Conservation Contracts and Political Regimes

BÅRD HARSTAD
University of Oslo

and

TORBEN K. MIDEKSA
University of Oslo

First version received February 2016; Editorial decision December 2016; Accepted February 2017 (Eds.)

This article provides a flexible model of resource extraction, such as deforestation, and derives the optimal conservation contract. When property rights are “strong” and districts are in charge of extracting their own resources to get revenues, conservation in one district benefits the others since the reduced supply raises the sales price. A central authority would internalize this positive externality and thus conserve more. When property rights are instead weak and extraction is illegal or costly control, conservation in one district increases the price and thus the profit from illegally depleting the resource in the other districts. The externality from conservation is then negative, and centralization would lead to less conservation. We also derive the optimal conservation contract, and we explain when the principal, who values conservation, benefits from contracting with the districts directly even when contracting with a central authority would have led to more conservation, and vice versa.

Key words: Deforestation, Resource extraction, Conservation, Contracts, Crime displacement, Centralization, Decentralization, Climate change, REDD, PES

JEL Codes: D78, D86, F53, Q54

1. INTRODUCTION

Deforestation in the tropics is an immensely important problem. The cumulative effect of deforestation amounts to about one-quarter of the anthropogenic greenhouse gas emissions that generate global warming [Edenhofer et al. 2014]. The annual contribution from deforestation to CO₂ emissions is around 10% [Stocker et al. 2013], and the percentage is even higher for other greenhouse gases. In addition to the effect on global warming, deforestation leads to huge losses in biodiversity. Nevertheless, tropical forest loss has been increasing at an average rate of 2,101 km² yearly since 2000.

A substantial fraction of deforestation is illegal. Although we do not know the exact numbers—thanks to the very nature of illegality—estimates suggest that between 30% and 80% percent of

1. Hansen et al. 2013, Harris et al. 2013, offer more precise estimates of deforestation between 2000 and 2005. The overall message that tropical deforestation has been increasing remains robust.
tropical deforestation is illegal, depending on the country in question. For a set of countries with tropical forests, the estimated fractions of logging that is illegal, as well as these countries’ forest cover and deforestation rates, are reported in the below table.

<table>
<thead>
<tr>
<th>Country</th>
<th>Forest cover in 2000 (1000 ha)</th>
<th>Deforestation rate in 2000–10(%)</th>
<th>Illegal logging in 2013(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>54,594</td>
<td>5</td>
<td>> 50</td>
</tr>
<tr>
<td>Cameroon</td>
<td>22,116</td>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>Ghana</td>
<td>6,094</td>
<td>19</td>
<td>70</td>
</tr>
<tr>
<td>Indonesia</td>
<td>99,409</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>Laos</td>
<td>16,433</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>Malaysia</td>
<td>2,1591</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>30,133</td>
<td>5</td>
<td>70</td>
</tr>
<tr>
<td>Republic of the Congo</td>
<td>22,556</td>
<td>1</td>
<td>70</td>
</tr>
</tbody>
</table>

Illegal resource extraction is substantial also for other types of resources, such as gold and coal. It is costly for countries to protect their resources and prevent illegal extraction. Brazil, the country with the largest tropical forest cover, has in the recent years spent more than $100 million (USD) on monitoring and controlling illegal forest activities. The expenditures have also increased over the last 15 years, according to Figure 1.

One problem with the effort to reduce deforestation and conserve is so-called leakage. Markets for timber and agricultural products are integrated, and reduced logging at one location raises the regional price of timber or agricultural products, and thus it can lead to increased deforestation elsewhere. For conservation programmes in the U.S. west, the leakage rate (i.e., the increased deforestation elsewhere per unit conserved in the U.S. west) was 43% at the regional level, 58% at the national level, and 84% at the continental level. For the 1987–2006 conservation programme in Vietnam, the leakage rate was 23%, mostly due to increased logging in neighbouring Cambodia and Laos.

2. The numbers on illegal logging are borrowed from Hoare (2015, 12) and they measure the percentages of total timber production that are estimated to be illegal. The numbers on forest cover are from Mongabay, accessed 16 October 2016, and the deforestation rates are changes in the total (net) forest cover, 2000–10, relative to the forest cover in 2000. Other estimates on illegal deforestation are of similar magnitude, also for the fraction of illegal conversion of land to agriculture (rather than timber); see Lawson et al. (2014), Seneca Creek Associates (2004), and Contreras-Hermosilla et al. (2007). For gold, see Hilson and Potter (2003, 242) document that “some 90% of Indonesia’s 65,000–75,000 small-scale gold miners are operating illegally, as well as over 80% of the 200,000 gold panners operating in the Philippines”; “Over 90% of Brazilian gold panners are operating illegally”; and: “Many of Zimbabwe’s 300,000 gold panners along Mazowe, Angwa and Inziza Rivers are unregistered (39%), as are some of Zambia’s gemstone miners (15%)”. On coal, see Shen and Andrews-Speed (2001).

3. The numbers are from de Souza Cunha et al. (2016), who have looked at 2,055 budgets from 116 Brazilian budget programmes and focused on those actions whose objective and description directly aim at forest conservation. They classified the expenditures as institutional cost and operational cost. The operational costs are further classified into enabling, incentive, and disincentive costs on the basis of the goal of the instrument. Figure 1 only reports the disincentive costs, roughly defined as follows: “Disincentive-based instruments included the establishment and management of protected areas, monitoring and control of deforestation, forest degradation and forest fires, as well as the regulation of economic activities that cause high social and environmental impacts on forest areas, such as mining” (de Souza Cunha et al., 2016, 213).

4. The numbers for the U.S. are from Murray (2008) and Murray et al. (2004), who provided the study of Vietnam. Other estimates complement these numbers, according to Meyfroidt and Lambin (2004). 75%
In this article, we develop a model of resource extraction that takes into consideration the above facts. Although the model itself is general and can be applied to many types of exhaustible resources (such as land or fossil fuels), it fits well to the case of tropical deforestation. In the model, logging can be illegal as well as controlled by the governments. To protect a parcel of the forest, the government must monitor so much that the expected penalty is larger than the profit from illegal logging. The total enforcement cost is thus larger when there is a large profit of harvesting (timber or agricultural products), as will be the case when there is little logging elsewhere. Thus, a district may want to leave substantial parts of the forest unprotected, only to reduce the pressure and thus the enforcement cost on the part that is to be protected.

The part of the forest that is unprotected will be logged. This logging can be legal or illegal as far as our model is concerned, since the district’s weight on the associated profit can be any number, small or large. If this weight is large while the enforcement cost is small, the game between the districts is similar to a standard Cournot game: if one district extracts less, the (timber) price increases and the other districts are better off. This pecuniary externality implies that if real decision powers were centralized to a federal government, extraction would be deliberately reduced in order to increase the profit for everyone.

This insight is reversed if the enforcement cost is large, or if the districts are unable to benefit much from the profit of logging. In these cases, reducing extraction in one district raises the price and thus the enforcement cost for the others. The larger cost makes the other districts worse off. A central authority would take this negative externality into account so, in this situation, centralization would lead to more logging.

Empirically, the effect of decentralization on deforestation can indeed go either way, depending on the country in question. For Indonesia, Burgess et al. (2012, 1751) find that “as the number of jurisdictions within a provincial wood market increases, deforestation rises and prices fall”. In Nepal, in contrast, deforestation accelerated under national management after 1957, and

of EU’s, 70% of that of Australia and New Zealand, and 46% of that of U.S.’s reduced timber harvest are replaced by increased logging in the tropics. Atmadja and Verchot (2012) summarize the findings on forest conservation leakage: the estimates vary widely between 5% and 95%, but typical estimates are around 40%.
deforestation decreased by 14% after 1993 in response to decentralization of forest management, according to Edmonds (2002). Consistent with the latter finding, Somanathan et al. (2009, 4146) find that “forests in the Indian central Himalayas have been conserved at least as well and possibly better under decentralized management and at much lower cost.” The difference between the countries is puzzling, but it is consistent with our theory, as we explain in Section 6.

Our second contribution is to use the model to analyse the design and the effects of conservation contracts. As mentioned above, tropical deforestation is harmful also for the North. The global negative externalities of deforestation amount to $2–4.5 trillion a year, according to The Economist. In addition, estimates suggest that deforestation could be halved at a cost of $21–35 billion per year, or reduced by 20–30% at a price of $10/tCO₂. Third parties are, therefore, interested in conservation. With the help of donor countries (in particular, Norway, Germany, and Japan), the World Bank and the United Nations are already offering financial incentives to reduce deforestation in a number of countries. Conservation contracts are favoured by economists who view them as the natural Coasian solution (Alston and Andersson, 2011) and they are also likely to be an important part of future climate change policies and treaties. Also for other types of resources, such as fossil fuel reserves, a climate coalition’s optimal policy may be to pay non-participants to conserve particular reserves (Harstad, 2012).

In our model, a donor can offer payments to districts in return for reduced levels of resource extraction. If the donor contracts with a single central government, the outcome will be the first best. When resource extraction is decentralized, however, there are contractual externalities. If the donor contracts with one district, the other districts benefit by extracting more, as long as they profit from extraction and find enforcement inexpensive. This benefit induces the donor to offer less—there will be too much extraction in equilibrium—and the donor would prefer to contract with a central authority instead, if that were feasible.

