

components of P2, and the value of π(py2,w2,px2) depends on 

the value of K1, at the end of period one.  

 

            2. Entrepreneurial Choice under Uncertainty 

In the neo-classical theory of the firm, the firm’s entrepreneur 

- subject to the production constraint he faces - maximizes the 

present value of the sum of profits which his firm earns in 

each period during his planning horizon.  Moreover, he 

chooses his expenditure plan with knowledge of the values of 

the prices he will face in each and every period.   

                             Since the neo-classical theory differs from 

my theory, it is interesting to see if fundamental theorems in 

the neo-classical theory are valid in my theory.  I will do that 

by comparing important neo-classical theorems with related 

theorems in the one-period model that I described in equations 

(8) - (11). The two-period model in Example 1 shows that the 

one-priod theorems are valid in an n-period model.  

                                I begin with the entrepreneur’s choice of 

inputs and output. The entrepreneur in the neo-classical theory 

maximizes profit.  Since the utility function is an increasing 

function of dividends, the entrepreneur in my theory, also, 

chooses his inputs and output to maximize profit.  The two-

period model in Example 1 suggests that he will plan to do so 

in each and every period of his planning horizon. 

                               In the neo-classical theory the 

entrepreneur’s choice of inputs and output maximizes the 

firm’s profit only if his choice satisfies the following 

conditions: (1) The value of an input’s marginal product 

equals its price; (2) the marginal cost of an output equals its 

price; (3) the change in profit, when an output’s price or an 

input’s price changes, equals, respectively, the equilibrium 

value of the output and the negative value of the equilibrium 
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choice of the input (Hotelling’s Lemma); and (4) the firm’s 

supply of an output or use of an input is, respectively, an 

increasing function of the output’s price and a decreasing 

function of the input’s price.  I will see if the entrepreneur’s 

first-period choice of inputs and output in my theory satisfies 

these conditions. 

                   For the given task, I must exhibit the necessary 

conditions for a constrained maximum of the utility function 

in (8) subject to the conditions in equations (9) - (11).  They 

are displayed in the equations in (20) with two Lagrange 

multipliers, λ1 and λ2:  

    λ1 = −λ2py1; λ1∂g/∂L1 = −λ2w1; λ1∂g/∂x1 = −λ2px1;  

    y1 = g(L1,x1,K0); ∂U/∂d1 = λ2; ∂U/∂μ1 = λ2pμ1;  

      ∂U/∂K1 = λ2pK1; ∂U/∂M1 = −λ2pM1;  py1y1–w1L1– 

     px1x1−d1−(pμ1μ1−μ0)−pK1(K1−K0)+pM1(M1−M0)≥0.   (20)                

                   From the equations in (20) I deduce, first, that 

                     py1∙∂g/∂L1 = w1; and py1∙∂g/∂x1= px1; 

and, then, - with C short for the cost of producing y1 - that,  

                     ∂C/∂y1 = w1(∂L1/∂y1) + px1(∂x1/∂y1) =  

              py1∙(∂g/∂L1)(∂L1/∂y1) + py1∙(∂g/∂x1)(∂x1/∂y1); and 

              py1 = py1(∂g/∂L1)(∂L1/∂y1) + py1(∂g/∂x1)(∂x1/∂y1);  

from which it follows that ∂C/∂y1 = py1.  Hence, 

entrepreneur’s first-period choice of inputs and output 

satisfies the first two conditions in the neo-classical theory.   

                              To see if Hotelling’s Lemma is valid in my 

theory, I use the equations in (20) to show that  

             py1∂y1/∂w1 = py1∂g/∂L1∙∂L1/∂w1 + py1∂g/∂x1∙∂x1/∂w1 = 

                           w1∂L1/∂w1 + px1∂x1/∂w1.                                 

                 Similarly, in equilibrium ∂π/∂y1 = 0, and  

                 ∂π/∂py1 = ∂π/∂y1∙∂y1/∂py1 + ∂π/∂py1 = y1.      (21)                                    
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                 Consequently, ∂π/∂py1 = y1, and 

       py1∂y1/∂w1 – w1∂L1/∂w1 – L1 –px1∂x1/∂w1 = − L1,     (22)               

which shows that Hoteling’s Lemma gives a valid description 

of my entrepreneur’s first-period choice of inputs and output. 

.                             To show that my theory satisfies the fourth 

condition, I deduce from the equations in (20) that   

  (∂2g/∂L1∂L1)(∂L1/∂w1) + (∂2g/∂L1∂x1)(∂x1/∂w1) = 1/py1.  (23)          

   (∂2g/∂x1∂L1)(∂L1/∂w1) + (∂2g/∂x1∂x1)(∂x1/∂w1) = 0, and (24)          

    ∂y1/∂w1 − (∂g/∂L1)(∂L1/∂w1) − (∂g/∂x1)(∂x1/∂w1) = 0.   (25)                                   

                 From these equations and the assumption that g(∙) 

is strictly concave and twice differentiable with 

∂2g(L,x,K)∂L∂x > 0, and from the assumption that the 

solutions to the equations in (20) constitute a maximum of the 

pertinent Lagrangian function, it is easy to show that ∂L1/∂w1 

< 0.  Similar arguments show that ∂x1/∂px1 < 0, and ∂y1/∂py1 > 

0.  Hence, my theory satifies the fourth condition. 

          So much for inputs and output.  Next, a few words 

about the marginal efficiency of capital and investments in μ 

and K.  In the neo- classical theory, the marginal efficiency of 

capital is the rate of disount that will equate the price of fixed 

capital with the present value of the entrepreneur’s income 

from the firm’s fixed capital during his planning horizon (cf. 

Keynes 1936, p.135).  My idea of the marginal efficiency of 

capital under conditions of uncertainty differs.  It is like Irving 

Fisher’s idea of a consumer’s rate of time preference (Fisher 

1961, p. 62). I describe it below for investments in μ and K. 

                          Let r = ((1/pμ1) – 1) be the rate of interest on 

one-period loans; let mK1 be the entrepreneur’s expected 

return during the planning horizon from a first-period 

additional unit of capital conditional on the observed values of 

first period prices; and let rK1 be defined by the equation, 

(mK1/1+rK1) = pK1.  It follows from the equations in (20) that 

 the entrepreneur invests in μ and K up to the point, where  
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             ((∂U/∂d1 − ∂U/∂μ1)/(∂U/∂μ1)) = r, and                (26)                         

       ((mK1∙∂U/∂d1 − ∂U/∂K1)/(∂U/∂K1)) = rK1.                 (27)                        

            In these equations the term, (∂U/∂d1) records the 

expected value of the marginal utility of an extra unit of 

dividends in period one.  In the same period, (∂U/∂μ1) equals 

the expected value of the marginal utility to the entrepreneur 

of the income that would be forgone if a unit less is invested 

in μ.  The two concepts combine to form what I in (Stigum, 

1969) called the marginal efficiency of an extra unit of   

investment in μ.  Similarly, (mK1∙∂U/∂d1) and (∂U/∂K1) 

combine to mform a relation that I will call the marginal 

efficiency of capital.  With these concepts in mind, equations 

(26) and (27) insist that in equilibrium the entrepreneur 

invests in μ and K up to the point, where the marginal 

efficiency of investments in μ and K equal, respectively, the 

interest rate on one-period loans and the conditionally 

expected rate of return from an additional unit of capital in 

period one. 

