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Sammendrag

In various contexts, 1t is necessary to divide a set of
indivisible entities among given units in proportion to a
certain criterion. Perfectly proportional distribution can-
not be guaranteed, since the units are indivisible. One
must look for criteria for making approximately proportional
distribution. Allotment methods, which are studied in this
paper, are procedures for making such division.

Allotment methods are used in connection with political
elections. In party-list systems of proportional represen-
tation, such methods are used to distribute the seats among
the parties, on the basis of their votes. In any electoral
system, similar methods can be used to apportion the seats
in an elected assembly among geographical districts, accor-
ding to their population.

Beslutningsteori Decision The:
Stikkord g Stikkord eory

{norsk) Valgordninger tengelsk) Electoral Systems







10.
1.

12.

oo O wm

COMTENTS

SUMMANY — = mm mm e m e m e e e e e e e e e e e e e e 1
Introduction - ———m e e e P
Basic Formulation --—=-ee-cccmmam o e 5
Exact Proportionality ----------=mcocmmmommmooocccm e eee
4.1 Definitions ==-—m—s- e e me el 9
4.2 The method of the largest remainder --«------cccommmcmmncnao- 10
4.3 Quota methods =-===-cmm oo e 13
4.4 Lower and upper bound ~=-r-ememm oo oo e 15
4.5 Correct rouUNding ~e=—-—ev=mmmmm oo oo e oS 16
Consistency and Membership Monotonicity ------wo-emeccmoceconcman-- 17
5.1 CONSiSTeNCY —==memmm o e e 17
5.2 Membership monotonicity —==m=em——cmemmemm o 19
5.3 A technical lemma -=-=--emmmemm oo - 20
5.4 Equal treatment of the equal -=--=—ceemmmmm e 23
Yote Monotonicity —=--~memmmmm e 27
Divisor Methods -—we-=mmmmmm oo mmmeeee 32
Special Divisor Methods -=-—wememmmmm e e 34

1 Definitions —————-cmmmm oo m 34

2 Characterization of FHA and Fgp —========---==so=mmmsesmmmeno- 34

3 Characterizations of Fyc --~-=-r-mommmmomeommmemcmme oo 40

4 Quota criteria which depend on all the votes ---=vm-mo-ecmnva- 43

5 Quota methods and divisor methods -=---=--eeomccommmcmc e 45

6 Minimizing inequality -----=—-~ememmm e ceeeen 46
Consistency and Lower and Upper Bound VRS S 47
Monotonicity and Lower and Upper Bound —-==-----cammmmmmcmmmeeeo 43
A Characterization of Divisor Methods ------------cmcmmmmcmm s 52
11.1  The characterization ---e-mesecmmesmcmr o ecm oo 52
11.2 Necessity and independence of conditions (i) - (v) ------~--- 55
11.3 Generalized divisor methods -==------cemmmmmme e e 58

Maximizing Utility -=-=-rremmmcmemmmccmcee oo et CECE LR L 64



Merger and Division —===-—-——— o e 66

13-
13.1 Definitions =—me—m—m e e e o 66
13.2 The method of the largest remainder ------c-cmmmmcnamcmmmuns 67
13.3 Divisor methods -—==+--—mcmmm e e e 68
13.4 A result from 1907 ~---mmmmmm e e e 71
13.5 Characterizations of F,, and Fo -=~-==---m-m-mmommmmmea e 71

HA SD

T4, Large and Small Parties =--—--—mmmmmmm oo e 83
14.1 Definition ———ceemmm e a3
14.2 Divisor methods ~—--—cmmmm e 84
14.3 Preserving the majority ---w---mmmmmmm oo 85
14,4 Quota methods =====-—cmmmmmm o 89

15. Priority Methods ---w-eccaaa- e m e mmm—m—mmmmmm e me—mm——————— 93
15.7 Definitions - e-evmo oo e 93
15.2 Consistent and membership monotone methods ~~---=--==c-muuu- 97
15,3 A characterization of consistent and balanced methods ------ 105

Footnotes ~-cemmmmm e e 113

References =-—m—mmmcmmun o e m e 137

List of definitions, theorems, etc. ~——=me oo e 139




PREFACE

This paper was written many years ago, when I was a doctoral
. student at the John F. Kennedy School of Government, Harvard Uni-
versity. It has existed only as occasional photocopies. 1 have
found it convenient to give the paper a more systematic circula-
tion.

Although I have continued working on the issue, I have deci-
ded to print the paper exactly as it was written in 1978. Fur-
ther results are published elsewhere. Reference no. 16 was never
finished as a paper with that title, but I have discussed the
issues in a number of papers, most of them, however, written in
Norwegian.

Sandvika, April 1S90

Aanund Hylland



2. INTRODUCTION

In many countries, political elections are based on party-1ist systems
of proportional representation. This is the case in most of Western Europe.
The most important aspect of the election result in such a system is the
distribution of seats among the parties. Therefore, the most important
part of the election procedure is the rules by which this distribution is
determined.3 -

This distribution of seats shall be "proportional,” although actual
electoral systems &sua]]y represent a compromise between proportionality
and other considerations. If representatives were perfectly divisible,
there would be no problems in distributing them proportionally. But repre-
sentatives are not divided, although one can imagine systems which rely on
fractional representatives. Therefore, a method must be sought which
approximates'proportional distribution.

The same problem arises in a related context. The seats in an elected
assembly are often apportioned among geographical districts in proporticn
to population. Again, exact proportionality is impossible, and an approxi-
mation method must be used. (This, of course, holds whether or not the
- election is conducted by a proportional system.) '

A variety of different systems for distributing the seats in propor-
tional elections are in actual use, and many more have been proposed. All
of them have shortcomings; for any system, one can construct situations in
4 Therefore,
pointing out that a method has a certain undesirable property does not

which that system produces a seemingly unreasonable result.

- necessarily provide a decisive argument against the method. My impression
is that political discussion of electoral systems, of which there has been
a lot, has a tendency to concentrate on specific examples and the effects
of the proposed methods on these examples. I do not claim that such
examples are irrelevant, but the debate should not solely be concerned
with them.

There are a number of general principles which one can reasonably
require that a method for proportional representation satisfy. The dis-
cussion should, at least in part, be concerned with such principles. That
is, one should ask questions like: Which are the requirements a method



ideally should satisfy? Which principles are more important and which must
yield in case of a conflict?

In order for such a discussion to be fruitful, one must have the
various requirements precisely defined and know something about their con-
sequences. In particular, for a given set of requirements one must know
whether there exist methods which satisfy the requirements, and if such
methods exist, one would want a description of them. These are questions
which lend themselves to investigation by formal and mathematical method.
Such investigation is the topic of this paper.

In a companion paper [16], I discuss the political significance of
the various requirements and point out consequences of several of the
results in this paper. The present paper, however, is mainly formal and
mathematical., Definitions and results are explained to some extent, but
a more thorough discussion is left to [16]. :

As mentioned earlier, the kind of methods discussed here are not
only of interest in connection with proportional elections. Much of the
same analysis is relevant for the problem of how to divide the seats in
an elected assembly among geographical districts. Indeed, a significant
part of the literature in this area has been concerned with the question
of how to apportion the seats in the House of Representatives of the USA
among the states.

In general, issues of the type discussed in this paper arise whenever
indivisible entities shall be divided "in proportion" to something. The
use of words and phrases below will correspond to the case of proportional
elections but can easily be "translated" to fit other applications. The
relevance and relative importance of the various requirements and criteria
will, of course, depend on the circumstances. (This is true even within
the framework of proportional representation.)

There is a considerable descriptive literature on methods for pro-
portional representation and their properties. Relatively few authors
have adopted the approach of this paper, namely to formulate principles
and criteria and study their consequences. But there is some.]itérature
in the area; see references below.5



o Thefé*is‘no'COmmonly accepted terminology in this field. Several
of theléoncepts and mefhods discussed here do not have established names,
or they have more than one name. When appropriate, I have adopted names
which are in use elsewhere, but sometimes this is not possible or desirable.
I try to avoid naming concepts and methods after persons.