In contrast, if the enforcement cost is large and districts profit less from extraction, a district’s outside option worsens when the donor contracts with a neighbour. In this case, the donor finds it less expensive to contract with the districts individually, and these contracts lead to too little extraction, compared to the first best. The negative contractual externality also implies that the districts might become worse off when the donor offers conservation contracts, if the environment is characterized by large enforcement costs and illegal logging.

After discussing our contribution to the literature, Section 3 presents our model of conservation, which we solve in Section 4. Conservation contracts are analysed and discussed in Section 5. Section 6 summarizes the empirical predictions, compare them to anecdotal evidence, and discuss how future research may test the predictions in a careful way. Section 7 concludes, whereas the Appendix provides all the proofs.

2. CONTRIBUTIONS TO THE LITERATURE

The literature on deforestation has identified such causes as optimal land use, income growth and demand for forest products, corruption, costly enforcement, illegal logging, and other institutional

6. Antinori and Rausser (2007), Baland et al. (2010), and Chhatre and Agrawal (2008) present similar evidence to that of Somanathan et al. (2009).
7. See Edenhofer et al. (2014) and Busch et al. (2013), respectively.
8. Payments for environmental services (PES) can be important in many situations, even though our analysis is motivated in particular by deforestation in the tropics and the emergence of contracts on reducing emissions from deforestation and forest degradation (REDD). See Engle et al. (2008) for PES more generally, or Karsenty (2008), and Parker et al. (2001) for an explanation of the difference between alternative concepts such as RED, REDD, and REDD+.
9. In line with this argument, Norway recently declined to contract with the region Madre de Dios in Peru and stated that it would only contract at the national level.
Our first contribution to this literature is to provide a tractable workhorse model that can be used for all these alternative drivers. When the levels of the parameters in our model are suitably adjusted, it can be applied whether the deforestation driver is corruption, revenue generation at the local level, or illegal logging by small farmers or by large corporations.

Our theoretical framework draws from, and ties together, the literatures on state capacity, the resource curse, and crime displacement. Central in our theory is the general strength of property rights and the enforcement cost, in particular. These aspects are part of the countries’ “state capacity”, since the associated literature refers to states as “weak” if they are unable to control the economy, to support private markets, or to raise revenues ([1]). The role of institutions has also been emphasized by the literature on the resource curse, which has found that a larger resource stock is beneficial for a country with strong institutions, but not for a country with weak institutions. We show that conservation contracts will aggravate the dependence on institutions, since the contracts generate positive externalities when districts’ property rights are strong, but negative externalities when they are weak.

The papers cited above do not consider the interaction between districts. But estimates of “leakage” can be quite high, as mentioned above, and scientists have pointed out the importance of accounting for leakage when comparing various types of conservation contracts ([2]). In our model, the leakage is related to shifts in market shares when property rights are strong, and to crime displacement when property rights are weak and extraction is illegal. There is plenty of empirical support for crime displacement ([3]) but most of the literature has ignored how the market facilitates crime displacement. Our model recognizes that by letting a fraction of the resource be unprotected, the supply (of the harvest) increases and the price declines, thereby reducing the pressure on and the enforcement cost for the part that is to be conserved. This mechanism thus adds another perspective to the more general literatures on crime, enforcement, and inspection games ([4]).

We also contribute to the literature on conservation contracts. We diverge from most of the literature on how to design agreements for PES ([5]) or REDD ([6]), which

11. While much of this literature endogenizes investments in state capacity and shows how such investments relate to conflict and war ([7]), we take the parameters as given and show how it will relate to resource extraction and should relate to conservation contracts.

12. See ([8]), , (2006), (2009), or the survey by ([9]). The value of forests can be an important driver of the resource curse ([10]).

13. In contrast to the estimates in that paper, we analytically derive the optimal contract in a setting that also allows for illegal logging and protection costs.

14. See ([11]), [12], [13], for recent evidence; for surveys, see the handbook chapters by ([14]), ([15]), or the survey by ([16]), ([17]), and ([18]). Also reach the conclusion that it may be optimal to monitor some places (or groups) intensively, and not at all elsewhere. The reason is, as in this article, that enforcement must reach a certain level to have any effect. However, these papers do not take into account that abstaining from monitoring in some places causes monitoring costs to decline for the places where the law is to be enforced. This effect, which we emphasize, means that there is an interior solution for the amount of area that is to be protected even when there is no budget constraint or convex effort cost. Our mechanism also differs from that in ([19]), where the regulator may want to increase the (potential) supply—not to reduce the monitoring cost, as here—but in order to reduce the incentive to poach and thus eliminate the bad equilibrium in a dynamic game with multiple equilibria (one of them being extinction and thus low supply).
HARSTAD & MIDEKSA CONSERVATION CONTRACTS AND POLITICAL REGIMES 1713
tends to focus on textbook contract-theoretic problems such as moral hazard (Gjertsen et al., 2016), private information (Mason and Plantinga, 2013; Mason, 2015; Chiroleu-Assouline et al., 2012), or observability (Delacote and Simonet, 2013). Instead, the analysis in our article relates more to the literature on contracts in the presence of externalities. While the general theory has been outlined by Segal (1999), our model endogenizes the sign and the level of the externality, and our results are more detailed in characterizing the contract for the particular case of resource extraction. More importantly, we go further than Segal (1999) by searching for the principal’s optimal contracting partner (central versus local governments), which is an important issue for real-world conservation contracts. In Harstad and Mideksa (2016), we build further on this work by studying how political (de)centralization may be influenced by the contracts. While we abstract from the dynamic issues raised in Harstad (2016), a dynamic contract theory model, building on this article, is provided by Framstad and Harstad (2017).

3. A THEORY OF CONSERVATION

This section presents a model of resource extraction in which there are many districts and a common market for the resource. The framework is general in that extraction that can be legal or illegal and the resource can be of any kind (e.g. fossil fuels or land) but, to fix ideas, we refer to the resource as forest. The resource extraction can be timber or agricultural products, and the districts can be countries or villages.

The novel part of the theory is the way in which we model enforcement. There are \(n \geq 1 \) districts and \(X_i \) is the size of the forest or resource stock in district \(i \in N = \{1, \ldots, n\} \). Parameter \(v > 0 \) measures district \(i \)'s value of each unit of \(X_i \) that is conserved. Each parcel or unit of this stock can be illegally cut, so \(i \) must decide how much to monitor and protect the various units. With free entry of illegal loggers, the price \(p \) that they can obtain for cutting unit \(j \) will be compared with the expected penalty, \(\theta_j \), which they face when logging illegally that unit of the forest. The expected penalty is preventive if and only if it is larger than the benefit from logging: \(\theta_j \geq p \). The price \(p \) will be a decreasing function of aggregate extraction.

We let districts set the expected penalties in advance in order to discourage extraction. This approach contrasts with the approach in much of the literature on inspection games (Avenhaus et al., 2002), where the decisions to monitor and violate the law are taken simultaneously, but our assumption is more in line with the real world, in which penalties and monitoring follow from legislation that is publicly committed to at the outset. In principle, the expected penalty can be increased by a larger fine or penalty, but there is an upper boundary for how much the fine can be increased in economies with limited liability. To raise the expected penalty further, one must increase the monitoring probability, which is costly.

We let \(c \geq 0 \) denote the cost of increasing monitoring enough to raise the expected penalty by one. Since enforcement is costly and will succeed if and only if \(\theta_j \geq p \), for every unit \(j \) it is optimal with either \(\theta_j = p \) or \(\theta_j = 0 \). Thus, district \(i \) sets the \(\theta_j \)'s for the different units of the forest

16. Other important articles in this literature are Segal and Whinston (2003), who focus on privately observed contracts, Gomes (2005), who studies multilateral contracts; and Genicot and Ray (2006), who allow agents to coordinate (but not centralize), and show that the principal still manages to "split and rule".
17. For example, we show how the optimal reference level should generally differ from the business-as-usual level, in contrast to the traditional presumption and advice (Busch et al., 2014).
18. If \(\pi \) is the probability of being caught, while \(\omega \) is the largest possible penalty (e.g. the wealth of an illegal logger), then monitoring is effective if and only if \(\pi \geq p/\omega \).
so as to maximize:

$$\int_{X_i} (v_\theta \cdot 1_{\theta \geq p} - c \cdot \theta_j) dy_j = (v - cp)(X_i - x_i),$$ \hspace{1cm} (1)

where $X_i - x_i = \int_{X'_i} 1_{\theta \geq p} dy_j$ is the amount that is conserved, and $1_{\theta \geq p} = 1$ if $\theta \geq p$ and $1_{\theta \geq p} = 0$ otherwise. It follows that a part of the forest will be protected and conserved, perhaps as a national park, while the remaining part (x_i) will not be protected and, therefore, it will eventually be cut. The model thus predicts that conservation policies will be “place-based” (e.g. restricted to geographically limited but protected national parks), as seems to be the case in many countries, such as Indonesia, where “national and provincial governments zone areas of forest land to be geographically limited but protected national parks), as seems to be the case in many countries,

Given equation (1), district i’s problem boils down to choosing $x_i \in [0, X_i]$. Since p is a decreasing function of aggregate extraction, $x = \sum_{j \in N} x_j$, district i’s payoff can be written as:

$$u_i(x_i, x_{-i}) = bp(x)x_i + (v - cp(x))(X_i - x_i),$$ \hspace{1cm} (2)

where $x_{-i} = \sum_{j \in N \setminus i} x_j$ and parameter $b \geq 0$ measures the weight district i places on the profit $p(x)x_i$ of the x_i units that are extracted in the district. By varying the parameters b and c, the model nests several special cases that have intuitive interpretations. In the simplest model of illegal extraction, one would think that $b = 0$. However, if the government places some weight on the welfare or profit of the illegal loggers, who might be poor citizens, then $b > 0$ may measure this weight. Or, if the loggers are large corporations, b can measure the probability that the profit is detected and captured at the border, for example. Alternatively, all extraction x_i may be legal and controlled by the districts. In this case, b is likely to be large, since a district can spend its revenues just as it pleases. If b is large while the enforcement cost is small, extraction is purely sales-driven, just like in a standard Cournot game. In this situation, we may say that the property rights are strong. In contrast, we may say that the property rights are weak if the enforcement cost is large, whereas b is small. Note that this situation may arise whether extraction is illegal (so that a district’s benefit b from the profit is zero or small), or if extraction is legal, if just the ability to benefit from the profit is small relative to the enforcement cost. We will be more precise about these concepts below.