           To check whether the neo-classical symmetry 

conditions on factor demand functions are valid in the 

uncertainty theory, I must use the conditions in (20) to derive 

the derivatives of  the entrepreneur’s first-period demand and 

supply functions.  Let D(1) and D(2) be, respectively, the 

four-by-nine and five-by-nine matrices below.  In addition, let 

D and Dij, i,j = 1, …, 9, be the determinant  and the ijth co-

factor of the nine-by-nine matrix whose first four lines are the 

lines in D(1) and the last five lines are the five     

 

                      0         0                   0                 1          0  0  0  0   py1 

    D(1) =       0   λ1∂
2g/∂L1∂L1   λ1∂

2g/∂L1∂x1   ∂g/∂L1   0  0  0  0    w       

                      0   λ1∂
2g/∂\x1∂L1   λ1∂

2g/∂x1∂x1    ∂g/∂x1    0  0  0  0    px1   

                      1     −∂g/∂L1         −∂g/∂x1           0        0  0  0  0      0                              
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                 0      0      0     0   ∂2U/∂d1∂d1   ∂
2U/∂d1∂μ1   ∂

2U/∂d1∂K1   ∂
2U/∂d1∂M1 −1 

                 0      0      0     0   ∂2U/∂μ1∂d1  ∂
2U/∂μ1∂μ1  ∂

2U/∂μ1∂K1   ∂
2U/∂μ1∂M1 −pμ1  

        D(2)  = 0     0      0     0  ∂2U/∂K1∂d1  ∂
2U/∂K1∂μ1  ∂

2U/∂K1∂K1    ∂
2U/∂K1∂M1  −pK1 

 0     0      0     0   ∂2U/∂M1∂d1  ∂
2U/∂M1∂μ1  ∂

2U/∂M1∂K1  ∂
2U/∂M1∂M1  pM1 

 py1 – w1 – px1   0     −1                  – pμ1                – pK1               pM1   0                                             

 

lines in D(2).  Then, by totally differentiating the necessary 

conditions in (20), I find that             

                   ∂y1/ ∂py1 = D−1{−λ2D11 – y1D91   

       −  [D51∂
2U/∂d1∂py1+D61∂

2U/∂μ1∂py1+ 

                    D71∂
2U/∂K1∂py1 +D81∂

2U/∂M1∂py1]}; and     (28) 

                    ∂K1/∂pK1= D−1 {λ2D77 + K1D97  

        − [D57∂
2U/∂d1∂pK1 + D67∂

2U/∂μ1∂pK1+  

                      D77∂
2U/∂K1∂pK1+D87∂

2U/∂M1∂pK1]}.           (29) 

These equations and their analogues for ∂L1/∂w1, ∂x1/∂px1, 

∂μ1/∂pμ1, and ∂M1/∂pM1 show that the rsponse of the 

entrepreneur’s choice of y1, L1, x1, d1, K1, μ1, and M1, to a 

change in its own price or the price of another variable can be 

analysed in terms of a substitution effect, an income effect, 

and an expectations effect.  For example, in (29),  ∂K1/∂pK1 

can be described as the sum of a substitution effect, λ2D
−1 D77, 

an income effect, + K1 D
−1D97, and an expectations effect, 

 −D−1[D57∂
2U/∂d1∂pK+D67∂

2U/∂μ1∂pK1+D77∂
2U/∂K1∂pK1+ 

                                       D87∂
2U/∂M1∂pK1]. 

The income effect and the expectations effect are missing in 

the neo-classical theory of the firm.   
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                           The equations in (28) - (29) suggest that the 

symmetry condition, ∂L1/∂px1 = ∂x1/∂w1, might not be valid in 

my theory.  However, a careful analysis of the cofactors of D 

reveals that 

             Dik = 0 for i = 5,…,9 and k = 1, 2, 3.                     (30)                          

Consequently, in the present uncertainty theory the 

entreprneur’s choice of inputs and output can be analysed 

without an income effect and an expectations effect.  In fact, 

                ∂y1/ ∂py1 = −D−1λ2D11;   

         ∂L1/ ∂w1 = −D−1λ2D22:  ∂x1/∂px1 = −D−1λ2D33;   

         ∂L1/∂px1 = −D−1λ2D32; and ∂x1/∂w1 =  −D−1λ2D23.     (31)            

The structural properties of the matrix of D ensure that D23 = 

D32, and, hence, that ∂L1/∂px1 = ∂x1/∂w1. 

                                    The next example derives the first-

period choices of the entrepreneur in Example 1. 

   

Example 2. The necessary conditions for a constrained 

maximum of the utility function in (19) are - with F short for 

          (1/4)(2/3)E{(pμ2pK2pM2)
−(1/6)[π(py2,w2,px2)+ 

                                               μ1+pK2K1+pM2(50−M1)]
(2/3)│P1}-      

  λ1 = −λ2py1; λ1∂g/∂L1 = −λ2w1; λ1∂g/∂x1 = −λ2px1;  

         y1 = g(L1,x1,K0) = L1
(1/4) ∙ x1

(1/4) + γ log K0;   

              (1/3)d1
−(2/3)F =  λ2; d1

(1/3)∂F/∂μ1 = λ2pμ1; 

           d1
(1/3)∂F/∂K1 = λ2pK1; d1

(1/3)∂F/∂M1 =−λ2pM1; and 

          py1y1–w1L1–px1x1−d1−(pμ1μ1−μ0)−pK1(K1−K0) 

                                       +pM1(M1−M0)≥0.                           (32) 
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From these conditions I deduce that the first-period equilibrium 

values of L1, x1, and y1 are 

     L1 = (py1/4)2w1
(−3/2)∙px1

(−1/2); x1 = (py1/4)2px1
(−3/2)w1

(−1/2): and 

                 y1 =  (py1/4)w1
(−1/2)∙px1

(−1/2) + γ log K0.               (33)                          

The cross derivatives of the two demand functions are equal.  

To wit: 

                  ∂L1/∂px1 =  − (1/2)(py1/4)2w1
(−3/2)∙px1

(−3/2) , and  

                   ∂x1/∂w1 =  − (1/2)(py1/4)2w1
(−3/2)∙px1

(−3/2) . 