As mentioned above, this paper is mainly formal and mathematical;
results are stated and proved. Mathematical symbolism is used throughout,
but the proofs are quite elementary and require little or no prior know-
ledge of mathematics. The proofs are written out in fairly great detail,
and several of them are. therefore relatively long. In a couple of places,
standard results are introduced and used without being proved, but these
cases are clearly pointed out and should not cause any prob]éms.6 For the
sake of completeness, the discussion in this paper is sometimes carried
further than the corresponding discussion in [16], and, it may be argued,
further than is 1ikely to be of practical interest. Whenever an example
is needed, no attempt is made to make it realistic in the proportional
representation framework; rather, formal simplicity is sought.




3. BASIC FORMULATION

Suppose that the total number of seats and the vote obtained by each
party are given. The distribution of seats shall be determined. An allot-
ment method is a procedure for doing this.7

Formally, for any integers n > 0 and k>2, define
- - k

Ten {(r], cies rk)ir1, .+., T, are non-negative integers and i£1ri = n}.

Hence, Tk,n is the set of possible allocations when there are k parties
and a total of n seats. '
A vector of the form (n; Xqs oo
integer, and X]s eees X, areE positive rational numbers, will be called a

, xk), where k > 2, n is a non-negative

situation. A situation comprises all the given information; k is the number
of parties, n is the total number of seats to be allotted, and Xps wees Xp
are the votes of the parties.

Definition 1

An allotment method is a set-valued function F, defined on all situa-
tions and satisfying ¢ # F{n; Xps eees xk) S:Tk,n for all situations
(3 Xps eees X )0

Hence, an allotment method F is a function defined on vectors of vary-
ing length. An element of the set F(n; ¥o eees xk) is itself a vector, the
length of which must be consistent with that of the argument.

(r], cees rk) ¢ F(n; X1s wens xk) will be written

F(n; Xps ones xk) + (r], cres rk).
If F(n; Xys wnes xk) has only one element,
F(n; Xqs «ves xk) = (r], cees rk)

will be used as an abbreviation for
F(n; Xps +ees xk) = {(r1, cees rk)}.
Individual voters' votes are not supposed to be available to the allot-
ment method; it only knows how many votes are cast for each party. Hence
the method:will necessarily have a property often referred to as‘anonxmitz;
it treats all voters equaﬂy.8 It is possible, however, to incorporate
unequal treatment in the model, by counting certain persons' votes twice or



more,__Mdre generaliy, there can be assigned to each voter a positi&e.
rational number, representing the weight attached to that person's vote,
In the specification of a situation (n; Xps vees xk), X shall then be the
sum of the weights of the persons who voted for party i.

The letters x, y and z, with or without subscripts, superscripts,
primes or the 1ike, will be used to represent the vote of a party. Whenever
such a symbol occurs, it is understood to denote a positive rational number.
Similarly, r, s and t will represent the number of seats allotted to a party;
these letters will always denote non-negative integers. Sometimes the
symbols X, r etc. will be used instead of (xl, cens xk), (r], - rk), etc.;
the length of the vector will be clear from the context. k and n (again
possibly with subscripts etc.) are the number of parties and the total number
of seats, respectively; they are integers with k > 2 and n > .

If F and G are allotment methods and F{n; x) € G{n; %) for all situations
(n; %), F is said to be a submethod of G. This is written FS G. Of course,
FSF for any F. |

FT will denote the trivial allotment method defined by

FT(n; X) ceen xk) = Tk,n

for a1T,situations (n; Xps veeo xk).

For most of the methods which will be considered, F(n; X) will have
on]yvone element except on a "thin" set of situations.9 (FT is an example
of a method for which this is not true.) This means that whenever there is
a "tie" (that is, if F(n; X) has two or more elements), the tie can be broken
by making arbitrarily small changes in the votes. The possibility of ties
is, however, crucial; no reasonable method can completely avoid them. Consider,
for example, the trivial situation when one seat shall be distributed and
there are two parties with exactly equal votes. If the method treats the
parties equally, both the possible allotments (1, 0) and (0, 1) must be
elements of F(1; x,x); hence there is a tie. 10

An element of F(n; x) shall be thought of as a possible allocation in
the situation {n; x). Of course, there must be at least one such possibility
in every situation. When thg method F is used in practice, there must be some
procedure for breaking ties. That is, somehow one final outcome must be chosen




when F(n; X} has two or more elements. Presumably, this will be done by
lottery; for example, each element of F{n; x} can be chosen with equal
probability. But such a lottery procedure is not a part of the present
formulation. The elements of F(n; X) are merely possible allocations; the
choice among them is unspecified.H

If n = 0, everything is trivial. The case is included for technical
convenience. It is assumed that the vote of a party is a strictly positive
number, This assumption is made to avoid some technical problems which can
arise if Xy = eee =X = 0, and it should not make any differgnce for the
relevance of the results. If it should happen that a party does not get any
votes at all, it can simply be eliminated before the allotment method is
used.12

An allotment method shall be defined for situations involving any
number of parties. For some of the results below, this is essential; the
proof breaks down and the statement is wrong if the number of parties is
1imited.]3 Other results hold even if there is a specific upper limit on
the number of parties. In practical applications, it may be possibTe to
establish such an upper 11'rm‘1:.]4 Therefore, the difference between these
two types of results can have some significance. Below, it is always pointed
out whether a proof depends on there being an unlimited number of parties.
When the phrase "the number of parties is limited to K" is used (with integer
K > 2), it is understood that allotment methods shall only be defined on
situations {n; X5 wees xk) with k < K, and similar restrictio?g shall be
read into the definitions of all requirements, conditions etc.

In the same way, one could require that there be at Teast a certain
number of parties. But this restriction does not seem to make much.difference
for the results.

Usually, it is essential that n can. be any non-negative integer. Many
of the proofs will break down if allotment methods are only subposed to be
defined for certain values of n.

The votes of the parties are allowed to be any positive rational
numbers. This may seem unnecessarily general; in any actual election, the
votes are presumably integers. But sometimes the votes are given as fractions
of the total, or as percentages, or the like, and perhaps one wants to apply



'anja1ﬂbfmént5méthodvdirect1y to that Kind ofidata; Thérefore, there is good
reason to permit non-integer raticnal votes.16
any reason for allowing arbitrary positive real numbers as votes.

There does not seem to be
17




4. EXACT PROPORTIONALITY

4.1 Definitions

Let a situation (n; x;» ..., X) be given. For i=1, ..., k, Ri is
defined by
X

L X
=1
Then ﬁi can be viewed as the “exact number of seats" to which party i is

entitled. Since §i is generally not an integer, the party cannot actually
get X; seats. It is clear that

E n
. = n,
i=1 | |
When n > 0, the symbol V;-wi]1 be used to denote the average number of
votes behind each seat, that is

Then it follows that

For any real number a, Lal] and [a] are defined as follows:

la] = the greatest integer less than or equal to a, and

l'a] = the smallest integer greater than or equal to a.

Hence |a] is a "rounded downwards," and [al is a "rounded upwards." If a is
an integer, la] = [a] = a; otherwise la] < a < [a] and la] + 1 = Jal.

An important class of allotment methods are those for which the allotment
of seats only depends on n and 21, cens ﬁk' This is equivalent to saying that
the allocation does not change if all the votes are scaled up or down by a
constant,

Definition 2

An allotment method F is scale independent if

(4.1)  F(n Xps wees xk) = F(n; AXys ones axk}

for all situations (n; X eens xk) and all positive

*

rational numbers a.]8
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Even though it is impossible in general to give a party its "exact
number of seats," one can try to come close. "Closeness" can be defined in
various ways, but it turns out that many of these definitions lead to the
same result.