In general, these parameters are likely to vary with the details of the political system, which may pin down the fraction (b) of the public revenues that a decision maker can capture and the cost (c) of ensuring that local public agencies are not corrupt. In addition, geography may play an important role in determining the cost of protecting a resource. Caselli et al. (2015) have shown that natural resources located close to international borders are more likely to motivate war between countries, essentially implying that the location of the resource influences the cost of protecting them. At the same time, the fact that countries go to war over oil suggests that it is very important to become the owner and hold the property rights over this type of resource. One may not have the same willingness to fight if the resource, in any case, were burdened with illegal extraction. Thus, minerals and oil might be characterized by a smaller enforcement cost.

19. As an intermediate possibility, b can be interpreted as the fraction of total extraction that is legal. To see this, suppose that if the government in district i decides to extract x'_i units for sale in order to raise revenues, such extraction may require infrastructure and roads, which in turn may also proportionally raise the amount of illegal extraction to ax'_i, where $a > 0$ measures the amount of illegal extraction when the government extracts and, for example, builds roads. Such a complementarity is documented by de Sis et al. (2013). Total extraction is then $x_i = (1 + a)x'_i$ even though the fraction of the total profit, captured by the government in district i, is only $b = 1/(1 + a)$. The larger the fraction of illegal extraction, the smaller b is.
and a larger benefit to the owner that extracts it. This argument suggests that the geographical concentration of the resource is also important. Forests are naturally spread out, and may thus be harder to monitor than geographically concentrated gold mines.

To simplify, we start by considering the case of a linear demand curve:

$$p(x) = \bar{p} - ax,$$

(3)

where \bar{p} and a are positive constants. The Appendix allows for non-linear demand and proves that our main results continue to hold, qualitatively.

Remark 1. (Generalizations). Our model is simple and can easily be extended in several ways. For example, we allow for district-specific v_i's in the Appendix, and district-specific parameters b and c in our working paper.20 One can also allow the districts (or the donor, introduced in Section 5) to take into account some of the consumer surplus: this generalization will merely make the analysis messier without altering the conclusions qualitatively. Since tropical timber and agricultural products are to a large extent exported, it is reasonable that districts will not take consumer surplus into account in reality.

Instead of letting parameter $v \geq 0$ measure the value of the forest, it can alternatively represent a district's marginal cost of extracting the resource. In this case, it is more natural to write the utility function as:

$$\tilde{u}_i(x_i, x_{-i}) = bp(x)x_i - cp(x)(X_i - x_i) - v x_i.$$

This utility function is equivalent to equation (2) in our analysis, since we can define $u_i(x_i, x_{-i}) \equiv \tilde{u}_i(x_i, x_{-i}) + v X_i$, and since the last term, $v X_i$, is a constant.

Furthermore, note that we link the districts by assuming that the extracted resource is sold at a common downstream market, but we could equally well assume that districts hire labour or need inputs from a common upstream market. To see this, suppose that the price of the extracted resource is fixed at \hat{p}, and consider the wage cost of the labour needed to extract. If the labour supply curve is linear in total supply, and loggers are mobile across districts, then we may write the wage as $\hat{w} + ax$, where \hat{w} is a constant and $a > 0$ is the slope of the labour supply curve. Defining $p \equiv \hat{p} + \hat{w}$, we can write this model as equations (2) and (3). It is thus equivalent to the model described above.

Finally, a static model represents the real world well if the purpose of extraction is to produce (e.g., agricultural) products forever after on the land, since then p is driven by the accumulated x, and not the per-period quantity. For timber or fossil fuels, one may argue that the time profile will be more important. A dynamic version of the model is analysed by Framstad and Harstad (2017).

Remark 2. (Non-pecuniary externalities). This article emphasizes that the districts influence each other through the market. However, the model can easily be reformulated to also allow for non-pecuniary externalities, meaning that district i loses $\tilde{v}_{-i} > 0$ when the other districts extract. To see that our model already permits such externalities, suppose that i's payoff is:

$$\tilde{u}_i = bp(x)x_i + (\tilde{v}_i - cp(x))(X_i - x_i) - \tilde{v}_{-i} \sum_{j \in N \setminus i} x_j,$$

20. Harstad and Mideksa (2015). The additional insight does not justify the added complexity, however, since when two heterogeneous districts centralize authority, the result would be a corner solution on x_i in at least one district. These corner solutions are not worth to emphasize, in our view, since they are unlikely to be robust to other changes in the model.
where \tilde{X}_i is i’s stock and \tilde{v}_i is the marginal value of i’s stock for i. This utility function can be rewritten as equation (4) if we simply define $v_i \equiv \tilde{v}_i - \tilde{v}_{-i}$, $X_i \equiv \tilde{X}_i - \tilde{v}_{-i}/ca$, and $u_i \equiv \tilde{u}_i - (X_i - p/a + \tilde{v}_i/ac)\tilde{v}_{-i}$, where the last term is a constant. Therefore, our analysis would be unchanged if we allowed for such non-pecuniary externalities: any interested reader can account for a larger externality \tilde{v}_{-i} by reducing v_i and X_i in the results below. Although we now simplify by assuming that the v_i’s are homogenous, heterogeneous v_i’s are permitted in the Appendix.

4. CONSERVATION AND POLITICAL REGIMES

This section discusses the equilibrium amount of extraction and conservation, and investigates the effect of political centralization. These results are interesting in themselves, they might explain empirical irregularities, and they are necessary to describe before we analyse conservation contracts in the next section.

4.1. Equilibrium conservation

Each district $i \in N$ decides on x_i, taking as given the other districts’ extraction level, $x_{-i} \equiv \{ x_j \}_{j \in N \setminus i}$ and $x_{-i} = \sum_{j \in N \setminus i} x_j$. It is easy to see that extraction levels are strategic substitutes, so that i prefers to extract less if other districts are expected to extract more. This property holds for all parameters of the model: if property rights are weak in that c is large and b is small, a large x_i lowers $p(x)$ and thus the protection cost when i decides on how much to conserve. If property rights are strong in that c is small while b is large, a large x_i lowers the price and, therefore, the marginal profit i gets from extraction.

We refer to the equilibrium values of x_i and x as x_i^0 and x^0, respectively. To ensure that the solutions for the x_i^0’s are interior, it is convenient to assume that all stocks are large and that $X \equiv \sum_{i \in N} X_i$ are large enough to prevent corner solutions where district i extracted zero or everything. Such corner solutions are not worth our attention here, since they are unlikely to be robust or survive under more general functional forms.

Proposition 1. If c or X_i increases, or v decreases, then x_i increases, x increases, and p decreases. Furthermore, x_j decreases in X_i, $j \neq i$:

$$
x_i^0 = \frac{b\overline{p} - v}{ab(n+1)} + \frac{v + ab[(n+1)X_i - X]}{ab(b+c)(n+1)}, \text{ and}
$$

$$
x^0 = \frac{nb\overline{p} - nv}{ab(n+1)} + \frac{nv + abX}{ab(b+c)(n+1)}, \text{ if}
$$

$$
X_i \geq \max \left\{ \frac{(b+c)\overline{p} - caX - v}{ab(n+1)}, -\frac{(b+c)\overline{p} - caX - v}{ac(n+1)} \right\}, \forall i \in N.
$$

21. A non-pecuniary externality can simply be added to the pecuniary externality such as it is defined by equation (6), below. Thus, our measure of the total externality e, as it is defined in Section 4.2, will then increase in both the pecuniary and the non-pecuniary externality, and it can be written as:

$$
e \equiv (b+c)\overline{p} - aw\tilde{X}_i - \tilde{v} + (n+1)\tilde{v}_{-i}.
$$

The fact that we can reformulate \tilde{u}_i as u_i hinges on the assumption that the demand function is linear. With non-linear demand and externalities, the pecuniary and the non-pecuniary externalities may interact through p in arbitrary and complex ways. It is beyond the scope of this article to investigate these effects in detail.
When extracts less. When \(i \) extracts less if the other stocks are large. This is intuitive. 22 The intuition is as follows. If \(\bar{P} \) is large or \(v \) is small, a district extracts more, and it becomes more important that the price be high, and then \(i \) benefits when \(j \) extracts less. When \(i \) maximizes \(u_i \) by deciding on \(x_i \), \(x_i \) is given by equation (12) and, combined with equation (6), we get the equilibrium level of externality:

\[
\frac{\partial u_i(x_i^0, x_{-i}^0)}{\partial (-x_i)} = \frac{e}{n+1}, \text{ where } e \equiv (b+c)\bar{P} - acX - v.
\]

This equation shows that the equilibrium externality, as measured by \(e \), increases in the market size \(\bar{P} \) but decreases in the resource value \(v \) and in the aggregate stock, \(X \). This is intuitive.