          From the necessary conditions in (32) I can, also, 

deduce that 

                              pμ1 = 3d1∂F/∂μ1/F                                 (34)         

   Consequently, 

   [F – (3d1∂F/∂μ1)]/(3d1∂F/∂μ1)= 

                           [1 – (3d1∂F/∂μ1/F)]/(3d1∂F/∂μ1/F) 

                    = (1 –pμ1)/pμ1 = [(1/pμ1) – 1] = r.                   (35)                              

                     where r denotes the interest rate on one-period loans. But, if 

                      that is so, in equilibrium the entrepreneur invests in μ up to the  

                       point, where the marginal efficiency of such investments 

                        equals the interest rate. 

              A similar interpretation can be given to the equations, 

                               pK1 = 3d1∂F/∂K1/F, and                         (36)                                  

       [mK1∙F–(3d1∂F/∂K1)]/(3d1∂F/∂K1)  = 

                            [mK1–(3d1∂F/∂K1/F)]/(3d1∂F/∂K1/F) 

          = (mK1 – pK1)/pK1 = [(mK1/pK1) – 1] = rK1.                 (37) 

In equilibrium the entrepreneur invests in K up to the point 

where the marginal efficiency of capital equals the 

conditionally expected rate of return from an additional first-

period unit of capital, rK1.  Thus, the equilibrium conditions 
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on investments in μ and K in the one-perio model in equations 

(8) - (11) are valid in Example 1’s two-period model. 

                             

              

 4.  Entrepreneurial Choice in Applied Econometrics 

 

 The theory of entrepreneurial choice under uncertainty that I 

outlined in Section 2 is a family of models of Q(dP) and the 

equations in (1) - (3).  The theory is not meant to describe 

entrepreneurial behavior under uncertainty.  Instead it is a 

family of models that describe characteristic features of 

entrepreneurial choice in a world in which the entrepreneur 

cannot foresee the behavior of prices during his planning 

horizon. 

                                   Different families of models of Q(dP) 

and the equations in (1) - (3) constitute different theories of 

entrepreneurial choice under uncertainty.  Moreover, members 

of such a family of models may be very different even though 

they describe characteristics of entrepreneurial choice in one 

and the same theory.   

                                   The way entrepreneurial choice varies 

with the models is interesting and of fundamental importance 

to the way theorym is used in the empirical analysis of 

entrepreneurial choice under uncertainty.  For example, even 

though the solutions to the necessary conditions describe 

choice characteristics of many different entrepreneurs, the 

entrepreneurs share many characteristics. Their choice of y, L, 

and x satisfies Hotelling’s Lemma, ensures that marginal cost 

equals the price of y, and maximizes the firm’s profit.  

Similarly, their choice of d, K, μ, and M ensures that the 

marginal efficiency of the entrepreneur’s investments in μ and 

K equals, respectively, the interest rate on one-period loans 

and the firm’s conditionally expected rate of return from an 

additional unit of capital in period one.   
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                              A theory of entrepreneurial choice under 

uncertainty; i.e., a particular family of models of Q(dP) and 

the equations in (1) - (3), is empirically relevant if it contains 

a model that is empirically relevant.  Looking for an 

empirically relevant model is not meaningful.  To test the 

empirical relevance of the theory, one must look for choice 

characteristics which the solutions to the necessary conditions 

identify and the family’s entrepreneurs share.  The theory is 

empirically relevant only if the data do not reject the validity 

of one of them.  

 

 4.1  Axioms for Entrepreneurial Choice under 

Uncertainty in Applied Econometrics 

I imagine that the variables in the family of models of Q(dP) and  

the equations in (1) - (3) belong in a theory universe. This theory  

universe is a triple, (ΩT, ГT, (ΩT, ℵT, PT(·))), where ΩT is a subset 

of a vector space, ГT is a finite set of assertions concerning 

properties of vectors in ΩT, and (ΩT, ℵT, PT(·)) is a probability 

space.   The latter comprises ΩT, a σ field of subsets of ΩT, ℵT, 

and a probability measure, PT(∙):ℵT →[0,1].                                

                   The assertions in ГT consist of six axioms, A 1-A 6.   

      

 A 1  ΩT ⊂ R3 × R4 × R3 × R3 × R × R7 × R6. Thus ωT ∈ ΩT only if 

ωT = (y, L, x, d, μ, K, M, py, w, px, pμ, pK, pM, χ, u, z) for some 

(y,L,x) ϵ R3, (d,μ,K,M) ϵ R4, (py,w,px) ϵ R3, (pμ,pK,pM) ε R3, χ 

ϵ R, u ϵ R7, z ϵ R6, and (y,L,x,d,μ,K,M, py, w, px, pμ, pK, pM, χ, 

u, z) ϵ R27.                 

A 2  For all ωT ∈ ΩT, (y, L, x) € R+
3, and (d, μ, K, M) ϵ 

R+×[−Nμ,Nμ] ×R+×[1, NM).  Moreover, (py, w, px, pM) ϵ 

(0,50)4 , and (pμ,pK) ϵ (0,1)2.    

 

         In the intended interpretation of y, L, x, d, μ, K, M, py, 

w, px,pμ, pK, and pM, y denotes the firm’s output, (L, x) 

denotes a pair of inputs.  Moreover, d denotes dividends, a 

positive μ denotes a bond that matures in one period, and a 
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negative μ denotes a one-period loan, K denotes the capital 

that is used in the production of y, and M denotes the firm’s 

outstanding shares.  Finally, the components of (py, w, px) 

denote the respective first-period prices of y, L, and x; and the 

components of (pμ, pK, pM) denote the respective first-period 

prices of μ, K, and M.  The χ and the components of u and z 

are error terms.   The u and z are to be used to describe the 

relationship between theoretical variables and data variables. 

                               The given theory variables also satisfy the 

conditions in axioms A 3 and A 4.  In them, K0 in A 3 and μ0, 

K0, and M0 in A 4 denote initial quantities of μ, K, and M. 

 

 A 3  There is a function, g(∙):R+
3→R+, which is increasing, 

strictly concave, twice differentiable with ∂2g(L,x,K)∂L∂x > 0 

such that, for all (y,L,x,d,μ,K,M,py,w,px,pμ,pK,pM,χ,u,z) ∈ ΩT, 

               y = g(L, x, K0); pyy – wL – pxx ≥ 0;   

         py∂g(L,x,K0)/∂L = w;  and py∂g(L,x,K0)/∂x = px. 

 

                        A 4  Let π = pyy – wL – pxx, Let π* = π + μ0 +pKK0 − pMM0, 

In addition, let P and ↁ, respectively, be short for 

(py,w,px,pμ,pK,pM) and (d,μ,K,M).  There exists a twice 

differentiable function,  

       U(∙):R++
6 ×  R+ × [−Nμ,Nμ]    ×  R+ ×  [1, NM) → R+,  

of (py, w, px, pμ, pK, pM), d, μ, K, and M that is strictly 

concave in ↁ, increasing in (d, μ, K), and decreasing in M.  