Definition 3

For any positive real number p, define the allotment method F D by
: £

Ftp(n; Xps vees xk) = {(r], cens rk) € Tk,n'
k k
I p oL P
izllxi ril hd izllxi 51'1
 f0r all (51, cees sk) € Tk,n}'
Moreover, define F _ by
£

EEW (n; Xps wees xk) = {(rI, vees rk) E’Tk,nl

max- |x, - r.] < max |X; - s.|
l<i<k ! VT e U]

for all (s], cens sk) €'Tk,n}'

’EHéhce F.. and F._ choose the allocations (r], . rk) which are closest

4P £ y
to (ﬁ], veds ;k) in terms of the measures ) |x, - r1.|P and max |x. - ¢,
i=1 ! T<i<k
respective1y.]9 Since Tk n is a finite set, there will always be an allocation
]

for which the measure is minimized. Therefore, F  and F _ are well-defined
allotment methods, Ixi - ril is, in a sense, the error in the allotment for
party 1. Fﬂl minimizes the sum of these errors, F£2 minimizes the sum of the
arrors squared,20 etc. The higher p is, the more weight is given to large
errors. In the limit, F . only pays attention to the "worst" error. In spite
of this apparent difference, all the methods F , for p > 1, are equal. F _
is also essentially the same method. e - £



-11-

Definition 4
The (complete) method of the largest remainder, FLR’ is the
allotment method defined by.the following algorithm:

21

Let n and Xps wees Xy be given, compute ;1, vy §k and

define m = n - 5 Lx l. Order the parties according to

the size of the numbers x - in 1, breaking ties in an
arbitrary way.

Give, for each 1, L;ij seats to party 1. Give one of the
remaining m seats to each of the m first parties in the
ordering constructed above.

FLR(n; Xys vees xk) consists of all allotments that can
be constructed as described above, for different choice
of the ordering of the parties.

LR(n, 12 s xk) can only have more than one element when there
is more than one poss1b1e ordering, that is, when x - Lx ] = - Lx ] for
some different parties 1 and J.' It is easy to see that 0_5 m i n - ] which
implies that the algorithm is well defined. Also, it is straightfdrward to
prove that whenever party i gets Lx 1 + 1 seats (and hence gets a seat in
the second phase of the algorithm), then x > Lx 1. '

FLR is obviously scale independent.

Theorem 122 _
(a) Forallp>1, F£p = FLR‘
(b) FlrS F o . Whenever F _ (n; X) has one element,
Y £

Fia(ni x) = F _(n; x).
Lrins x - n; x)

Proof

F _¢ FLR will be proved first. Suppose that this is not true. Then

there ekists a situation {n; X) and an allocation v with v € F_{n; Xx) and
r ﬁfFLR(n, X). There are three ways in.which we can have r ¢ LR(n’ X):
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(A)q'There is a party which does not get as many seats as it
should get in the first phase of the definition of F
That is, there is an i such that r. < Lx 1-1x< x - 1

Then_. there must exist a j with rJ > xJ, since

E ry=n = Z R.. If one seat is tranferred from party j

to party i, the criteria which defines F _ is reduced;
|x - r [P is reduced by at least 1 (herg the: condition
p>1 15 needed), and |x - T |p is increased by at most
1 or reduced. Hence we cannot have T E;F£ {n: E)

(B) A party gets more seats than it can possibly get by the
- definition of FLR’ that is, there is an i with
i 2 Lx 1+2> x + 1. Then there must exist a J with

rJ < xJ, and a contrad1tion can be derived as in (A),

{C) For all i, r; = Lx | or P Lx |-+ 1, but the parties
for which the 1atter is true are not those prescribed by
the algorithm for FLR' Hence there exist i and j with

= [ﬁij + 1, rj = {ij, and 2 [x | < x - Lx 1.
It can be shown that transferring a seat from party i
to party j reduces the criterion which defines F p
(This follows immediately if one writes out the %erms
in this criterion which correspond to parties i and j
before and after the transfer, and compares them.)
Again, r € Fxp(n; x) is contradicted.

Now Tet re F__{n; x). Hence r ¢ FLR(n; X). Suppose that s is another
element of FLR(n, if. It follows from the definition of F p that
x1 - r], cens xk - T are exactly the same k numbers as i],' Sqv e Qk = Sy
although possibly in a different order. Therefore, T and s score equally on
the criterion which defines F p® and s € F p(n; X). Hence, F b = Fla

When FLR(n; x) » r, no Transfer of seats can reduce the value of the
criterion by which F__ is defined. (This is easily seen from the definition
of FLR') Hence FL
of (b) is trivial.

RS F - Since FLR(n; X) is never empty, the second part

£




-13-

Part (b) implies that FLR and F__ are essentially equal. In particular,
if the numbers Q] - LQ]J, cens ﬁk - Lx ] are all different, then F__(n; X)
will have only one element and the last statement will apply. This is the
case "almost always" if the number of votes is large compared to k and n.
It is also possible that FLR(n; x) and F__(n; x) are equal in situations
where they have more than one element. ﬁut the two methcds are not always
equal. Consider the situation (2; 44, 39, 39, 39, 39), with a total of 200
votes. The criterion which defines F__ is minimized at any allocation in
which the two seats are given to different parties; its value is 0.61. But
the allocation {0, 1, 1, 0, 0) cannot be obtained if FLR is used. There is
a natural modification of F__ which makes it equal to FLR: Compare two
allocations according to the maximum error in each; if these are equal,
compare the next largest error in each situation (which may be equal to the
largest for one or both situations): etc.23 This can be called the "lexico-
graphic version" of ﬁgn.

F p is also a well-defined allotment method when 0 < p < 1, but it
does no% seem to be a reasonable one. The corresponding criterion places
relatively little weight on "large errors,” that is, large values of
|§i - ri|. In particular, if 0 < p <1 there exists a k (depending
on p) with the following property: Define X] = Xy = 2 and x; =1 for
i=3, ..., k. Then F p(2; x} ={(2, 0,0, ..., 0),(0, 2, 0, ..., 0)},
hepce Fﬁp must give bo%h seats to the same party. Of course, FLR{Z; x) =
{1, 1, 0, ..., 0).

4.3 Quota methods

An alternative way of describing the method of the largest remainder
is the following: Give out the seats one by one, each time giving the seat
to the party which has the highest remaining vote. Each time a party gets
a seat, V— is deducted from its vote. Ties are broken arbitrariTy;24 This
procedure makes it clear that V;-is the "cost" per seat, often called the
'quota." ‘

There are other methods which can be described in the same way, but-
with the guota defined differently.
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* Definition 5
A quota criterion is a real-valued function V, defined on all
pairs (n, y) where n is an integer with n > 1 and y is a positive

rational number, such that, for all such n and y,

(4.2) oy < V(ns y)
, gnd
(4.3). Vin, y) < ==,

n-1

An allotment method F is a quota method25‘1f there exists a quota
criterion V such that F{n; Xqs oves xk), for any situation

(n; Xs vees Xk) with n > 1, consists of the allocations which
can be obtained as follows:

k
Compute y = } x,. Distribute the n seats one by one,
i=]

each time giving the seat to the party with the highest
remaining vote and deducting V{n, y) from that party's
vote. Ties are broken arbirarily.

If n =1, the seat is given to the Targest party, or any of the
largest parties, if there is a tie.

V(n, y) is only supposed to be defined for n > 1, since its value for
n =0 and 1 would have no influence on the distribution of seats.

It should be noted that the quota criterion depends only on the number
of seats and the total vote of all par-ties'.26 If it-is allowed to depend on
all the votes, a wider class of methods e‘merges.z7

Even if conditions (4.2) and (4.3) do not hold, an allotment method can
be defined by the algorithm of Definition 5. But if (4.2) is not satisfied,
it may be impossible to give the parties one seat for each time the quota
divides their votes. If (4.3) does not hold, one will sometimes have to
award seats on the basis of non-positive "remaining votes."

When (4.2) and (4.3) are satisfied, the quota method will give a party
one seat for each time the quota divides its vote. The remaining seats, if
any, are given to the parties with the Targest “"remainders."
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The method of the largest remainder clearly is a quota method; the
quota criterion is ¥{(n, y) = %\ One "extreme" in the class of quota methods
is obtained by letting (4.2) barely be satisfied, that is, by letting V(n, y}
be s1ightly greater than ﬁ"¥"T . This method is also in practical use.2
To the extent both these methods have their merits and are candidates for
actual use, other quota methods should also be considered.

In Section 8.4, a certain class of quota methods is discussed and
compared to divisor methods (see Definition 13).

-

As will be seen in Section 5, the method of the largest remainder has
some undesirable properties. If it is given up, one has to abandon the idea
that the allocation of seats shall be as close as possible to each party's
"exact representation," at least if closeness is measured by the criteria of
Definition 3. But still one can require that the deviations not be too large.
This requirement is most conveniently divided into two parts.

Definition 6
Let F be an allotment method. Then
(a) F satisfies the lower bound condition if
re > Lﬁij fori=1, ..., k,
whenever F(n; X1s wees xk) + (rl, ey rk).