22. The intuition is as follows. If \(\bar{P} \) is large or \(v \) is small, a district extracts more, and it becomes more important that the price is high. In this situation, a district benefits if the others extract less. If \(X_i \) increases, district \(i \) protects more, and it is more likely that district \(i \) is harmed by the larger enforcement expenditures when the others extract less. If the neighbour’s stock is large, the neighbours extract more and district \(i \) finds it optimal to extract less. With more to protect, it is more likely that district \(i \) is harmed when \(j \) extracts less if the other stocks are large.
Further, if the benefit of profit, b, is large, it is valuable for i that the price be high, and then i benefits when j extracts less. If, instead, the enforcement cost c is large, it is more important to reduce the need to monitor and thus the pressure on the resource. In this case, the externality e is small and possibly negative.

If property rights are strong, it is reasonable that the owner of a resource finds enforcement inexpensive and benefits from extraction. In our model, this corresponds to a small c, a large b, and thus a large externality e. If instead property rights are weak, enforcement is costly and a resource owner might benefit less from extraction. This corresponds to a large c, a small b, and a small e.

The property rights or the externality, e, will be a sufficient statistic for many of our results below. For example, the level of e will dictate how extraction levels are influenced by heterogeneity and the number of districts.

Proposition 2.

(i) Small districts extract smaller fractions of their resources if and only if property rights are weak:

$$\frac{x_i^0}{X_i} - \frac{x_j^0}{X_j} = \left(\frac{1}{X_i} - \frac{1}{X_j}\right) \frac{e}{a(b+c)(n+1)}.$$

(ii) If authority is decentralized, more is extracted if and only if property rights are strong:

$$\frac{\partial x_i^0}{\partial n} = \frac{e}{a(b+c)(n+1)^2}.$$

The Appendix proves that the general claims hold also when the demand function is non-linear.

Part (i) of Proposition 2 suggests that the sign of e is important for a district’s strategy. If $e > 0$, district i prefers a high price, and thus i has an incentive to keep the price high by strategically extracting less. If $e < 0$, district i has an incentive to extract more to reduce the price, and thus the pressure from illegal loggers. These strategic incentives are particularly important for a large district that influences the price more by a given change in x_i/X_i. The theory thus predicts that while large districts extract a smaller fraction of their resources when property rights are strong, they extract a larger fraction when property rights are weak.

Part (ii) follows as the natural next step in this line of reasoning. If multiple districts merge and centralize authority, the merged unit will be larger and it ought to increase conservation if and only if the externality is positive. The result holds whether it is only a couple of districts that centralize power to a common central authority, or whether all the n districts centralize power to a single government. Intuitively, the members of the merged unit will internalize the externalities on each other and thus extract less if and only if extraction is harmful to the partners. With strong property rights, it is well known from Cournot games that if the number of sellers increases, so does the aggregate quantity supplied, while the price declines. Proposition 2(ii) confirms this intuition. With weak property rights, in contrast, districts extract more when they take into account the fact that the pressure on the resource weakens as a consequence. In this case, the result is reversed, and centralization increases the amount of extraction.

5. CONSERVATION CONTRACTS

In this section, we study contracts between the districts and a principal or a “donor” D. We assume that the donor’s payoff is $U_D = u_D(x) - \tau$, where $\tau \geq 0$ is transfers and $u_D(x) = -dx$, so
The contract is valid for country i.

To build intuition for our results, it is helpful to first study the particularly simple setting in which the future.24 discussing linear contracts, we will assume that a district cannot commit to decline payments in

regardless of what the other districts decide to do. When

Another simple contract is the linear version. This is the contract actually observed in reality, as when Norway offers REDD contracts to the partnering countries, and it should thus be of particular interest. In this case, the donor commits to pay a district an amount that is linear in the district’s choice of x_i:

$$
\tau_i = \max \{0, (\bar{x}_i - x_i) t_i\}.
$$

Here, \bar{x}_i is the “baseline” or “reference” level for district i’s deforestation level. The contract, which consists of the pair (t_i, \bar{x}_i), implies that district i receives t_i dollars for every unit by which actual extraction x_i is reduced relative to the baseline level \bar{x}_i. If $x_i \geq \bar{x}_i$, no payment takes place. The contract is valid for country i regardless of what the other districts decide to do. When discussing linear contracts, we will assume that a district cannot commit to decline payments in the future.23

Although we impose the limited-liability assumption that τ_i cannot be strictly negative, it may, in reality, be possible for the donor to penalize a district if it extracts more than what the donor has requested. For example, some tropical countries may receive development aid and this aid can be withheld. In the following, we do allow for this, and we let $f_i \geq 0$ measure how much the donor can credibly withhold or punish if i does not conserve as requested.

5.1. Contracts under centralization

To build intuition for our results, it is helpful to first study the particularly simple setting in which authority is centralized to a central government, C. In this case, the objective of the donor is to maximize

$$
U_D = -dx_C^* - \tau(x_C^*),
$$

23. If the donor’s payoff was $\tilde{U}_D = \tilde{u}_D(x) - \tau$, the analysis would be equivalent if we defined $u_D(x) \equiv \tilde{u}_D(x) - \tilde{u}_D(x)$, since X is a constant. A general non-linear function $u_D(x)$ can also account for the consumer surplus, which is $\alpha x^2/2$ when demand is linear. Thus, when we simplify to $u_D(x) = -dx$, we ignore the possibility that the donor may value the consumer surplus. This assumption is quite realistic, in our view: after all, the donor should not be regarded as a benevolent planner in our positive theory, but rather as an NGO or a single country offering REDD contracts, such as Norway.

24. This assumption is not very restrictive: in an earlier version of the article, when contracts had to be linear, we allowed districts to commit to decline any future payments. This condition resulted in a “participation constraint” that, in some situations, became harder to satisfy than the “incentive constraints”, discussed below. Since the results were otherwise qualitatively similar, and since it may be questionable whether districts in reality are able to commit to decline future payments, here simplify the analysis by not allowing the districts to commit in this way. With non-linear contracts, it is in any case straightforward to relax the participation constraint, since the donor can design contracts such that if one district rejects the offer, then it will be in the interest of the other districts to select x_i’s at levels that would harm the district rejecting the contract.
subject to the requirement that x^*_C must be a best response for the government given the contract. That is, extracting x^*_C and receiving $\tau(x^*_C)$ must be weakly better than any other option the government may have:

$$u_C(x^*_C) + \tau(x^*_C) \geq \max_{\hat{x}} u_C(\hat{x}) - f_C. \quad (IC_C)$$

where $u_C(x) = bp(x)x + (v - cp(x))(X - x)$, following equation 2. The right-hand side of (IC_C) measures the government’s best outside option, that is, the utility it can obtain by freely choosing x without receiving transfers or aid ($f_C = \sum_i (N_i)$).

Substituting a binding (IC_C) into equation(7), the donor’s problem is to maximize:

$$U_D = -dx^*_C + u_C(x^*_C) - \max_{\hat{x}} u_C(\hat{x}) + f_C. \quad (8)$$

Thus, the donor maximizes the sum of payoffs and implements the first best. The first best is given by equation 4 if just v is replaced by $v + d$; so it follows that the first best is implemented by a linear contract with $t_C = d$, if x_C is so large that (IC_C) holds. By reducing x_C until (IC_C) binds, the donor extracts the entire surplus even with linear contracts, and a linear contract is, therefore, sufficient.

Proposition 3. Suppose the donor contracts with a single central government.

(i) The equilibrium contract leads to the first best:

$$x^* = \frac{(b+c)p + caX - v - d}{2a(b+c)}, \text{ and}$$

$$\tau^* = \frac{d^2}{4a(b+c)} - f_C.$$

(ii) This outcome can be implemented by the linear contract:

$$t^*_C = d, \text{ and}$$

$$x^*_C = x^*_C - \frac{d}{4a(b+c)} - f_C d.$$

Naturally, x^* decreases in d, while the transfer must increase. The linear contract is particularly simple as it is similar to a Pigou subsidy.

The baseline x_C will be set such that (IC_C) binds and the government is exactly indifferent between choosing x^*_C and ignoring the contract. Note that $x^*_C < x^*_C$, so that it is not sufficient to extract marginally less than the business-as-usual quantity in order to receive transfers. If we had $x^*_C = x^*_C$, the central government would have been strictly better off with than without the contract, and thus the donor could reduce the transfer without violating the incentive constraint. This result disproves the typical presumption that the reference level should equal the business-as-usual level 25.

25. See, for example, Busch et al (2012) or Angelsen (2008). The latter contribution also discusses why the baseline level may be smaller than the business-as-usual (or historical) deforestation level, since a smaller baseline reduces the amount that needs to be paid.
5.2. Contracts under decentralization

If the donor contracts with \(n \) independent districts, the objective is to maximize

\[
U_D = -d \sum_{i \in N} x_i^* - \sum_{i \in N} t_i(x_i^*),
\]

subject to the requirement that \(x_i^* \) must be implementable and thus the vector of equilibrium extraction given the contracts \(\{t_i(x_i)\}_{i \in M} \). That is, the donor has to make sure that every district \(i \)'s incentive constraint holds:

\[
 u_i(x_i^*, x_{-i}^*) + t_i(x_i^*) \geq \max_{\tilde{x}_i} u_i(\tilde{x}_i, x_{-i}^*) - f_i. \tag{IC} \]

Here, the outside option at the right-hand side measures the utility \(i \) can obtain by freely choosing \(x_i \) under the assumption that the other districts will continue to extract their equilibrium quantities.\(^{26}\)

If we substitute binding (IC)’s into equation (9), it is clear that the donor will no longer maximize the sum of payoffs. The reason is that the contracts with one district will influence the outside option for the other districts. The better the outside option is, the more the donor will have to pay. Thus, the donor prefers to design contracts that reduce the payoffs districts can get if they ignore the contract.