Moreover, for all 

        (y, L, x, d, μ, K, M, py, w, px, pμ, pK, pM, χ, u, z) ∈ ΩT,  

 

              ∂U(P,ↁ)/∂d = A + χ; ∂U(P,ↁ)/∂μ = pμ∂U(P,ↁ)/∂d;  

  ∂U(P,ↁ)/∂K = pK∂U(P,ↁ)/∂d; ∂U(P,ↁ)/∂M = −pM∂U(P,ↁ)/∂d; 

and π* − d − pμμ − pKK + pMM  ≥  0. 

                               

                                In the intended interpretation of A 3 and A 4, 

the equations in A 3 record the necessary conditions on the 

entrepreneur’s choice of y, L, and x that ensure that his choice 

maximizes the firm’s profit. The equations in A 4 record the 

necessary conditions on the entrepreneur’s choice of ↁ that ensure 
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that his choice maximizes his utility.  The equations in both axioms 

concern them equilibrium values of g(∙) and the partial derivatives 

of g(∙) and U(∙) and not properties of the functions themselves. 

                            Relative to PT(∙), the components of (y, L, x, d, μ, 

K, M, py, w, px, pμ, pK, pM, χ, u, z) are random variables.  To wit: 

                                    

A 5  Let (y, L, x)(∙):ΩT→R+
3, (py, w, px)(∙):ΩT→R++

3,  

(d, μ, K,M)(∙):ΩT→R+×[−Nμ,Nμ]×R+×[1,NM), 

         (pμ, pK, pM)(∙): ΩT→R++
3, and (χ, u, z)(∙):ΩT→R14,   

be defined by the equations,  

       ((y,L,x)(ωT), (d,μ,K,M)(ωT),  (py,w,px)(ωT),  

                         (pμ, pK,pM)(ωT), (χ,u,z)(ωT)) = ωT, and ωT ϵ ΩT. 

The vector-valued functions, (y,L,x)(∙), (d,μ,K,M)(∙),  

(py,w,px)(∙), (pμ,pK,pM)(∙), and (χ,u,z)(∙) are measurable with 

respect to ℵT.  They have, subject to the conditions on which 

ГT insists, a well-defined joint probability distribution relative 

to PT(∙), the RPD, where R is short for researcher, P for 

probability, and D for distribution. 

 

A 6  Relative to PT(∙), the components of 

                 (y,L,x,d,μ,K,M,py,w,px,pμ,pK,pM,χ,u,z)(∙)  

have finite means and finite positive variances. Moreover, the 

χ(∙) and the components of u(∙) and z(∙) have means zero and 

are independently distributed of each other. 

                

 4.2  Axioms for the Data Generating Process 

I imagine that the data that I will use to test the empirical 

relevance of my theory axioms belong in a data universe.  

This data universe is a triple, (ΩP, ГP, (ΩP, ℵP, PP(∙))), where 

ΩP is a subset of a vector space, ГP is a finite set of assertions 

concerning properties of vectors in ΩP, and (ΩP, ℵP, PP(∙))) is a 
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probability space.  The latter comprises ΩP, a σ field of 

subsets of ΩP, ℵP, and a probability measure, PP(∙)): ℵP 

→[0,1].  

               The assertions in ГP consist of four axioms, D 1-D 4.  

 

D 1  ΩP ⊂ R7  × R6 × R2   × R4 × R6 × R6. Thus, ωP ϵ ΩP only if 

ωP = (Y, V, mg, mu, η, δ) for some Y ϵ R7, V ϵ R6, mg ϵ R2, 

mu ϵ R4, η ε R6, δ ε R6, and (Y, V, mg, mu, η, δ) ϵ R31. 

 

D 2  Suppose that ωP ϵ ΩP and that ωP = (Y, V, mg, mu, η, δ) 

for some (Y, V, mg, mu, η, δ) ϵ R31. There exist constants, ai,      

i = 1,…,6, such that  

       mg1 = a1(V2/V1) + δ1, and mg2 = a2(V3/V1) + δ2;         (43)                 

        mu1 = a3 + δ3, mu2 = a4∙V4 + δ4, mu3 = a5∙V5 + δ5,           

                                    and mu4 = a6∙V6 + δ6.                       (44)                                                     

                   

                           In the intended interpretation of these 

axioms, the denotation of the components of Y are 

observations of the respective components of (y,L,x,d,μ,K,M), 

and the denotation of the components of V are observations of 

the respective components of (py,w,px,pμ,pK,pM).  Moreover, 

the components of mg are observations of the respective 

values of the partial derivatives ∂g(L,x,K0)/∂L and 

∂g(L,x,K0)/∂x; the components of mu are observations of the 

respective values of the partial derivatives, ∂U(P,ↁ)/∂d, 

∂U(P,ↁ)/∂μ, ∂U(P,ↁ)/∂K, and ∂U(P,ↁ)/∂M; and the 

components of η and δ are error terms. 

                  Relative to PP(∙), the components of Y, V, mg, mu, 

η, and δ are random variables.  To wit: 

 

  D 3  Let Y(∙):ΩP → R7, V(∙):ΩP → R6, mg(∙):ΩP → R2, 



21 
 

          mu(∙):ΩP → R4, η(∙):ΩP → R6, and δ(∙):ΩP → R6  

                        be defined by the equations,      

  (Y(ωP),V(ωP),mg(ωP),mu(ωP),η(ωP),δ(ωP)) = ωP and ωP ϵ ΩP.     

                        The vector-valued functions, Y(∙),V(∙), mg(∙), mu(∙), η(∙), δ(∙),   

                        are measurable with respect to ℵP and have, subject to the  

                        conditions on which ГP insists, a well-defined joint   

                        probability distribution, the TPD, where T is short for true, P 

                        for probability, and D for distribution. 

 

D 4  Relative to PP(∙), Y(∙), V(∙), mg(∙), mu(∙), η(∙), and δ(∙) 

have finite means and finite positive variances. Moreover, 

(V2/V1) and (V3/V1) have finite means and variances.  Finally, 

the components of δ are orthogonal to the components of V, 

and the components of η and δ have zero means and are 

independently distributed of each other.                                

.   

                      In the intended interpretation of D1- D 4, the 

TPD plays the role of the data generating process.  

Specifically, I assume that TPD has one model, and that this 

model is a true rendition of the data generating process.  

According to D 4, the variables in TPD have finite means and 

finite positive variances.  Moreover, D 4 and a standard 

theorem in mathematical statistics imply that the equations in  

(43) and (44) have a TPD model.  The researcher does not 

know the model of TPD. 