(b} F satisfies the upper bound condition if
rs < [Qi] for i =1, ..., k,

whenever F(n; Xps wees xk) > {r1, cens rk).zg

FLR satisfies both conditions. X

The conditions can be weakenedAs1ight1y by allowing ry T Xy - 1 in
the Tower bound condition, and ry = X + 1 in the upper bound condition. Only
when §i is an integer does this represent any weakeging at all, and very
rarely does it make any difference for the results.

Conceivably, one could strengthen the lower bound condition by requiring
not only that party i get at least L;iJ seats, but also that a sim11ar
condition hold for any coalition of parties. Formaily, F satisfies this
"extended Tlower bound condition" if F(n; X1 ...;“xk)'+:(r], cees rk) implies
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Z " >'l -Jfor any I CZ{] ...» k}. When the number of parties is limited
i€1

1eI
to 3, FLR satisfied this cond1tion.3] For larger numbers of parties, however,

the condition is inconsistent. Consider the situation (3; 1, 1, 1, 1, 1},
and let (r], cers r5) be a corresponding allotment. Two of the parties must
be without seats; assume, for example, r ry = r5 = 0. This contradicts the

condition, since Lx4 + X J = [0.6 + 0.6] = 32

An "extended upper bound condition" can be defined in a 51m11ar way,
and similar results are obtained. (The situation(2:1, 1, 1, 1, 1) is an
example in which the condition cannot be satisfied.)

-y T b

There is yet another conceivable approach to making the number of seats
close to each party's "exact representation" one could attempt to compute
r by "correct round1ng“ of x That is, rs shall be [x 1if x < Lx ]+ ; s
and Lx J+1if x Lx i+ %-(and either of these if x Lx J + -)
Unfortunate]y, th1s does not always lead to the correct total number of seats
being allotted. ‘A simple example is the situation (15 1, 1, 1), where
§1 = Xy = Xg = %-. The best one can hope for is to achieve correct rounding
when any two parties are considered and only the votes and seats of these

~. A

parties are taken into account.

Definition 7

An allotment method F is pairwise Fairdd if F{n; x) + r implies.
1 X,

for all i and j.
X5 |
X5 * xj
the votes and seats of parties i and j are considered. The condition says
that rs shall be equal to the correct rounding of this number. (The similar
condition for party j follows and need not be included.} It is not immediately
obvious that any pairwise fair methods exist, but the existence is proved in
Section 8.3 (see Theorem 7).

(ri * rj) is the "exact representation" of party i, when only
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5. CONSISTENCY AND MEMBERSHIP MONOTONICITY

5.1 Consistency

Pairwise fairness says something about the relative representation of
two parties. The condition depends only on the votes of these two parties.
This represents a special case of a general idea. '

Let a situation be given, and consider two parties, i and j. What will
happen to these parties' representation if the votes of other parties change,
but i's vote and j's vote stay the same? Obviously, anything can happen;
for example, if other parties grow, there is nothing wrong in i or j (or
both) losing seats. But suppose that the changes do not lead to any change
in the total representation of i and j. Then it seems reasonable to require
that the division of these seats between i and j not be affected either.

When the votes of i and J and their total representation are given, the other
votes can be seen as irrelevant to this division and should not influence it.

A similar argument can be made even if the number of parties and the
total number of seats change, provided, as before, that i's and j's vote and
their total representation are not affected.

Because of the possibility of ties, it is not poSsible to require that
i's and j's representation never change under these circumstances, but the
idea is captured by the following definition.

Definition 8
An allotment method F is consistent>® if the following
implication is true for all possible values of the variables:
If o
F(ngs Xps -y xk]) *{rys eees rk]),

F(Nos ¥rs coes ¥y )+ (S5 «ves S, )
2 1 k2 1 ’ k2 ’

X: T ¥Y: »
W ™
X: = Y¥. , and
j'l Jz
r. *r, =s. + 5.,



"then'there exist tl’ ey tk such that'
' ' ' 2

_F(n'?_; Yo vees ykz) > (tys ons tkz)’

t, =r.,

2N

tj2 = rj], and

t, =s; for all i ¢ {i,, j,}.

The def{nition relates in the following way to the discussion above: Let

a situation (n1; X) and a corresponding allotment r be given, and consider
parties 11 and j;. Another situation (n2; y) and an allotment s are also
given. The vote of the designated parties and their total representation
are unchanged, but everything else can have changed, including the numbering
of the parties. Because of the possibility of ties, it is not possible to
require that the two parties' representation has not changed. But if it

has changed, it must at least be possible to transfer seats between the two

parties, so as to restore the original division of their rs + rs seats
' 1 T
without affecting any other parties. This transfer is represented by t.

(If there are no ties, T must be equal to s, and the representation of the
two parties was unchanged. )

When consistency is used in proofs below, k] or k2 will normally be
equal to 2. In fact, the concept obtained by requiring that the implication
in De?inition 8 hold only when k] =2 or k2 = 2, is no weaker than consistency;
the Tatter can be proved by two applications of the former.

It is possible to genera1ize Definition 8 by considering more than
two‘parties. That is, one can require that whenever the votes and total
representation of a group of parties remain unchanged, then each party in
the group gets the same number of seats as before. (Here ties are ignored.)
Definition 8 represents the special case that the "group” has two members.
This generalization will follow from consistency and membership monotonicity,
see Section 5.3 below.

The method of the largest remainder is not consistent, as the following
examp]é shows: In the situation (2; 31, 9), "exact fepresentation" is 1.55
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and 0.45, and hence FLR (2; 31, 9) = (2, 0). The situwation (2; 31, 9, 5)
gives 1.38, 0.4 and 0.22 as the "exact representation," and Fi R (2; 31, 9, 5)
= (1, 1, 0). Hence the emergence of a third party, which is naowhere near
getting a seat itself, changes the distribution of seats between the first
two parties, '

What will happen to the allocation of seats when the membership of the
body to be elected changes while the votes remain unchanged? It seems
reasonable to require that the number of seats won by a party change in the
same direction as the total membership, or at least not in the opposite
direction.

Definition 9
An allotment method is membership monotone35 if the implication
(a) holds for all situations (n; Xps wees xk), and (b) ho]ds
whenver n > 1:
(a} F(n; Xqs wevs xk} -> (r1, vees rk) implies
that there exist s,, ..., ﬁk with

F(n+1; X]s eees xk) + (51, vensy sk).aﬁd s; >y
for all 1.
{(b) F(n; Xps eees xk) -> (r], cies rk) implies
that there exist Syr +--s S with
<r

F(n-1; Xys_sees xk) > (s], cees Sk) and 5; <
for all 1.

This means that if a situation and a corresponding allocation of seats
are given and the total number of seats later is increased by one, it is
possible to give the extra seat to one of the parties and lTeave the others
with unchanged representation. Similarly, if the total number of seats is
decreased by one, it is possible to reduce one party's representation by
one and make no other change.

A stronger form of membership monotonicity is conceivable: one can
require that F(n; x) » r and F(n+1, x) + s imply s; > r, for all i, This
would mean that each party's representation must increase or stay the same
when n increases. But this condition is not a reasonable one; for example,
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it implies that F(15 x, x, x) + (1, 0, 0) and F(2;5 x, x, x} » (0, 1, 1)
cannot both hold. It also contradicts consistency.

_Both conditions (a) and (b) are needed later; methods can be constructed
which satisfy the one and not the other. As was the case for consistency,
the somewhat complicated formulation of Definitiqn 9 has to do with the
possibi]ity of ties. As long as ties do not occur, one can Tét the condition
read: F(n; X) = ¥ and F(nt15 X) = § imply r, < s, for all 1. Indeed, this
is equivalent to Definition 9 in situations without ties.

Membership monotonicity follows from consistency in the presence of
a fairly weak extra condition, see Theorem 3 below. But there exist methods
which are consistent but not membership monotone and vice versa: examples
are given in section 11.2,

The method of the largest remainder is not membership monotone:
FLR(3; 13, 13, 4) = (1, 1, 1), since the exact representation is 1.3, 1.3
and 0.4, FLR(4; 13, 13, 4) = (2, 2, 0); here exact representation is 1.73,
1.73 and 0.53.