Proposition 4. Suppose the donor contracts with all districts independently.

(i) The contracts can be written as:

\[
 t_i^* = \frac{d^2}{a(b+c)(n+1)^2} - f_i \quad \text{and} \quad x_i^* = \frac{(b+c)p + ca[(n+1)\tilde{x}_i - X_i] - v}{a(b+c)(n+1)} - \frac{2d}{a(b+c)(n+1)^2}, \text{implying} \]

\[
x^* = \frac{n(b+c)p + caX - nv}{a(b+c)(n+1)} - \frac{2nd}{a(b+c)(n+1)^2}. \]

(ii) This outcome can be implemented by the linear contract:

\[
 t_i^* = \frac{2d}{n+1} \quad \text{and} \quad \tilde{x}_i^* = \frac{n-3}{4a(b+c)(n+1)} t_i^* - f_i/t_i^*. \]

26. This is the natural outside option as long as the \(x_i \)'s are chosen simultaneously. Note that even if the \(x_i \)'s were gradually increasing over time, the \(x_i \)'s would effectively be chosen simultaneously if it were difficult for districts to observe the extraction levels at every point in time, before the contracting period has ended. However, if the model were dynamic and extraction levels immediately observable by the neighbours, then it might be easier for a district, \(j \in N \), to detect a deviation by another district \(i \in N \setminus j \). In this situation, it may be simpler for the donor to reduce \(i \)'s temptation to deviate, since the contract with \(j \) may motivate \(j \) to choose a level of \(x_j \) that penalizes \(i \) when \(i \) is on a track to deviate. A satisfactory analysis of this situation requires another model than the one we investigate here.
(iii) Compared to centralization, \(\sum_{D \cup N} U_i \) is smaller when \(n > 1 \), but also \(x \) is smaller if and only if:

\[
\frac{e}{d} < -\frac{n-1}{n+1},
\]

and \(U_D \) is larger if and only if:

\[
\frac{e}{d} < -\frac{1}{2} \frac{n-1}{n+1}.
\]

Part (i) of the proposition shows that a larger \(d \) reduces the extraction levels. However, the reduction is small and approaches zero when \(n \) grows. The reason is leakage: when one district extracts less, the other districts prefer to extract more. Thus, when the donor pays one district to extract less, it also has to pay more to all the other \(n-1 \) districts for any given extraction vector. This expense reduces the donor’s willingness to pay when \(n \) is large.

Part (ii) complements part (i) by showing that the linear subsidy rate falls when \(n \) grows. Linear contracts are sufficient, it turns out, since there is a deterministic and one-to-one relationship between the \(x_i \)'s and the \(t_i \)'s, and since the donor must, in any case, ensure that transfers to district \(i \) be so large that \(i \) cannot achieve a higher payoff by selecting any other \(x_i \), when \(i \) takes \(x_{-i} \) as given. Of course, linear contracts would not suffice in more general environments with uncertainty or non-concave utility functions, for example.

The subsidy rate \(t_i^* \) is robust and remains unchanged if the parameters of the model either change or are unobservable to the donor. This robustness may be one reason for why the linear contract is popular in reality.\(^\text{27}\) Note also that the \(f_i \)'s do not affect the equilibrium allocation of the \(x_i^* \)'s; they only reduce the transfer that the donor has to pay.

As under centralization, the baseline \(T_i \) will be set such that (IC,) binds and district \(i \) is exactly indifferent between choosing \(x_i^* \) and ignoring the contract. In contrast to centralization, however, the baseline might need to be larger than the business-as-usual level, \(x_i^0 \). The reason is that when \(n \) is large, the donor is paying so many districts to conserve, and the equilibrium price is so high, that the districts are much more tempted to extract than they would be without any contracts. In this case, the donor must increase the baseline to motivate the districts to conserve.

Part (iii) of Proposition\(^\text{28}\) states that decentralization leads to less extraction when property rights are weak. This finding is similar to Proposition\(^\text{22}(\text{ii})\), but the intuition is different: when the donor pays districts to extract less, the contracts create a negative externality on the other districts when \(e \) is small. In particular, there is a negative externality on the other districts’ outside option, which is not internalized by the donor. Instead, the donor benefits when the districts’ outside option is worsened, and it, therefore, asks the districts to extract less than what is socially optimal when property rights are weak.

Part (iii) also shows that the donor benefits when \(n \) is large, if just property rights are weak so that the contract with one worsens the outside options of the others. In fact, the donor may benefit from decentralization even when decentralization may increase extraction, since the two thresholds for \(e/d \) are not identical: when \(e/d \in (- (n-1)/(n+1), -(n-1)/(2(n+1)) \), the donor benefits from decentralization even though it leads to more extraction.\(^\text{28}\)

27. However, while the equilibrium choices of \(t_i \)'s are independent of \(a, b, \) and \(c \), the baseline level \(T_i \) should vary with these parameters if the donor wants to ensure that the expenditures be minimized. In the dynamic model by Framstad and Harstad\(^\text{2017}\), the terms of the contracts should also vary with a district’s stock, \(X_i \). At the same time, it is well known that simple, linear contracts can be optimal in dynamic settings with stochastic shocks being realized over time (Holmstrom and Milgrom\(^\text{1983}\)).

28. Part (iii) of the proposition can be generalized. In Harstad and Mideksa\(^\text{2015}\), we show that if the donor contracts with \(m \leq n \) out of \(n \) districts, and a subset of the \(m \) centralizes by reducing the number of authorities by \(\Delta \), then
However, the sum of payoffs is always smaller when \(n > 1 \), since the first best is implemented when \(n = 1 \), according to Proposition 3. Thus, if the donor benefits from \(n > 1 \), it follows that the districts must be worse off.

Part (iii) is important because, in some cases, the donor may be able to decide whether it wants to contract with a set of districts independently, or whether it instead wants to contract with their common central government. Equation (10) shows that the donor benefits from local contracts if and only if property rights are weak.

Interestingly, the threshold for \(e/d \) decreases in \(n \). Thus, while the donor may prefer decentralized contracts when the number of districts is relatively small, it might prefer centralized contracts if the alternative would be a very large set of districts to deal with. It is easy to show that the donor would prefer a marginally larger \(n \) if and only if:

\[
 n < n^* = \frac{1 - e/d}{1 + e/d}.
\]

The smaller \(e/d < 0 \) is, the larger is the \(n^* \) maximizing the donor’s payoff.

Given that we have derived the equilibrium levels of transfers and extractions, it is easy to calculate the donor’s payoff for any given \(n \):

\[
 U_D = -d \frac{ap(b+c) + a(cX - m\nu - d\sigma_1)}{a(b+c)(n+1)} + \sum_{i \in N} f_i.
\]

This expression can be used to derive the donor’s preference for \(n \), but also for several other changes. First, given \(n \), the donor benefits if the demand for the resource (measured by \(\varphi \)) is low. This benefit could motivate the donor to support a boycott against the extracted products. Second, note that the donor’s payoff increases in \(v \) and decreases in \(c \), but the effect of \(b \) is ambiguous. This ambiguity is related to the discussion at the end of Section 4 (and equation (5)), where we noted that \(x \) increases in \(b \) if \(c < m\nu/aX \). This increase is harmful for the donor. In addition, a larger \(b \) makes it more expensive to persuade the districts to reduce the \(x_i \)’s: thus, the condition for when the

\[
x \text{ increases if and only if: } \frac{e}{d} < -2\left(\frac{m}{n+1} + \frac{m - \Delta}{n - \Delta + 1} - 1\right),
\]

while \(u_D \) decreases if and only if:

\[
 \frac{e}{d} < -\left(\frac{m}{n+1} + \frac{m - \Delta}{n - \Delta + 1} - 1\right).
\]

29. Consequently, the districts would like to centralize authority if \(e/d \) is small, if they could. Such an institutional change may increase extraction and harm the donor, according to part (iii), above. Harstad and Mideksa (2014) analyze districts’ incentives for and benefits from merging with each other, and how these incentives change when the donor is present and can design conservation contracts. We there show that the donor’s presence may lead to either decentralization or centralization, and, in both cases, this institutional change will always reduce conservation as well as the donor’s payoff. In some situations, the isolated effect of this change may outweigh the beneficial effect of the donor’s contract. If so, the donor’s presence leads to less conservation. Section 5.3, below, discusses another reason for why the donor’s presence may be harmful.

30. If a central government is already active and regulating local governments, it can always undo the donor’s offers to the districts; decentralized contracts would then not be an option for the donor. If the central government is absent or passive, however, the donor may evaluate whether it should contract with the districts or instead propose a contract to the union of some districts. The latter option may require that central authorities be activated or created.