                     For the empirical analysis I have a random 

sample of 400 observations of the components of Y, V, mg, 

and mu. If my assumptions about the TPD are valid, I can 

obtain good estimates of the variables’ TPD means and 

variances and of the TPD values of the parameters in 

equations (43) and (44).  
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                   I begin with the six production variables, Y1, Y2, 

Y3, V1,V2, and V3.  They must have finite means.  Table 1 

attests to that. 

 

                           Table 1.  TPD Means of Production Variables                     

                     -------------------------------------------------------------- 

                                    Mean        Std. err.      [95% conf. interval] 

                     -------------+------------------------------------------------ 

                         Y1 |   444.3416     1.7283      440.9438    447.7393 

                         Y2 |   125.3647      0.2608      124.8521    125.8774 

                           Y3 |   223.5203      2.3923      218.8171    228.2234 

                         V1 |        3.7201      0.0812          3.5605        3.8798 

                         V2 |        5.1477      0.1034          4.9445        5.3509 

                         V3 |        4.5191      0.0704          4.3808        4.6575 

                       -------------------------------------------------------------- 

                    

              Table 2 records estimates of the TPD values of the 

parameters in (43) - with wc1 and wc2 short for (V2/V1) and 

(V3/V1).  In the table, RMSE is short for square root of 

the mean square error of the residual, R-sq is short for R 

square, F designates F statistic, and P is short for Prob. > 

F                 

                       

                      Table 2.  Estimates of the TPD Values of the Parameters in (43)   

                      

                      Equation     Obs   Parms       RMSE        "R-sq"          F           P>F 

                      ---------------------------------------------------------------------------------- 

                      mg1             400       1            0.1031         0.9999    7028225   0.0000 

                      mg2             400       1            0.1420         0.9999    3102097   0.0000 

                     ----------------------------------------------------------------------------------- 

                      Var. | Coefficient  Std. err.          t            P>|t|     [95% conf. interval] 

                     -------------+---------------------------------------------------------------- 

                       wc1 |     1.0004      0.0004      2651.08     0.000       0.9997    1.0012 

                       wc2 |     1.0005      0.0006      1761.28     0.000       0.9994    1.0016 
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             So much for the production variables.  Next I must 

consider Y4, Y5, Y6, Y7, V4,V5, and V6.  All of them except Y5 

must have finite positive means.  Besides, the means of V4 

and V5 ought to be less than one.  Table 3 attests to that.  

Table 4 records estimates of the TPD values of the parameters 

in (44). 

   

  Table 3.  TPD Means of Dividends and Balancesheet Variables      

  ------------------------------------------------------------------------- 

   Variabel    |      Mean          Std. err.      [95% conf. interval] 

-------------+-----------------------------------------------------------   

               Y4 |     16.1481         0.2066       15.7419    16.5543 

               Y5 |     21.8662         0.4076        21.0648    22.6676 

               Y6 |     70.8180         0.4958        69.8433    71.7927 

               Y7 |     59.8945         0.3401        59.2259     60.5632  

               V4 |       0.9089         0.0015          0.9060       0.9119 

               V5 |       0.9017         0.0013          0.8993       0.9042 

               V6 |       3.9878         0.0136          3.9610       4.0145 

--------------------------------------------------------------------------------          

 

       Table 4.  Estimates of TPD Values of the Parameters in (44)      

 

                      Equation          Obs   Parms        RMSE       "R-sq"          F            P>F 

                  -------------------------------------------------------------------------------------- 

                        mu2                400       1             0.0581      0.9984     252750.7   0.0000 

                        mu3                400       1             0.1463      0.9898     38813.54   0.0000 

                        mu4                400       1             0.0099      1.0000     1.66e+08   0.0000 

                      Variabel | Coefficient    Std. err.         t           P>|t|     [95% conf. interval] 

                    -------------+--------------------------------------------------------------------------- 

               Mean of mu1 |   1.5998           0.0064                                    1.5872        1.6123 

                                V4 |   1.6065         0.0032       502.74    0.000     1.6003        1.6128 

                                V5 |   1.5980         0.0081       197.01    0.000     1.5821        1.6140 

                                V6 |  -1.6001         0.0001      -1.3e+04  0.000    -1.6003      -1.5998         
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                                  It is important to observe that I have 

formulated D 1 - D4 without using the theory axioms.  Hence, 

in the TPD there are no theory-based true values of the 

parameters in (43) and (44). I introduce the theory into the 

empirical analysis with the bridgeprinciples in B 1 - B 6.  In 

reading them, note that I relate the entrepreneur’s decision 

variables, y, L, x, d, μ, K, M, and the partial derivatives of g(∙) 

and U(∙) to the observed values of the corresponding 

components of Y, mg, and mu.  In contrast and in the tradition 

of Trygve Haavelmo  (cf. Haavelmo 1944, pp. 7,8), I relate 

the variables over which the entrepreneur has no control, py, 

w, px, pμ, pK, and pM, to the true values in the data universe of 

the corresponding components of V.                            

                     

 4.3  Axioms for the Bridge   

                       The Bridge is a pair, (Ω, ГT,P), where Ω is a subset of ΩT×ΩP, 

and ГT,P is a set of six assertions about the vectors in Ω. It is 

understood that a researcher’s observations consist of pairs,    

        (ωT, ωP), where ωT ϵ ΩT, ωP ϵ ΩP, and (ωT, ωP) ϵ Ω.   

The components of ωT are unobservable, while the    

components of ωP are observable.  For example, in the present 

Bridge, one of the components of ωT may record the 

entrepreneur’s intended payment of dividends to shareholders, 

while the corresponding component of ωP will record a 

sample entrepreneur’s actual payment of dividends to his 

shareholders.  

     

 

B 1  Ω ⊂ ΩT × ΩP. Thus ω € Ω only if ω = (ωT, ωP) for some 

ωT ϵ ΩT, ωP ϵ ΩP, and (ωT, ωP) ϵ ΩT × ΩP; i.e., ω € Ω only if  

                        ω=((y,L,x,d,μ,K,M,py,w,px,pμ,pK,pM,χ,u,z),(Y,V,mg,mu,η,δ)) 

for some (y,L,x,d,μ,K,M,py,w,px,pμ,pK,pM, χ,u,z) ϵ ΩT,  

(Y, V, mg, mu, η, δ) ϵ ΩP, and ((y, L, x, d, μ, K, M, py, w, px, 

pμ, pK, pM, χ, u, z), (Y, V, mg, mu, η, δ)) € ΩT×ΩP.  

  

B 2  ΩT and ΩP are disjoint, and ℵT and ℵP are stochastically 
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independent.  

 

B 3 In the probability space, (ΩT × ΩP, ℵ, P(∙)), which the  

probability spaces in the theory universe and the data 

universe generate, Ω ϵ ℵ, and P(Ω) > 0. 