5.3 A technical Iemma

The following technical lemma will be useful later.

Lemma 1

Let F be an allotment method which satisfies the condition of
membership monotonicity in the case k = 2. Then (a} below
holds. If F is also consistent, {b), (c) and (d} hold.

(a) If F(n; x{s x,) = (ry, r,), then there exist

Xy X5 1* "2 (O) e
non-decreasing, infinite sequences r
(1) 0y (1)

e e and ry s r2 Ly ey such that

(0 (0 L () (n) _

‘ '-r-l: r‘z -st
and F(m, x1, xz) > (r1( ), rz(m)) for all m.

(b) Let k.| and k be given, and et ¢ be a function
defined on a subset I of {1, . k } with
values in {1, ..., k }, such that i f J implies

o(i) # o(j). Let x1. een xk] and yi, ..y ykz
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satisfy Yo() = ¥; for all 1 € 1. Assume
F(n];:xi. ...,;xk1) +‘(r1, cees rk]), and

F(Nos ¥as vees ¥y, } > (Sqys vuvs S, ).
2 7 k2 1? k2

Then there exist t1, vees tk such that
' 2

(1) Flnys yqs oens ykz) + (tys -ees tkz).

(1) ti =55 for all j not in the range of o, and

(i1ii) either ts(i) <r; for all i€ 1, or
tc(i) 2 r; for all i€ 1.

(c} F is membership monotone,

(d) If G is consistent, and G{n; Xs xz)SE F(n; Xqs x2)
for a1l n, x, and x,, then GE F. '

Proof
(a) If F(n; Xy x2) + (rl, r2) and n > 0, part (b) of the definition of
membership monotonicity can be used to find r](n'1) (n-1) with

and Ty
r1("']) <1y rz(n'1)

. : {n-1) (n-1)
<1y and F(n-1; X7 xz) -+ (r'1 s Ty ).
If n-1 > 0, r](n—Z), rz("'z) can then be found in the same way, and

so on down to r](o), rz(o). Similarly, (a) of the definition can be

used to find P](n+]), rz(n+1), r](n+2) rz(n+2)

, etc., satisfying the

requirements of the lemma.
(b) Let F(ny; X) > r and F(nys ¥) + 5, and choose T such that
(1) F(nzr :Y—) +_E§ |
(ii) tj =8 for all j not in the range of o, and
(191') J It _;sy - ri| is minimized, subject to (i) and (ii).
jer o) |
The set defined by {i) and (ii) is finite and non-empty. (It contains s.)
Hence t is well-defined. If t does not satisfy (i1}, there must exist
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i'dnd j-with to(i) > ry and ;g(j) < rj. By consistency,

.y X.es X s9 i) = .y + s\ s
F(r'1 rJ. X xJ) - (r1 rJ) Let m t0(1) tO(J) and apply
part {a) to find ri(m) and r.(m) with F(m; X, xj) + (ri(m), rj(m)),

;
and either r.™ < . and v.'™ < ¢, (ifm<r, +r.), or r.(m) >,
i 20 i =T =57 T

(m)

o(i) "3

= m, consistency

(m) = T D2 (M)
and r. z_rj. Construct t' from t by tc(i) rs and t'

J
leaving the rest of T unchanged. Since ri(m) + rj(m)
implies that T’ satisfies (i), and it satisfies (ii) since T does.

Moreover, it is clear that 1§Ilt (i) - i | < z |t0(1) - r;|, since
the sum of the terms corresponding to i and J 1s reduced when going

from t to t'. This contradicts the choice of T. Hence t must satisfy
(iii), and the proof is complete.

(c) This is a corollary of part (b): Let ky = k, and let o O i for
i=1s vuus ky- Withnj =nandn, =n+1, (a) of Definition 9
follows. (t of part (b) is s of Definition 9.) With ny = n and
nz =n -1, (b) of Definition 9 follows.

(d) Let G(n; Xps oo xk) - (r1, cees Choose sy, ..., s, such that.

r)-
(i) F(n; Xps sees xk) > (Si’ ey sk); and

k
(11} 7} Is -1y | is minimized, subject to (i).
i=1

If s # r, there exist i and j with S; > Ty and s. < r.. Since G is

consistant, G(r +r3, Xss X; ) - (r s r ). By assumption, F(r. +rJ, Xis X )

+ (r1, r }. Part (b) can then be used to tranfer seats between part1es

i and j tn achieve either S5 z_ri and Sj z_rj, or s, <, and sj f-rj'
This reduces the sum in {ii), and contradicts the choice of s. Hence

s = r. This completes the proof.
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Nowhere in the proof is there reference to situations which have a
larger number of parties than the situztions about which statements are made.
Therefore, the Temma can be used when the number of parties is Timited.

Lemma 1{b) includes the generalization of consistency to the case of
more than two parties, mentioned at the end of Section 5.1. Suppose, in
addition to the assumptions of part (b), that J r. = J s ,.\. Then

ja b qer o)
tc(i) =T for a1l i € 1. This is analogous to the conctusion of Definition 8.

When part (b) is applied below, which will often be done, the set I
usually consists of two elements. Typically, I.= {1, 2}, o(1) =i and
a{2) = j. Then, if s; <1 and 55> Tps the substitution of T for s
represents a transfer of one or more seats from party j to party i. Appli-
cations of Lemma 1(b) will usually be formulated this way, as has already
been done in the proof of part (d).

o i S P ol

In most cases, there is no reason why the order in which the parties
are mentioned shall have any influence on the allotment of seats.

Definition 10
An allotment method is neutra138 if, for ali'n, x, and r
and all permutations o of {1, ..., k},

F(n; Xps =ees xk) - (r], . rk)
if and only if

F(ns xgqys =+ Xgri)) = (rg(rys =oos ro(k)).

Theorem 2
If an allotment method F is consistent and memberskip monotone, then
F is neutral.

Proof
This is immediate from Lemma 1(b): Let k] = k2 = ks, Ny =N, and
y = (xo(]), cens xc(k)), and assume that F(n,3 Xx) - r. Then the © which
~ exists by the lemma must be equal to (r0(1), cees rg(k)). Thus
F(n; Xps wens xk) -+ (r1, cees rk) implies F(n; Xg(1)* ***> xc(k)) -
(rG(T), cees ro(k))' The converse implication is obtained by starting with
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| (xo'(i'i';""’ Xy(k)) and using the permutation T = 5”1 (defined by (i) = j

if and only 1f o(j) = i) as the o of the lemma.

Does neutrality follow from consistency alone? Perhaps one should
expect this to be the case, but I have not been able to prove it.39 Neither
have I found any counterexamples. In most of the results below, it is not
necessary to assume neutrality; but if necessary, the condition will be
imposed without hesitation.

In the definition of neutrality, two different situations and corres-
ponding allotments are compared. Another aspect of the ideal that the equal
shall be treated equally has to do with situations in which two parties have
the same number of votes. Because of the possibility of ties, one cannot
require that two such parties always get the same number of seats; then
F{1; 1, 1) would have to be empty. But their representation should not
differ by moreé than one. For later reference, two versions of this condition
are formulated. There is a strong version in which the representation of
the two parties shall never differ by more than one,and a weak one in which
it is only required that their representation can be brought within a
difference of one without changing the representation of other parties.

Pefinition 11
An allotment method is

{a) strongly ba]anced40

if F(n; X) > 7 and x, = X imply
lri-rj|:—1; | : |

(b) weakly balanced if F(ri; X) + ¥ and X = X imply that
there exists an s with F(n; X) » 5, [s, - s51 < 1 and
Si1 = T for it ¢ {i, jl.

If F is strongly balanced, F is obviously weakly balanced. (s can
be chosen eqhaT to r.) The two conditions are really different; FT is weakly
but not strongly balanced. If F< G and G is strongly balanced, F also has
the property. The same is not true for the weak condition.
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Theorem 3
Let F be a consistent and weakly balanced allotment method. Then F
is membership monotone.