31. While Proposition (iii) compares \(n = 1 \) with \(n > 1 \), we can alternatively consider a marginal increase in \(n \) and state that \(x \) decreases in \(n \) if and only if \(e/d < -2(n-1)/(n+1) \), while \(U_D \) increases in \(n \) if and only if \(e/d < -(n-1)/(n+1) \).
donor is harmed by a larger b is weaker than (5) and given by $c < nv/aX + dn/aX(n+1)$. In other words, the donor benefits from strengthening property rights insofar as such strengthening means that the protection cost (c) is reduced or that districts’ conservation valuation (v) is increased, but not necessarily when the districts will be able to capture a larger fraction (b) of the revenues. In fact, the larger the districts’ conservation value v, or the smaller their protection cost c, the smaller is the likelihood that the donor benefits from a large b.

5.3. The number and value of contracts

So far, we have assumed that the donor can either contract with no one (Section 4) or with everyone. However, even if the donor would like to contract with all districts, doing so may be unfeasible for exogenous (or political) reasons. In this subsection, we thus assume that the donor can contract with only a subset $M \subseteq N$ of $m = |M| \leq n$ districts. Clearly, the problem of leakage is larger when m is small: if the donor pays some districts to extract less, the $n-m$ other district will find it optimal to increase extraction. This increase will crowd out the donor’s effort.

While we discuss the effect of m below, note that most of the insight discussed already generalizes to our new case. In fact, the following proposition is analogous to Proposition 4.

Proposition 5. Suppose the donor contracts with $m \leq n$ of the districts.

(i) Each contract can be written as:

$$
\tau_i^* = \frac{d^2}{a(b+c)(n+1)^2} - f_i, \text{ and } x_i^* = \frac{(b+c)\bar{P} + ca[(n+1)X_i - X] - v}{a(b+c)(n+1)} - \frac{2d(n+1-m)}{a(b+c)(n+1)^2}, \text{ implying } x^* = \frac{n(b+c)\bar{P} + caX - nv}{a(b+c)(n+1)^2} - \frac{2md}{a(b+c)(n+1)^2}.
$$

(ii) This outcome can be implemented by the linear contract:

$$
\tau_i^* = \frac{2d}{n+1}, \text{ and } x_i^* = x_i^0 + \frac{4m - 3(n+1)}{4\alpha(b+c)(n+1)}\tau_i^* - f_i/\tau_i^*.
$$

(iii) If m increases, x decreases, and U_D increases, but $\sum_{D \cup N} U_i$ decreases if and only if:

$$
\frac{e}{d} < -\frac{n-1}{n+1} - \frac{4n-m}{n^2-1}.
$$

Parts (i) and (ii) of the proposition generalize the similar parts of Proposition 4. Naturally, the total extraction level is smaller if m is large.

Part (iii) also states that the donor prefers m to be as large as possible. This result is intuitive, since the donor can always decide to offer nothing to some districts.

The final part of the proposition is, therefore, most interesting: a larger m can reduce the sum of payoffs. In other words, the donor’s contracts with the districts may be harmful for efficiency. The explanation for this is the possibly negative contractual externality. When property rights
are weak, one district is harmed when the other districts extract less, as when they are offered conservation contracts by the donor. This negative externality may outweigh the donor’s benefit from the contracts, particularly when the donor’s damage is relatively small.

Another interpretation of the result is that the contracts may worsen an already existing collective action problem between the districts: when property rights are weak, districts are protecting too much, because they do not internalize the larger enforcement costs on the others. Conservation contracts will reduce extraction even further, and thus they also reduce the sum of payoffs.

Interestingly, there may be a socially optimal number of contracts, \(m^* \). The threshold in equation (11) depends on \(m \), and the inequality can be rewritten as:

\[
 m > m^* \equiv \frac{e}{4d} \left(n^2 - 1 \right) + \frac{1}{4} (n+1)^2.
\]

Thus, when \(m^* \in (1, n) \), it is socially optimal to increase \(m \) up to \(m^* \), but not further. The reason is that when \(e/d < 0 \) is not that far from zero, business-as-usual leads to too much extraction, but contracting with everyone leads to too little. The first best is then implemented when the donor contracts with a subset only. The subset should be smaller when \(e < 0 \) falls or \(d \) is small: if property rights are weak, it is efficient to contract with fewer districts.

As mentioned, the donor always prefers to increase \(m \), even when doing so reduces the sum of payoffs and thus the districts’ utilities. Thus, when property rights are weak, the districts are playing a prisoner dilemma with each other regarding conservation. Each district benefits from reducing extraction when faced with the donor’s contract, even though they could all be better off if everyone ignored the donor’s contract. However, there is no alternative equilibrium where multiple districts ignore the contract by extracting more simultaneously. The equilibrium is unique because the extraction levels are strategic substitutes, as we noted in Section 4: a larger \(x_i \) reduces \(i \)'s temptation to extract more than \(x_i^* \).

Theoretically, the result that conservation contracts can be harmful is interesting. In practice, however, one may question whether this result would survive in a more general model where we relax the above assumptions. In particular, by assuming perfect knowledge and observability, we allowed the donor to reduce the transfers to the knife-edge case in which each district was exactly indifferent between ignoring and adhering to the contract. If the donor were instead uncertain about some of the parameters of the model, it would be optimal to increase the transfers somewhat in order to make the contract robust to a larger set of parameters. The increase in transfers will naturally reduce the likelihood that the districts are worse off with conservation contracts than without. To investigate these possibilities further, it is thus important to allow for imperfect information and observability in future research.

6. EMPIRICAL PREDICTIONS

The framework above can be used to study various types of resources and alternative drivers of extractions, but it is motivated in particular by deforestation in the tropics. The model allows for many districts and recognizes that since extracting some of the resource increases the harvest supply, the price declines and so does the monitoring cost for the part that is to be conserved. The externality from one district’s conservation effort on others is thus negative if property rights are weak, and positive if they are strong. The sign and the level of this externality determine the effects of decentralization as well as the design of the optimal conservation contract, according to the theory.

To be specific, Proposition 2 predicts that decentralizing authority will reduce deforestation when property rights are weak but increase deforestation when property rights are strong. As
discussed in Section I, decentralization has been associated with more deforestation in Indonesia but less in the Himalayas. This difference is consistent with our theory if the enforcement cost is larger in the Himalayas, while deforestation is more sales-driven in Indonesia. Anecdotal evidence support this view: “Deforestation in Indonesia is largely driven by the expansion of profitable and legally sanctioned oil palm and timber plantations and logging operations” (Busch et al., 2015, 1328). In the Himalayas, in contrast, “the Forest Department was poorly staffed and thus unable to implement and enforce the national policies, and deforestation increased in the 1960s and 1970s” (Shyamsundar and Ghate, 2014, 85).

Future research should carefully test the theoretical predictions. A serious test is beyond the scope of this article, since it will be challenging for several reasons. On the one hand, satellite data on deforestation is increasingly available, and one may also find country-specific data on the number of jurisdictions or administrative decentralization (as in Treisman, 2008). On the other hand, exogenous changes in decentralization are hard to find. Burgess et al. (2012) take advantage of the fact that Indonesia had embarked on the decentralization process for a decade: using the differential timing of decentralization in different regions, they estimate the effect on deforestation of raising the number of district. This method can be used also when testing our predictions, but in addition one would need measures of the strength of property rights, or, more specifically, the enforcement costs. These enforcement costs should ideally be exogenous, as if they are identified by either geography (e.g., the distance to the centre) or the type of resource, since enforcement costs related to the political system may have changed endogenously as a response to deforestation or the number of jurisdictions. If enforcement costs are difficult to find, a proxy may be the fraction of resource extraction that is illegal: the fraction of resource extraction that is illegal is likely to be large if the enforcement cost is large. Data on illegal activities are naturally also hard to find, as discussed in Section I.

Proposition 2 further states that districts with a larger resource stock extract a larger fraction of the resource if and only if property rights are weak. The challenges discussed above must be overcome also when testing this prediction. An additional challenge for this prediction is that the variation in jurisdictional size may be endogenous, and the stock that remains is certainly depending on the historical amounts of extraction—unless one can identify more or less-exogenous changes in jurisdictional borders.

The analysis of optimal contracts should be interpreted more normatively, in our view, since there are still too few conservation contracts observed in reality, and since there are many reasons for why these may not be optimally designed. In fact, a motivation for our analysis is that donors have little knowledge regarding how conservation contracts should be designed in the best way. That said, it is interesting to note that the various REDD contracts offered by Norway are all characterized by the same subsidy rate per unit of avoided deforestation. This is in line with Propositions 4 and 5, where we showed that the optimal rate under linear contracts is independent of most of the parameters in the model. At the same time, these propositions also showed that the baseline levels—measuring the deforestation levels that must be met for any subsidy to be released—will be rather complicated functions of the parameters. In reality, the baseline levels do vary greatly between the countries, and they are negotiated individually before a contract is signed (Angelsen, 2008).

32. As of 2016, we are not aware of larger data sets available on enforcement costs (rather than on state capacity, more generally) or decentralization of forest management authority (rather than on decentralization, more generally). Regarding the need for exogenous variation in property rights, one may apply similar methods as Acemoglu et al. (2001) who use colonial settlers’ mortality rate to obtain exogenous variations in property rights across countries.