 

B 4  ΩT ⊂ {(y,L,x,d,μ,K,M,py,w,px,pμ,pK,pM,χ,u,z) ϵ ΩT for     

which there is a (Y,V,mg,mu,η,δ) ϵ ΩP such that 

                     ((y,L,x,d,μ,K,M,py,w,px,pμ,pK,pM,χ,u,z),(Y,V,mg,mu,η,δ)) ϵ Ω}.  

                  

B 5 For all (ωT, ωP) ϵ Ω,  

                (y,L,x)(ωT) + (u1,u2,u3(ωT) = (Y1,Y2,Y3)(ωP)  

       (d,μ,K,M)(ωT) + (u4,u5,u6,u7)(ωT) =  (Y4,Y5,Y6,Y7)(ωP)  

                (py,w,px)(ωT) = (V1,V2,V3)(ωP) − (η1,η2,η3)(ωP);  

                (pμ,pK,pM)(ωT) = (V4,V5,V6)(ωP) − (η4,η5,η6)(ωP); 

                          (∂g(L,x,K0)/∂L,∂g(L,x,K0)/∂x)(ωT)+(z1,z2)(ωT)=(mg1,mg2)(ωP);  

(∂U(P,ↁ)/∂d), ∂U(P,ↁ)/∂μ, ∂U(P,ↁ)/∂K), ∂U(P,ↁ)/∂M)(ωT) +                        

(z3, z4, z5, z6)(ωT) = (mu1, mu2, mu3, mu4)( ωP). 

 

             In the intended interpretation of these axioms, Axiom 

B 5 is not meant to establish an ordinary errors-in-variables 

relationship between theoretical variables and data variables.  

Instead, the first two equations and the last two equations 

delineate how the RPD of the left-hand variables is to be 

assigned to the corresponding data variables.  This 

distribution, the MPD, may be very diffeent from their TPD.  

The third and fourth equation describe how the RPD of py, w, 

px, pμ, pK, and pM is to be assigned to the true values of the 

corresponding components of V.  This is the MPD of the 

true values of the components of V.   

           To obtain the MPD of the observed values of V, it is 

                        necessary to establish a theorem, and to add an axiom, B 6,  

 about ℵT, the σ field of subsets of ΩT.  The theorem is an easy 

 consequence of axioms A, D, and B.  I will sketch a proof.   it 

 

 Theorem 1.  Suppose that the A, D, and B  axioms are valid.  

For all (ωT,ωP) ε Ω, let 
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                        u7+j(ωT) = ηj(ωP), j = 1,…,6. 

The six u7+j(∙)s are well defined on Ω, and the last two   

equations in B 5 can be rewritten as follows:  

      (py,w,px)(ωT) + (u8,u9,u10)(ωT) = (V1,V2,V3)(ωP); and 

       (pμ,pK,pM)(ωT) + (u11,u12,u13)(ωT)  =  (V4,V5,V6)(ωP) 

       

                         It suffices to consider one case in the proof of  

Theorem 1.  Let j = 2 and consider the equation, u9(ωT) =   

η2(ωP). Suppose that there are two pairs in Ω, (ωT
0, ωP

0) and 

(ωT
1, ωP

0), at which the two values of u9(∙) differ: i.e., where 

u9(ωT
0) ≠ u9(ωT

1). The two equations, 

                                 V2(ωP
0) − η2(ωP

0) = pK(ωT
0) , and 

                                 V2(ωP
0) −  η2(ωP

0) = pK(ωT
1) , 

imply that pK(ωT
0) = pK(ωT

1).  But if that is so, the two 

equations,       

                                 V2(ωP
0) = u9(ωT

0) + pK(ωT
0) , and 

                                 V2(ωP
0) = u9(ωT

1) + pK(ωT
1) , 

imply that u9(ωT
1) = u9(ωT

0). 

 

                                      Then the final axiom about the Bridge. 

 

B 6  The vector valued function, (u8, …, u13)(∙) is measurable 

with respect to ℵT.  Relative to PT(∙), its components have   

zero means, finite positive variances, and are independently 

distributed of each other and of χ(∙), z(∙), and (u1, …, u7)(∙). 

 

4.4.  The Empirical Analysis    

My sample of 400 observations of the components of (Y,V, 

mg, mu) is a random sample.  According to A 6 and B 5, the 

components of (Y,mg,mu) have finite means and positive 

variances in the MPD.  According to A 6, B 2 - B 6, and 

Theorem1, the components of V have, also, finite means and 

positive variances in the MPD.  For the empirical analysis, I 

add the assumption that (V2/V1) and (V3/V1) have finte 

means and variances in the MPD.  From this it follows that 

Tables 1 - 4 TPD estimates of the means of Y and V and of 

the parameters in equations (43) and (44) are, also, MPD 
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estimates of MPD means, variances, and parameters.  In the 

MPD there are theory-based true values of a1, a2, and a3.  

They are, respectively, 1, 1, and A.  The first two lie in the 

confidence intervals of the estimates of a1 and a2.  A 3 does 

not insist on a true value of A, but the MPD estimate of A in 

Table 3 suggests that the true value of A with 95% certainty 

lies in the interval, (1.5872, 1.61238). 

                     In the intended interpretation of Axiom A 3, the 

axiom describes characteristics of an entrepreneur’s choice of  

production variables to maximize his firm’s profit.  With that 

interpretation in mind, I can deduce from A 3, B 2 - B 6, and  

Theorem 1 all the characteristics of such choice that I deduced  

 from the equations in (20).  They are characteristics that the 

  entrepreneurs in my sample must share if my theory is 

  empirically relevant.                             

                                    To see if my sample entrepreneurs’ 

choices have the required charaeristics, I begin by recording 

in Table 5 the correlation matrix of the production variables.  

The table shows that the entrepreneurs’ supply of y varies 

positively with its price, and that their demand for an input 

varies negatively with its price.                                                                         

 

                         Table 5.  MPD Correlation Matrix of Production Variables 

                  

                               |        Y1         Y2          Y3          V1          V2          V3 

                          -------------+----------------------------------------------------- 

                            Y1 |   1.0000 

                            Y2 |  -0.0129   1.0000 

                            Y3 |  -0.1837  -0.2179   1.0000 

                            V1 |   0.1158   0.1330  -0.3485   1.0000 

                            V2 |   0.0331  -0.0319  -0.0462  -0.0173   1.0000 

                            V3 |   0.0150  -0.0603  -0.1308   0.0547   0.1287   1.0000 

                      -------------------------------------------------------------------------------------    

                                     Next, I will obtain estimates of the data 

version of the relations which the last two equations in A 3 
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depict. I do that by regressing V1∙mg1 on V2 and V1∙mg2 on 

V3.  In Table 6, mv1 is short for V1∙mg1 and mv2 is short for 

V1∙mg2. If my interpretation of the variables is empirically 

relevant, the confidence intervals of both parameters must 

contain the number 1, which they do. 