Proof
By Lemma 1{c), it is only necessary to prove membership monotonicity
for situations with two parties. Assume that F{n; X1 xz) - (r], rz), and

choose s = (s (]), s (2), 5 (]), 5 (2)) such that
1 1 2 2
(1) F(2n+] H x.l ) x-l s x29 Xz) > _5—; and

2

(ii) § % |s (3) _ r; | is minimized subject to (1).
i=1 j=1

If |s](1) - 51(2)] > 2, the fact that F is weakly balanced can be used
(1) (2)

to bring s

(1)

and 51 within a distance of at most one, without changing

and 52( ). This change cannot increase the sumin (i); hence

(m _ . (

51 2)I <1 can be assumed in the first place. Similarly, one can
(]) - 52(2)| _<_]'

,5]

assume |s2 Since the total number of seats is odd, one of

these differences must be equal to zero and the other equal to one. Assume

1 2
MUNIRC

= and 52( ) +1 = 52(2). {There is no loss of generality here;
all p0531b}e cases can be treated similarly.} Then 51(1) + 52(]) =n=r + ro.

If 51(]) < and 52(]) > ry or vice versa, S (M) and 52(1) can be replaced

(2) (2)

1

by r, and Pos S and s, remaining unchanged. {This is possible by

consistency.) But this change decreases the sum in {i1) and contradicts

(M .

the choice of 5. Hence s](]) =r and So = Ty, and

F{2n+1; Xy Xqs Xos x2) > (r1, rys Tpo r2+1).
Consistency then gives F(n+1; Xy s xz) > (r], r2+1), and part (a) of Definition

9 is proved.

The proof of (b) uses F(2n-1; X1s X1 oo xz); otherwise it is similar.
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- 1f K'> 4 and the number of parties is limited to K, the theorem is
true and the proof can be applied unchanged. But situations with four
parties are used. If the number of parties is limited to two, there exist

consistent and balanced methods which are not men‘ﬂier‘ship monotone.m



-27-

6. VOTE MONOTONICITY .
Membership monotonicity requires that a party shall not lose seats

when the total number of seats increases. At least equally compelling is

a condition that a party shall not lose when its own vote increases while
everything else remains unchanged. Similarly, in any one situation, a

larger party should not get fewer seats than a smaller one. These conditions
are closely related.

Definition 12

An allotment method F is

(a) externally vote monotone if F(n; Xps wees xk) >
Pys eees rk), F(n; Yys oo ¥k) T (?1, veus sk),
Yi > Xy and yj = xj for all j # i, imply Sy 2Ty

(b) dinternally vote monotone if F(n; Xps +ees xk) -+

(r], cees rk) and x, > X; imply r, > vy

Part (a) does not require 55575 for j # i, hence nothing is said
about the representation of the parties whose votes stay the same. But
when external vote monotonicity is used, sj f_rj for j # i, or something
slightly weaker, will usually follow from other assumptions. In particuiar,

whenever Lerma 1(b) applies, there will exist a T in F(n; y) with ty =8, >y
and tj E_rj for j # 1.

One could try to strengthen the conditions by requiring strict inequality
in the conclusions (Si >ry in (a), > rs in (b)). But this is not reason-
able; there cannot be anything wrong (or "unfair") in a small increase in a
party's vote, or a small difference between two parties, not making any
difference for the representation. Moreover, each of the two conditions
emerging from such a strengthening is easily seen to be inconsistent.

Another way of making the conditions stronger could be to weaken the
premise Yi > Xy of (a) to ¥y 2 %s (In (b}, this corresponds to replacing
X5 > xj Y Xi > xj.) But this is equally unreasonable. Condition (a) would
then contradict neutrality, since F(1; 1, 1) = {{1, 0}, (0, 1}} would be
impossible. Condition (b) would become inconsistent; F(1; 1, 1) could inciude

neither (1, 0) nor {0, 1).
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Ori the otfier hand, (a) is not the weakest form of external vote mono-
tonicity oné can imagine. When F(h; X) + T and y differs from X only by
Yy 7 X5 the condition does hot only require the existence of an s in
F(n; y) with s > r.; it requires s, > r, for all s in F(n; y). Therefore,
when the vote of a party increases, 1t sha]] not only be possible to keep
constant or increase its number of seats; its representation shall necessarily
be kept constant or increased. (This contrasts with the definition of
membership monotonicity.} It turns out that this strong a condition is
hecessary in order to draw any meaningful conclusions. (FT will, for example,
satisfy the weaker version suggested above,)

External vote monotonicty will, in effect, rule out the possibilityof
"thick" areas on which there is a tie. 4 1f there is a tie at the s1tuat1on
(ns x), so that party i can get r, seats while some smaller number is also
possible, an arbitrarily small increase 1'ri_,x'i will break this tie and make
any representation below r impossible.

Remarks similar to those in the last two paragraphs alsd. apply
to internal vote monotonicity.

The two types of vote monotonicity are related, as shown by the following
theorem.

Theorem 4 _
Let F be a consistent allotment method.

(a} If F is externally vote monotone; then F is internally vote
monotone. :
(b) If F is membership monotoné and internally vote monotone; then
F is éxternally vote moriotone.
Proof:
(a) Assume that F is externally but not internally vote monotone. By apply-

ing consistency to a case where internal vote morotonicity fails, one
can find n, X1 Xgs Ty and os such that X{ > X 5y TP <Yy and

(6.1} F(ns X5 x3) + (rqs r5).

Another application of consistency gives
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(6.2) F(n; Xo x]) > (rz, r]).
There must exist 51 and s2 sych that
(6.3) F(n; X1 x1) - (s], 52).

External vote monotonicity applied to (6.1) and (6.3) gives Sy, 2 Ty
Applied to (6.2) and (6.3) this condition gives S 2 Fo» which impiies
$1 > 1 Hence Sy + Sy > " + Foe But S + Sp =N =T + ros and this
contradiction proves (a).

Assume that F is consistent and membership monotone, and not externally
vote monotone. Then there exist n, X, y, r and s such that ¥y > X

Yi =% for j # i, F{n; X) > ¥, F(n; y) + s and s; < r;. Then S5 T
for some j. By changing the names of several variables and applying
consistency twice, it follows that there exist Xps X9 Xgs ri, Fos Sy
and S3 (these being the old X xj, Yi» Ty rj, sj and.si, respectively),

such that

(6.4) | Xy < Xq
(6.5) ry >S4
(6.6) r, < s,
(6.7) F(r1+r2; X1 xz) + (rl, r2)
(6.8) F(52+53; X x3) -+ (52, 53)

For each n, consider the possibility of finding t; <r;, t, <1,

and t; < s, such that
(6.9) F(n; X1s Xy x3) - (t], t, t3).
For n = 0, it is obviously possible to find such numbers t], t2 and t3;

for n > rytryt Sq it is clearly not possible. Hence there must
exist a greatest n for which it is possible, Let this n and correspond-
ing values of t], t2 and t3 be given. By membership monotonicity, there
exist numbers ti, té, té and io such that
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ST ' [ 1 S :

(6.10) F(n+1; Xys Xos x3) > {t!, t5s t3), tiO t1.0 + 1, and

ti = ti for i f iy

There are now three cases to consider:

3 P2 3 iy E VS . : ey S« han Loy :

(A) 10’ 3.' Then t3-:_s3_+ 1 aqd t; §_r2-< 52,_hence ts * t3 §_s2‘+ S

' By (6.8) and Lemma 1{b), there exist t5 and tg with t} < s, for
R— ! . .- t n . ", 1)
i=2,3 and_F(n+1, X1s %o x3)‘+ (t1, t5s t3). tZ f_rz would now
contradict the choice of n, since t; = t; < ry. Hence t3 > r,.

Then ty and tj can be substituted for té‘and‘té in (6.10), and the
proof can proceed as in (B).

(8) t
iy = 2 and t§ < r; will contradict the choice of n. The case also
can emerge from the adjustment made in (A), after rénaming t; and
tg.) By (6.7) and Lemma 1(b), there exist ﬁ? and t; such that
F{n+1; Xps Xo» x3) - [ty ts té), wi th eithér'tg < r; for i=1,2,
or tg > for i = 1, 2. The first possibility contradicts the
choice of n; in the second case, t? and t" can be substituted for

2 .
ti and té in (6.10), and the proof proceeds to (C).

, . . S ‘ o .
rys ty > Py ty < 5.0 (This includes the case 1, = 2, since

n{A

() ti > vy té‘f_s3; (This includes the case'ios= T, since io =]
and t; <ry contradicts the choice of n. It can also emerge from

(B) after renaming.} By (6.5), ty > t3. (6.4) and (6.10) now imply

that F is not internally vote monotone. This completes the proof.