33. The contracts are available at [https://www.regjeringen.no/en/topics/climate-and-environment/climate/climate-and-forest-initiative/id2000712/].
Perhaps our most interesting result is that the donor benefits from contracting with districts directly if the property rights are weak, but with a central authority if property rights are strong. In many cases, the donor might not be able to decide on the contractual level, as this might be determined by the national government. The preferences of the national government can be very different than the desires of the donor, according to results above. In other cases, the donor is given a choice. As of 2016, Norway’s policy on REDD is to sign agreements with national governments primarily; regional agreements have been declined. Such a policy is wise, according to our theory, if property rights are perceived to be strong and if one believes that illegal deforestation is not the main problem. If property rights are weak and deforestation is illegal, however, the donor would have been better off with decentralized contracts.

7. CONCLUDING REMARK

This article presents a simple model of conservation and resource extraction that fits several types of exhaustible resources, and that can be applied whether property rights are strong and extraction is legal and sales-driven, or if instead property rights are weak and extraction is illegal and driven by the cost of protection. In the former case, we predict that decentralization increases extraction, equilibrium conservation contracts will permit too much extraction, and a donor will prefer to contract with a central authority rather than with local districts. In the latter case, when property rights are weak, all these results are reversed. The contrast between the results points out the importance of institutions, geography, and the type of resource that is considered.

Future research can build on this framework in a number of ways. The empirical predictions are testable and data is increasingly becoming available. On the theoretical side, we have abstracted from a number of important issues. This has made the model pedagogical, flexible, and tractable, and we believe it can and should be extended in several directions. By allowing for dynamic considerations, asymmetric information, and incomplete contracts in future analyses, we will deepen our understanding of conservation and how one can best design conservation contracts.

APPENDIX

A. PROOFS

As the proofs below illustrates, our results continue to hold, qualitatively, if the damage function \(d(x) \) and the demand function \(p(x) \) are non-linear (NL). Thus, a linear demand function is only a special case, here referred to as \(p_{L}(x) = p - ax \).

To illustrate this robustness, we start by generalizing Proposition 1. The proofs also allow for heterogeneous \(\nu \)’s.

Proposition 1 \(^{NL} \). If \(c \) or \(X_i \) increases, or \(\nu \) decreases, then \(x_i \) increases, \(x \) increases, and \(p(x) \) decreases. Furthermore, \(x_j \) decreases in \(X_j, j \neq i \).

In the unique equilibrium, the equilibrium \(x_i \)’s are implicitly given by \(x_i = x_i^0 \), where

\[
x_i^0 = \frac{c}{b+c} X_i + \frac{(b+c)p(x^0) - v}{-p'(x^0)(b+c)} \quad \text{with } [0, X_i]
\]

(12)

and

\[
x^0 = \frac{c}{b+c} X + \frac{(b+c)p(x^0) - v}{-p'(x^0)(b+c)}
\]

(13)

34. A fundamental problem in a dynamic model is that when future payments are anticipated, owners may be motivated to conserve in advance, as discussed by Harstad (2016). Thus, [Framstad and Harstad (2017)] show that the optimal contracts in a dynamic model may have an interesting time profile, abstracted from here. Allowing for dynamics will likely lead to several other issues, as well, that should be analysed in future research.
Thus, if each stock is sufficiently large and the second-order condition is (s.o.c.) satisfied:

$$X_i \geq \max \left\{ \frac{(b+c)p(x_i)-v}{-p'(x_i)b}, \frac{-v-(b+c)p(x_i)}{-p'(x_i)c} \right\} \quad (14)$$

$$\left(-p'(x_i)^2\right) = \frac{p''(x_i)\left(1+b+c\right)p(x_i)-vi}{2\left(b+c\right)}.$$

Proof of Proposition 1**. The proofs allow for heterogeneous v_i's, so $u_i(x_i,x_{-i}) = b p(x_i) + (v_i - cp(x_i))(X_i - x_i)$. The derivative of $u_i(x_i,x_{-i})$ with respect to (w.r.t.) x_i is:

$$(b+c)p'(x_i)x_i + p(x_i) - cp'(x_i)X_i - v_i. \quad (15)$$

Thus, i extracts nothing if the derivative is negative even when $x_i = 0$, which requires:

$$(b+c)p(x) - cp'(x)X_i - v_i = 0 \implies X_i \geq \frac{v_i - (b+c)p(x)}{-p'(x)c},$$

while i extracts everything if the derivative is positive also when $x_i = X_i$:

$$(b+c)p'(x)X_i + p(x) - cp'(x)X_i - v_i = 0 \implies X_i \leq \frac{(b+c)p(x) - v_i}{-p'(x)b}.$$ \quad (15)

To ensure that $x_i \in (0,X_i)$, we must thus assume that each stock is sufficiently large:

$$X_i > \max \left\{ \frac{v_i - (b+c)p(x)}{-p'(x)c}, \frac{(b+c)p(x) - v_i}{-p'(x)b} \right\}. \quad (16)$$

Furthermore, note that the s.o.c. is satisfied when:

$$(b+c)p'(x)X_i + 2p'(x) - cp''(x)X_i < 0 \implies
-p'(x) > \frac{p''(x)\left[(b+c)x_i - cp'(x)X_i\right]}{2\left(b+c\right)} \implies
\left(-p'(x)^2\right) = \frac{p''(x)\left[(b+c)p(x) - v_i\right]}{2\left(b+c\right)}.$$ \quad (17)

where we used equation (15). Assuming that s.o.c. is satisfied, equation (15) decreases in x_i. Since the first-order condition (f.o.c.) is that equation (15) equals zero,

$$x_i = \frac{(b+c)p(x) - cp'(x)X_i - v_i}{-p'(x)(b+c)} = \frac{c}{b+c}X_i + \frac{(b+c)p(x) - v_i}{-p'(x)(b+c)} \quad (18)$$

$$x = \frac{cX}{b+c} + \frac{n(b+c)p(x) - \sum_{i\in N}v_i}{-p'(x)(b+c)}.$$

We can see that if c or X increases, or $v_i > 0$ decreases, x must increase and $p(x)$ decrease. For similar reasons, x_i increases. \quad \|$\quad \|

Proof of Proposition 1**. The s.o.c. (11) always holds with $pL(x)$, since then $p''(x) = 0$. Proposition 1 follows from Proposition 1** if we substitute with $pL(x) = \overline{p} - ax$ and solve for the x_i's. For example, with $pL(x)$, equation (15) implies:

$$x = \frac{cX}{b+c} + \frac{n(b+c)p - \sum_{i\in N}v_i}{a(b+c)(1+n)} \quad (19)$$

$$x_i = \frac{c}{b+c}X_i + \frac{(b+c)p - v_i}{a(b+c)}$$

$$= \frac{c}{b+c}X_i + \frac{(b+c)p - v_i}{a(b+c)} = \frac{c}{b+c}X_i + \frac{n(b+c)p - \sum_{i\in N}v_i}{a(b+c)(1+n)}$$

$$= \frac{c}{b+c}X_i + \frac{(b+c)p - acX - (1+n)v_i + \sum_{i\in N}v_i}{a(b+c)(1+n)}.$$ \quad (20)

The threshold on size, equation (18), is derived in a similar way. Setting $v_i = r$ completes the proof. \quad $\|$
Remark 3 (On the externality). Let $p(x)$ be non-linear. Since $i \in \mathcal{N} \setminus j$ maximizes equation (20), the envelope theorem gives:
\[
\frac{\partial u_i(x_i,x_{-i})}{\partial (-x_i)} = -p'(x)(b+c)x_i - cX_i.
\]
(21)

When i maximizes u_i, by deciding on x_i, x_j is given by equation (19) and, combined with equation (21), we get the equilibrium level of externality:
\[
\frac{\partial u_i(x_i^0,x_j^0)}{\partial (-x_i)} = \frac{e}{n+1}, \text{ where } e = \left[(b+c)p(x^0) - v \right] (n+1) \Rightarrow \\
\Rightarrow e = (b+c)p - ax - v \text{ when } p(x) = p_L(x).
\]

The following lemma is proven in the previous version of this article:

Lemma 1. The equilibrium externality e from reducing extraction decreases in X and increases in b. Further, e is smaller if the districts are weak and c is large, as long as
\[
\left(-p'(x^0) \right)^2 > \frac{-nep}{X^0} \frac{(n+1)(b+c)}{p(x^0) - p'(x)} \text{ and } X > x + \frac{p(x)}{-p'(x)}.
\]

(22)

We next state a generalization of Proposition 2 to the case with non-linear demand function.

Proposition 2. (i) Small districts extract smaller fractions of their resources if and only if $e < 0$. For $X_i < X_j$, we have
\[
\frac{x_i^0}{X_i} < \frac{x_j^0}{X_j} \Leftrightarrow e < 0.
\]

(ii) If n increases, more is conserved if and only if $e < 0$.
\[
\frac{\partial x_i^0}{\partial n} < 0 \Leftrightarrow e < 0.
\]

Proof of Proposition 2.

(i) If we divide both sides of equation (21) by X_i, we get:
\[
\frac{x_i}{X_i} = \frac{c}{b+c} \frac{1}{X_i} \frac{1}{X_j - X_i} \frac{1}{X_j} \frac{(b+c)p(x) - v_i}{(b+c)(p(x) - p'(x))} \Rightarrow \\
\Rightarrow \frac{x_i}{X_i} = \frac{1}{X_j} \frac{(b+c)p(x) - v_i}{(b+c)(p(x) - p'(x))} \text{ if } v_i = v_j = v.
\]

(23)

(ii) The proof follows, for example, when we summarize the x_i’s as given by equation (22) and substitute in for e: the l.h.s. must increase in x faster than the r.h.s. does for equation (22) to hold; and x must, therefore, increase in n if and only if $(b+c)p(x) - v > 0$ when $v_i = v_j = v$. ||

Proof of Proposition 2. Part (i) follows straightforwardly when substituting in for $p_L(x)$ into equation (22). Part (ii) follows when differentiating \hat{x}, as expressed in Proposition 2 w.r.t. n. ||

We now state and prove that linear contracts are sufficient, also for the case in which the demand function and the damage function are non-linear.