       

      Table 6.  MPD Estimates of the Parameters in Axiom A 3  

          

                           Equation             Obs  Parms   RMSE    "R-sq"          F            P>F 

                      --------------------------------------------------------------------------------------   

                                     mv1             400         1       0.4182     0.9944     70383.36      0.0000 

                                     mv2             400         1       0.5233     0.9881     33137.81      0.0000 

                       --------------------------------------------------------------------------------------- 

                     Variables     | Coefficient     Std. err.        t         P>|t|      [95% conf. interval] 

                        -------------+------------------------------------------------------------------------ 

                       mv1 on  V2 |     1.0001         0.0038    265.30   0.000       0.9927    1.0075    

                       mv2 on  V3 |     1.0065          0.0055    182.04   0.000      0.9956    1.0174                 

                       

                                  It will be interesting to see if my 

observations, also, accord with Hotelling’s Lemma.  I do that 

by regressing mπ1 – the data version of π - on V1, V2, and V3.   

              

                   Table 7.  An MPD Test of Hotelling’s Lemma 

 

                        Equation             Obs     Parms     RMSE      "R-sq"         F             P>F 

                        -------------------------------------------------------------------------------------- 

                               mπ1                400       3        259.7794    0.9140   1406.773   0.0000 

                         -------------------------------------------------------------------------------------- 

                          Variables | Coefficient    Std. err.        t       P>|t|       [95conf. interval] 

                         -------------+----------------------------------------------------------------------------- 

                                     V1 |   452.2555      7.0351    64.29   0.000     438.4248    466.0862 

                                     V2 |  -130.2235      5.5835   -23.32   0.000    -141.2006   -119.2465 

                                     V3 |  -222.8214      7.3486   -30.32   0.000    -237.2684   -208.3744 

                                      ------------------------------------------------------------------------------ 
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The data accord with the Lemma only if the the respective 

confidence intervals of the estimated coefficients of V1, V2 

and V3 contain the mean value of Y1 and the negative values 

of the means of Y2 and Y3.  Tables 1 and 7 show they do.          

                                    It remains to check if the observations 

agree that the firm’s marginal cost of producing Y1 equals its 

price.  I do that by regressing the cost of producing Y1 on Y1 

and mπ1. The result is displayed in Table 8, where wmc = 

V2∙Y2 + V3∙Y3 and mπ1 = V1∙Y1 – wmc.  According to Tables 

1 and 8, the confidence interval of the estimated coefficient of 

Y1 contains the observed mean value of the price of Y1.  

Hence, I cannot reject the hypothesis that the sample-

entrepreneurs’ choices satisfy the marginal cost condition.  

        

        Table 8.  An MPD Estimate of the Marginal Cost of Y1 

 

     Equation     Obs   Parms        RMSE      "R-sq"          F           P>F 

---------------------------------------------------------------------------------- 

                         wmc            400       2         409.5867     0.9440   3354.542   0.0000 

---------------------------------------------------------------------------------- 

 Variabel | Coefficient  Std. err.    t        P>|t|     [95% conf. interval] 

-------------+----------------------------------------------------------------          

                             Y1 |     3.7216     0.0460   80.97   0.000   3.6312    3.8119 

                           mπ1 |    -0.3259     0.0232   -14.04   0.000 -0.3715   -0.2795  

                       

                  So much for the production variables.  Next I must 

consider the interpretation of Y4, Y5, Y6, Y7, V4, V5, and 

V6.  In the intended interpretation of Axiom A 4, the axiom  

 describes characteristics of an entrepreneur’s choice of   

 dividends and balance-sheet variables that maximize the 

 value of his utility in (8) subject to the conditions in (9) - 

(11).  With that interpretation in mind, I can deduce from A 4, 

B 2 - B 6, and Theorem 1 all the characteristics of such 

choices that I deduced from the equations in (20). The 

solutions of the equations in (20) depict characteristics that 
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the entrepreneurs in my sample must share if my theory is 

empirically relevant.   

                                     I begin wih the marginal efficiency 

condition on investments in bonds.  There are six variables 

involved in the analysis of the entrepreneur’s investment in 

bonds, dividends -Y4, bonds - Y5, price of bonds -V4, two of 

the marginal-utility variables in the equations in (44) - mu1 

and mu2, the interest rate on one-period loans - ccr1, and the 

marginal efficiency of the investment in Y5 - mefmu1.  The 

definition of the last two variables are as follows:  

        mefmu1 = ((mu1 – mu2)/mu2) and ccr1 = (1/V4) – 1. 

                            

         Table 9.  MPD Means of Variables Involved in Bond Investment 

                ----------------------  -------------------------------------------------------------- 

                       Variables    Mean            Std. err.             [95% conf. interval] 

                -------------+-----------------------------------------------------------------------                

                               V4 |     0.9089           0.0015                  0.9060    0.9119 

                             ccr1 |     0.1014           0.0018                  0.0979    0.1049 

                             mu1 |     1.5998           0.0064                   1.5872   1.6124 

                             mu2 |     1.4520           0.0037                   1.4447    1.4593 

                       mefmu1 |     0.1042            0.0050                  0.0944     0.1141 

                      

                      The mean values of the two mus, mefmu1, and 

ccr1 are listed in Table 9.  My interpretation of the variables is 

empirically relevant in the present empirical context only if 

the mean value of ccr1 lies in the confidence interval of the 

mean value of mefmu1. It does. 

                                   Next, the marginal eficiency condition 

on investment in capital.  There are six variables involved in 

the empirical analysis of the entrepreneur’s investment in 

capital, capital - Y6, price of capital -V5, two of the marginal-

utility variables in the equations in (44) - mu1 and mu3, the 

rate of return to capital - ccr3, and the marginal efficiency of 

the investment in Y6 -mefmu3. With the mK1 = 1 in (27), the 

definitions of the last two variables are as follows: 
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            mefmu3 = ((mu1 – mu3)/mu3) and ccr3 = (1/V5) – 1. 

                      The mean values of the two mus and mefmu3 

and ccr3 are listed in Table 10.  My interpretation of the 

variables is empirically relevant in the present empirical 

context omly if the mean value of ccr3 lies in the confidence 

interval of the mean of mefmu3 – as it does.  For the present 

test the value of mK1 is irrelevant sinc (mK1∙mu1/mu3) – 1 = 

(mK1/V5) – 1, and the 1 and the mK1 cancel. 