The assumption that F is consistént is essential; in the absence of
consistency there exist methods which are‘internalTy but not externally vote
43 1 do not know whether part (b) is true if member-
ship monotonicity is dropped from the préemisé. If F is balanced, membership

monotone, and vice versa.

monotonicity will follow from consistency by Théorem 3 and need not be assumed.
The conditions of being internally vote monotone and Balanced are based on
similar ideas; if the former is imposed as a requirement, a case can be made
for also requiring the latter.
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Part (a) and its proof holds if the number of parties is limited to
K for any K > 2. If K > 3, the same is true of part (b}, but the use of
situations with three parties in the proof of (b) is essential.44
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7. DIVISOR: METHODS: | |

An important class of allotment methods is the class of divisor methods.
These methods are defined in this section, and their properties are discussed
here and later, particularly in Sections 8, 11 and 12. The generality and
importance of the class is established by Theorem 10; see the discussion of
that theorem in Section 11.1.

Definition 13
(a) An allotment method F is a (complete} divisor method
there exist positive real numbers d], d2, «o.y With

5 ¢

da j_da+] for all positive integers o, such that

X. X.
. 3 —.-......--I-.—..—( .
F(ng x]s Py xk) {(r]s teey rk) & Tk,nl d +] _"a ’

for all i, j€ {1, ..., k} with rj > 0}.
If da < da+1 for all a, F is a strict_diwisor‘method.'

(b) An allotment method F is a partial divisor method ' if

there exists a complete divisor method G such that F <€ G.

If F is a divisor method, the allotments in F(n; Xys voes xk) can be
found in this way: Compute the quotients ;i fori=1, ..., kanda=1, ..., nﬁ7
Pick out the n largest of these quotients. “Each of the selected quotients will
"belong to" a certain party, that is, it comes from dividing a certain party's
vote by some d%. Give each party as many seats as it has quotients among the
selected ones. 8

The computation of F can also be described as follows: Distribute the
seats one by one. Assume that the allotment is (rys ---» r,) after the distribu-
i

?i+1"

is a tie, choose any of the possible i's.) Then give the next seat, seat no. mtl,
to party i. (In.effect, part i is at this stage competing for its seat no. ri+1.

tion of the first m seats. Find the i for which 5 is largest. (If there

X.

This competition is decided by the size of the quotient d'1 .} F(n; x) shall
r.+l
i

consist of all allotments that can be obtained by using this procedure, with m
taking on the values 0, ..., n-1.
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It should be obvious that the descriptions in the last two paragraphs are
equivalent to Definition 13(a). It follows immediately that any complete divisor
method is scale independent and membership monotone. The methods are also
easily seen to be consistent.

It is possible to find partial divisor methods which fail to satisfy con-
sistency, scale independence, or membership monotonicity.49 On the other hand,
there do exist methods which are proper submethods of divisor methods and .
satisfy these three conditions.50 ‘

Any complete or partial divisor method is vote monotone, both in the
external and the internal sense. _

Moreover, any complete divisor method is weakly balanced. It is strongly
balanced if and only if it is strict.51

In Definition 13, it is required that da > 0 for all a. In Section 11.3,
the definition is generalized in a way which effectively includes the possibility
da = 0 for some a. A slightly different approach is taken in Definition 14(c),
where d;=0and d >0 for o > 2.

Let a divisor method F ard its sequence d], d2, ... Of divisors be given.
If all the divisors are multiplied by the same positive real number, the method
remains the same. On the other hand, assume that the divisor methods F and F'
have divisors d], d2, ... and di, dl, ..., respectively, and assume that there
is no positive real number a such that d& = ada for all a. Then F and F' are
differen?. This is proved as follows: There must exist an o such that

d d
g+] # -%;l ; otherwise there would exist a number a with d& = ada for all a.
o o d d' '
Assume, without loss of generality, that 3%1 > —%;l . Thenit is possible to
o
‘ d'
“find positive integers x and y such that y 3+1 >X >y —%;l » which implies
o o
HJL;'< gL-and ~%£;—> g@ . Hence F{2a3 x, y) + (rl, rz) 1'mp11'es'r1 < o, while
ot o ot a

F'{2a; x, y)} -+ (51, 52) implies S 2ot éé Therefore, the sets F(2a; X, y)

and F'(2c, x, y) are disjoint and F # F'. The argument also shows that neither
FECF' nor F' € F can hold; therefore, a complete divisor method cannot be a sub-
method of another complete divisor method. Moreover, it follows that no method
can be a submethod of two different complete divisor methods; .hence, for a givén
partial divisor method F, G of Definition 13(b) is unique.
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8. SPECIAL DIVISOR METHODS

8.1 Definitions

Some divisor methods are particularly important or interesting, because
they are in actual use, and because they satisfy certain conditions or are
uniquely characterized by natural sets of conditions.

Definition 14
(2) The method of the highest average,s3 Fua® is the divisor method
defined by the sequence of divisors da = a.

(b) The method of major fractions,54 FMF’ is the divisor method

defined by the sequence of divisors da =g - %u

{c) The method of the smallest divisor,55

method obtained by setting da =a - 1 in the definition of
divisor methods, assuming, for the purpose of this definition,

that > b and —-= %-for all positive real numbers a and b.

FSD’ is the allotment

The method of the smallest divisor is not a divisor method in the sense
of Section 7, since d The ad hoc assumptions concerning expressions of
the fonn-ﬁ imply that in a situation (n; x Xps oves xk) where n < k, no party
shall get more than one seat, but the n seats can be given to any of the parties.
For n > k, each party gets one seat and the remaining n-k seats are allotted in
the obvious way.56

B.2 Characterization of FHA apd FSD '

Consistency and the lower bound condition essentially characterize the
method of the highest average, as shown by the following theorem.

Theorem 5
(a) FHA is consistent and satisfies the lower bound condition.

(b} Let F be a consistent allotment method which satisfies the lower

no bound condition. Then F C‘FHA 57

(c) Let K> 2 and let the nuriber of parties be limited to K. Then
there exist infinitely many different complete divisor methods which
are consistent and satisfy the lower bound condition.
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Prouf58

Part {c) is proved first: Let d; = 1, and choose dys d3 ... such that

(8.1) . a-g<d <a fora=2,3, ...

Clearly, the sequence du satisfies the requirements of Definition 13(a), and

it therefore defines a divisor method F. It is also clear that an infinity of

different sequences can be chosen, and since d1 is fixed, each of these defines

a different divisor method.59
F is consistent, since it is a divisor method. Llet k < K and

F(n; Xps «oes xk) > (r], vy rk), define

X.

a = max

1<i<k d

L +1
i

and let j be a party for which this maximum is achieved. (8.1) implies

X,

a < ———
“r 41 -y
J K
or
: 1
(8.2) a-(rj +1 -~ Fﬁ < Xy

For all i with r. > 0, Definition 13(a) and (8.1) give

X X
X
S TLE TS
which implies
: ' 1
(8.3) a-(ri - EJ <X

Ifr. =0, (8.3) s trivially true. Summing (8.3) for all i #'j and adding
(8.2) gives '

K k

Since k < K, this implies
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‘ k
(8.4) ' asn < §oxy .
i=1

(8.1) and the definition of a give, for each 1,

(8.5) i < —'—<a,
T =d -
and (8.4) and (8.5) impTy
X - X,
(8.5) Xi = n-—k——— f_l"_l + 1.
Xs
LR
.1:'[

Cohsider an arbitrary but fixed party i. If the inequality (8.6) is strict,
it follows that Lx;] < r., which is the lower bound condition. If (8.5) is
not a strict inequality, then the inequality (8.2) or (8.3) which involves i
must be strict; hence (8.4) is strict. Therefore, {8.6) is a strict inequality
in any case, and the proof of (c) is complete.

This argument also proves part {a), since the divisors of FHA satisfy
(8.1) for all K.