Lemma 2. Linear contracts are sufficient: the outcome of the donor’s preferred general contract coincides with the outcome of the donor’s preferred linear contract.

Proof of Lemma 2. If the contract is linear, i’s payoff is
\[
u_i(x_i,x_{-i}) + \max \{0,t_i(X_i - x_i)\} = bp_i + (v_i - cp) (X_i - x_i) + \max \{0,t_i(X_i - x_i)\},
\]
so, when $x_i < \tau_i$, the f.o.c. w.r.t. x_i is given by equation (13) where v_i is replaced by $v_i + t_i$:
\[
x_i = \frac{(b+c)p(x) - cp'(x)X_i - v_i - t_i}{-p'(x)(b+c)}.
\]

(25)

The s.o.c. is locally satisfied under the same condition (17) as before.

35. The first condition in equation (22) is satisfied if either e or $p'(x^0)$ is relatively close to zero (as for $p_L(x)$). The second condition requires that the demand curve be so steep at x^0 that a linear approximation would have led to a negative price if the entire stock X were sold on the market: with $p_L(x)$, it reduces to $p'(x) < 0$.
Thus, the transfer \(\tau_i \) is a best response for \(i \) if and only if the corresponding payoff equation \(\hat{p}_i(x, \tau_i - x_i) \) is larger than what \(i \) can achieve by choosing any other \(x_i > \tau_i \). The incentive constraint is:

\[
u_i(x_i, x_{-i}) + \max (0, t_i(\tau_i - x_i)) \geq \max (0, t_i(\tau_i - x_i)) - f_i = \max (0, t_i(\tau_i - x_i)) - u_i(x_i, x_{-i}) - f_i.
\]

Clearly, the donor prefers to reduce every \(\tau_i \) until this condition binds. By substituting the corresponding equation into the donor’s payoff, \(-d(x) + \sum_{i \in M} \max (0, t_i(\tau_i - x_i)) \), we get that this payoff is exactly the same as for general contracts:

\[
-d(x) + \sum_{i \in M} u_i(x_i, x_{-i}) - \sum_{i \in M} \max (0, t_i(\tau_i - x_i)) + \sum_{i \in M} f_i.
\]

Hence, linear contracts are sufficient and they lead to the same quantities of extractions and transfers (and thus payoff to the donor).

Proof of Proposition 4. Parts (i) and (ii) follow from the more general proof of Proposition 5(i)–(ii): when setting \(m = n \) in Proposition 5(i)–(ii), we get Proposition 4(i)–(ii). Part (iii) follows if we set \(m = n \) and compare \(x \) and \(u_0 \) for the case in which \(n = 1 \) to the case in which \(n > 1 \).

Proof of Proposition 5. (i)–(ii): Consider linear contracts. Given the linear contract \(x_{-i} \), we can rewrite equation (25) by solving for \(x_i \) as a function of \(x_{-i} \) to get:

\[
x_i = \frac{\hat{p} - a x_i}{2a} + \frac{caX_i - v_i - t_i}{2a(b + c)}.
\]

It follows that \(i \)'s optimal response to \(x_{-i} \) if \(i \) decided to ignore the contract (by not collecting \(t_i \)) is:

\[
x_i' = \frac{\hat{p} - a x_i}{2a} + \frac{caX_i - v_i}{2a(b + c)} = x_i + \frac{t_i - c a X_i / 2(b + c)}{2a(b + c)},
\]

where the price would be lowered from \(p = \hat{p} - a x \) to:

\[
p' = p - \frac{t_i - c a X_i / 2(b + c)}{2a(b + c)}.
\]

Thus, if \(u_i(x_i, x_{-i}) = bp(x_i) + (v_i - c b(x)) (X_i - x_i) \) is \(i \)'s payoff, minus \(i \)'s transfer, when \(i \) acts according to the contract, then \(i \)'s payoff from deviating can be written as follows:

\[
u_i(x_i', x_{-i}) = \left[(b + c) \left(p - \frac{t_i}{2(b + c)} \right) + \frac{t_i}{2a(b + c)} \right] x_i' + \left(v_i - c b + \frac{c a X_i}{2(b + c)} \right) X_i
\]

\[
= u_i(x_i, x_{-i}) + \left[(b + c) \left(p - \frac{a t_i}{2(b + c)} \right) + \frac{a t_i}{2a(b + c)} \right] x_i + \frac{c a X_i}{2(b + c)}
\]

\[
= u_i(x_i, x_{-i}) + \frac{t_i^2}{4a(b + c)}.
\]

Thus, the transfer \(t_i(\tau_i - x_i) \) plus \(f_i \) must be at least \(t_i^2 / 4a(b + c) \) for this deviation to be unattractive to \(i \). When this \((iC_i) \) binds, it becomes:

\[
t_i(\tau_i - x_i) = u_i(x_i', x_{-i}) - u_i(x) - f_i = \frac{t_i^2}{4a(b + c)} \Rightarrow \tau_i = x_i + \frac{t_i}{4a(b + c)} - f_i / t_i.
\]
HARSTAD & MIDEKSA CONSERVATION CONTRACTS AND POLITICAL REGIMES 1731

Given the linear $p_D(x)$, we can sum over the x_i’s from equation (35) and write:

$$x = \frac{n(b+c)p+caX - \sum_{i \in M} (t_i + t_i^*)}{a(b+c)(n+1)}.$$ (30)

Thus, the donor maximizes

$$-dx - \sum_{i \in M} t_i = -d \left[\frac{n(b+c)p+caX - \sum_{i \in M} (t_i + t_i^*)}{a(b+c)(n+1)} - \sum_{i \in M} t_i^2 \right] \frac{2m}{a(b+c)(n+1)^2}.$$ (31)

For each $t_i, i \in M$, the f.o.c. becomes $t_i = 2d/(n+1)$. The s.o.c. trivially holds, so the contracts are symmetric and equal for every $i \in M$. Given this t_i, we can substitute t_i into equation (33) to get x_i, and substitute into equation (32) to get x_i, into equation (30) to find \bar{x}_i, and derive the total transfer from $t_i = t_i(\bar{x}_i - x_i)$, and the total sum of payoffs for the donor and all $i \in N$ is $b(y) x + (v - c p(x))(X - d x)$. Since x is given by equation (31), the derivative w.r.t. m is negative if and only if:

$$[(b+c)(7-2ax)+acX-v-d) - \frac{2m}{a(b+c)(n+1)} < 0 \implies \frac{(b+c)(7-2ax)+acX-v+d}{v} > \frac{1}{m}.$$ (31)

Non-linear $p(x)$. To see how Propositions 36 generalize, let $\bar{x}_i(x^*) = \arg\max_{x_i} u_i(x_i, x^*)$ be i’s best outside option, and note that $\bar{x}_i(x^*)$ is implicitly defined by equation (36) when one takes into account that $x = x_i + x^*_i$. Given the function $\bar{x}_i(x^*)$, we can define the equilibrium externality at the outside option:

$$\bar{x}_i(x^*) - \frac{\partial u_i(\bar{x}_i(x^*), x^*)}{\partial (-x_i)} = (b+c)p(\bar{x}_i(x^*) + x^*_i) - v.$$ (36)

Let decentralization mean that n and m increase by the same number, keeping $n - m$ fixed. The following proposition is proven in the previous version of our article:

Proposition 37. Suppose the donor contracts with all $m \leq n$ districts.

(i) If $n = m = 1$, the outcome is the best first.

(ii) If $m > 1$, x is too large relative to maximizing $\sum_{i \in D\cap M} u_i$ if $e_i(x_i^*) > (\cdot) 0/\forall i \in M$. However, x is too small, relative to maximizing $\sum_{i \in D\cap M} u_i$ if $e(x_i^*) < 0/\forall i \in M$.

(iii) Decentralization increases equilibrium x^* if $e(x_i^*) < 0/\forall i \in M$.

(iv) Decentralization increases the donor’s equilibrium payoff if $e(x_i^*) < 0/\forall i \in N$.

Acknowledgements. We are grateful to the editor, three referees, and audiences at the European University Institute, University of Bologna, Harvard University, UC Berkeley, Stanford GSB, NYU, Brown University, London School of Economics, Warwick University, University of Zurich, Toulouse School of Economics, Paris Ecole Polytechnique, Norwegian School of Economics, the World Bank, Universidad Carlos III, University of Copenhagen, University of Oslo, the 2015 Environmental Protection and Sustainability Forum in Bath, and the 2016 Rotterdam Political Economy Workshop. We are especially thankful to the comments of Arild Angelsen, Philippe Delacote, Jonas Hjort, Chuck Mason, Halvor Mehlum, Kalie Moene, Nicola Persico, Torsten Persson, Francois Salanie, Steve Shavell, Kathryn Spier, Jon Strand, and Ragnar Torvik. Judith Levy and Frank Azevedo assisted with the editing.

Supplementary Data

Supplementary data are available at Review of Economic Studies online.
REFERENCES

HARSTAD & MIDEKSA
CONSERVATION CONTRACTS AND POLITICAL REGIMES 1733