 

                  

                     Table 10.  MPD Means of Variables Involved in Capital Investment 

                 -------------------------------------------------------------------------------------- 

                         Variables   |      Mean             Std. err            [95% conf. interval] 

                 -------------+------------------------------------------------------------------------ 

                                      V5 |      0.9017            0.0013               0.8993     0.9042 

                                    ccr3 |      0.1098            0.0015                0.1068     0.1129 

                                    mu1 |      1.5998            0.0064                1.5872     1.6124 

                                    mu3 |      1.4410            0.0076                1.4261     1.4559 

                              mefmu3 |      0.1222            0.0074                0.1078     0.1367 

                   -------------------------------------------------------------------------------------- 

                                          It remains to see if the last three 

equations in A 4 are empirically relevant.  For that I use Stata 

17’s nonlimear regression program to regress mu2 on V4∙mu1, 

mu3 on V5∙mu1, and mu4 on V6∙mu1.  Tables 11, 12, and 13 

record the results.  My theory is empirically relevant only if 

the 95% confidence intervals of the parameter estimates in 

Tables 11, 12, and 13 contain, respectively, the numbers 1, 1, 

and -1.  They do. 

                                      

                         Table 11.  An MPD nl-Estimate of a Parameter in Axiom A 4 

 

                                                      nl(mu2 = ({b0 = 1}*V4)*mu1) 

                                                 Iteration 0:  residual SS = 6.2503; 

                                                 Iteration 1:  residual SS =   6.2503; 
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                         Source |      SS                    df             MS 

                  +---------------------------------------------------------                 Number of obs = 400 

                           Model |  839.2776          1       839.2776                  R-squared = 0.9926 

                        Residual |      6.2503        399          0.0157                  Adj R-squared = 0.9926 

                  +------------------------------------------------------------               Root MSE = 0.1252 

                               Total |  845.5280        400         2.1138                  Res. dev. = -528.38  

                  ----------------------------------------------------------------- 

                                 mu2 | Coefficient       Std. err.        t          P>|t|     [95% conf. interval]   

                   +------------------------------------------------------------------------------------------------------ 

                                    /b0 |     0.9921           0.0043      231.47   0.000       0.9836    1.0005 

                    -------------------------------------------------------------------------------------------------------- 

 

                               Table 12 An MPD nl-Estimate of a Parameter in Axiom A   

 

                                                         nl(mu3 = ({b0 = 1}*V5)*mu1) 

                                                               Iteration 0:  residual SS =  13.9836; 

                                                               Iteration 1:  residual SS =  13.9836;  

                            Source |      SS                     df              MS 

                        -------------+---------------------------------------------                  Number of obs = 400 

                             Model |   825.8249          1            825.8249                  R-squared = 0.9833 

                          Residual |     13.9836        399              0.0350                  Adj R-squared = 0.9833 

                         -------------+---------------------------------------------                 Root MSE = 0.1872 

                                 Total |   839.8086        400             2.0995                  Res. dev. = -206.2803 

                            ---------------------------------------------------------------------------------------------------- 

                                  mu3 | Coefficient       Std. err.          t         P>|t|       [95% conf. interval] 

                          -------------+-------------------------------------------------------------------------------------- 

                                     /b0 |   0.9920            0.0065       153.50     0.000        0.9793    1.0047 

                                     

                          Table 13.  An MPD nl-Estimate of a Parameter in Axiom A 4 

   

                                                                      nl(mu4 = ({b0 = 1}*V6)*mu1) 

                                                                Iteration 0:  residual SS =  105.5411: 

                                                                Iteration 1:  residual SS = 105.5411; 
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                              Source |      SS                    df            MS 

                           -------------+-----------------------------------------------             Number of obs = 400 

                                Model |  16256.1373          1      16256.1373               R-squared  =   0.9935 

                             Residual |       105.5411        399            0.2645              Adj R-squared = 0.9935 

                              -------------+----------------------------------------------              Root MSE = 0.5143 

                                     Total |  16361.6784        400          40.9042               Res. dev. = 602.205 

                                         --------------------------------------------------------------------------------------------------- 

                                       mu4 | Coefficient       Std. err.          t           P>|t|     [95% conf. interval] 

                                         -------------+------------------------------------------------------------------------------------    

                                           /b0 |   -0.9943           0.0040     -247.90     0.000        -1.0022   -0.9864 

                                     ---------------------------------------------------------------------------------------------------- 

                                            

                                 I have, now, checked the empirical 

relevance of all the characteristics that my sample 

entrepreneurs must share if the theory is empirically relevant. 

The checks were carried out with MPD distributed data 

variables.  They did not give me reason to reject the empirical 

relevance of the theory in an empirical context in which the 

data are MPD distributed.  It remains to see if the theory is 

empirically relevant in an empirical context in which the TPD 

is the data generating process – i.e., in the present empirical 

context.     

                                 To demonstrate that my theory is 

empirically relevant in the present empirical context, I must 

show that the MPD in some sense encompasses the TPD.  Let 

MT be an econometric model whose variables are listed in D 1 

and satisfy the conditions imposed on them in D 1 and D 2.  

Assume that they have the TPD distribution described in D 3 

and D 4, and let ∆ be a vector whose components are the 

parameters whose estimated values are listed in Tables 1-13.  

Moreover, let sn denote a sample of n observations of the data 

variables, and let mT
0(∙) and mP

0(∙) be, respectively, the Stata 

17 estimators of the components of ∆ in the TPD and the  

MPD distributions.  Finally, let TP(∙):ℵP →[0,1] be the 

probability11 measure on (ΩP, ℵP) corresponding to TPD, and 
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let MP(∙):ℵP →[0,1] be the probability measure on (ΩP, ℵP) 

which – in accord with Kolmogorv’s Consistency Theorem 

(cf. theorem T 15.23 on p. 347 in (Stigum, 1990)) - is induced 

by a given MPD.  This measure varies with the MPD in 

question.  Since the two estimators are identical, it is the case, 

both in TP(∙) measure and in MP(∙) measure, that mT
0(sn) = 

mP
0(sn) a.e.. The estimates in Tables 1-4 are MPD estimates as 

well as TPD estimates.  Similarly, the estimates in Tables 5-

13 are TPD estimates as well as MPD estimates. 

Consequently, the two pairs, (M1,mP
0(sn)) and (M2,mT

0(sn)), 

in fact, mutually encompass each other (cf. in this context, 

Bontemps and Mizon 2008, pp. 727-728).   

                                  The preceding observation provides the 

missing link in the proof that my theory is empirically 

relevant.  The given MPD is coherent with the a priori theory 

in D 1 and D 2 - in the sense that the equations in (43) and 

(44) have an MPD model – and it encompasses the TPD.  

Hence (cf. Definition 2 on p. 6 in (Stigum, 2016)), it is a 

congruent model of the TPD.  Since all the data admissible 

MPDs have the coherence-with-a priori-theory and mutual-

encompassing properties of the given MPD, all the data 

admissible MPDs are congruent models of the TPD.  From 

this and the so-called Status of bridge principles (cf. p. 7 in 

(Stigum, 2016)), it follows that the bridge principles in B 1 – 

B 6 are empirically valid in the present empirical context.  But 

if that is so, in the present case the fact that my theory is 

empirically relevant in an empirical context with MPD 

distributed data implies that the theory is empirically relevant 

in an empirical context in which the data are TPD distributed.   
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