Part (b) remains. Let F be consistent and satisfy the lower bound
condition. First it will be shown that F is (strongly) balanced. If it is
not, consistency can be used to find x. r and s with r > s + 2 and
F(r+s; x, x) » (r, s}. But the exact representation of each party is Egé-g_s + 1,
hence this contradicts the lower bound condition.60

It now follows from Theorem 3 that F is membership monotone. Since FHA is
consistent and membership monotone, Lemma 1{(d) applies, and in order to prove
FQ:FHA, it is sufficient to prove F(n; x,, Xo) € FHA(n; X1s Xp) for all n,
X1 and x,. Assume that this is not true. Then there must exist SERCTIE and

2
Ty With " > 0,
X X2
(8.7) CRER
and ,
(8.8) F(r]+r2; X1 XE) + (rl, r2) .

Let k be a (large) positive integer, and consider the situation
(kr]+r2; Yys wees yk+]),'where y; =% for 1 <i <k, and y 3 = x5. The
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exact representation of the Tast party will be

~ Xo
Yerr = (kep +m)
1 2
. *2
The Timit of this expression, as k approaches infinity, is SRl which is
1

strictly greater than r2+1 by (8.7}. For large enough k, it then follows that

(8.9} Yer1 > Tp t 1.

In particular, a 1ittle algebra shows that (8.9) holds whenever

%o

kK > _
rXo - (r2+1) X]

This is a well defined expression; the denominator is positive by (8.7).
Now choose $17 <ros Speq such that

F(kr1+r2; Yo wees yk+1) > (51, vees sk+]),

and such that S+ is minimized. If Sk41 ” To» there must exist some i with
1 <1i<kand $; < Ty By {(8.8) and Lemma 1({b}, it is possible to transfer
seats from party k+1 to party i, until either S; 2 rpors . <r,. This
contradicts the choice of Spal” Hence Spe1 S oo but that contradicts {8.9)
and the Tower bound condition. The proof is complete.

Part {c) makes it clear that the result in part (b) depends essentially
on there being an-unlimited number of parties. But the proof-of {b) places a
bound on how much an allotment produced by F can deviate from the definition
of Fun when the number of parties is limited. When (8.7) and (8.8) hold,

X2

§ =

can be used as a measure of this deviation. (This measure is not the only one
possible, but it has the advantage that it does not change if all votes are
multiplied by a positive constant.) If F is consistent and satisfies the lower
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bound cohditioh, and the number of parties is limited to K for some K > 4,
every example satisfying (8.7) and (8.8) will have & f_R%T'. If § is larger,
the proof of part (b} can be carried through and a contradiction derived.
(K > 4 is necessary to apply Theorem 3.) The largest possible deviation goes
to 0 as K goes to infinity.

Parts (a) and (b) provide a charactérization of all consistent methods
which satisfy the lower bound condition. The result is not quite as good a
characterization as one ideally would want, since there exist submethods of
FHA which are not consistent. (A1l submethods will, of course, satisfy the
lower bound condition.) On the other hand, the possibility of submethods must
be included; the method described in note 50 is a consistent, proper submethod
°f“FHA' But the result is not too bad either; consistency and the lower bound
condition will uniquely determine the allocation of seats in all situations
except theﬁgnes in which there is a tie according to FHA’ and such ties are
very rare.

Several of the results below will provide characterizations of the same
kind. _

A close analogy of Theorem 5 exists for the method of the smallest

divisor.

Theorem 6 ‘
(a) FSD is consistent and satisfies the upper bound condition.

(b) Let F be a consistent allotnient method satisfying the upper

bound condition. Then F SEFSD.GZ

(c) Let K > 2 and Tet the nuiiber of parties be limited to K.
Then there exist infinitely many methods which are
consisteht and satisfy the upper bound condition, and
which are different in the strong sense that noné of them
is a submethod of any of the others.53

The proof is similar to the proof of Theorem 5. In (c), the infinitely
many method will be "divisor methods" with d] = (3 division by 0 being taken
care of as in Definition 14(c). The methods are obtained by letting d] =0
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and d, = 1, and choosing d such that o -1 <d <a-1+ %—for o=3,4,.
This gives infinitely many methods, and they are different by the argument in
the Tast paragraph of Section 7. :

Let F be such a method and assume that F{n; X]s cevs xk) > (r], cees rk).
If n < k, each party gets at most one seat and the upper bound condition is
trivial.f’4 Otherwise, ry > 1 for all i and rj > 1 for at least one: j. It
then makes sense to define

X,

a = min -4
T<i<k “r.
R

Exactly as above, it can be proved that

X. € a*n
11

) e bl

.i

and, for all i with r. > 1,

Either the first inequality is strict, or the second is strict for all i. The
upper bound condition follows.

Part (a) follows immediately.

To prove (b), let F be consistent and satisfy the upper bound condition.
As in the proof of Theorem 5(b), F is (strongly) balanced and membership
monotone.65 Suppose that F is not a submethod of FSD' Lemma I(d)‘appTies;
hence there exist x,, x,, ry and r, with

X X
1_ .2
R,
and
Flry#rys xps X5) > (rys ).

Division by 0 is defined as before. Hence ry > 1. ro = 0 is possible, but this
causes no problems.
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Conéiden-the sityation (r1+kr2; Yyr ones yk+1), where ¥y X and Yi = %, for
2 < i < k#¥1. For sufficiently large k, the exact representation of the first
party is

. : X
Y1=(”1+krz)w<”1“"
Find 54, ..., Skl such that F(r]+kr2; Yyseees yk+1) -+ (s], cens sk+]), with

sy maximized. If s, < vy, then s, > r, for some i with 2 < 1 < k, and Lemma 1{b)
can be used to transfer seats to the first party, contrary to the choice of Sq-
Hence Sq z_f1, contradicting the upper bound condition. This completes the

proof.

8.3 Characterizations of FMF

A couple of characterizations of the method of major fractions and its
submethods can be given. The first of these exactly characterizes the set of
metheds F for which FC FMF’ hence the result does not have the weakness
mentioned in the comments to Theorem 5.

Theorem 7
An allotment method F is pairwise fair if and only if FC FMF'

Proof

Assume that F is not pairwise fair. Then there exist n, x and r with
F(n; x) =+ r, such that there exist i and j for which

i
r'i-(r'i+rj)§_i_—+_)—(‘]_. >E-
Assume
*4 1
(8.]0) T’i - (Y‘i + Y‘J) ;;—;Tj > -2- .

which implies ry > 0 and

o - X,
(8.11) ' ro-f(rdr)—3d <o 1.
J i j 2
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(The symmetry of (8.10) and (8.11) shows that the assumption (8.10) does not
represent any loss of generality.) This gives

i I
(8.12) r _I<r.+r-. < "_'I:
iT7 J 2

By the definition of Fy., r is not an e1emen; of FMF(n; X}. Therefore, F is
not a submethod of FMF'

Conversely, assume that F is not a submethod of FMF‘ Then there exist
n, x and r with F(n; X} » ¥, such that there exist i and j with r; >0

and
X, X
— 7 < —Ly.
r'j+2-

-2

This implies (8.12), from which (8.10) and (8.11) follow. Hence F is not
pairwise fair, and the proof is complete. '

In [3], the method of major fractions is characterized in a different
but related way, given here as Theorem 8.

Definition 15

An allotment method F is relatively well-rounded " if there

do not exist any n, x and v such that F(n; x) -~ r and both
1 1 .

r; > x1 + > for some i and rJ < xJ - E—fbr some j.

66

If ry > Qi + %3 the "exact representation” of party i has been rounded

upwards, although its fractional part is less than one half; it has been
"over-rounded."67 Sometimes over-rounding is unavoidable, for example, in the
situation (1; 1, 1, 1). Similarly, rj < ﬁj - %—represents "under-rounding,"
which also sometimes is unavoidable. But it is not necessary to have both
over-rounding and under-rounding in the same allotment; if ry > ii + %-and

rj < ij - %3 one or more seats can be transferred to party j from party i so as

to correct at least one of -the “wrong” roundings. This is the idea behind the
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concept re]at1ve well- roundedness

The method of the largést remainder is relatively well- rounded as is

obvious from its definition. But the méthod of major fractions is essentially
the only consistent and relatively well-rounded method.

Theorem 8

Proof

(a)

(b)

{a) Fue is consistent and relatively well-rounded. If F‘QTFMF"
F is relatively well-rounded.

(b} Let F be a consistent and relatively well-rounded allotment

68
mmm.TManmP

FMF is consistent. Let F Q;FMF. If F is not relatively well-rounded,
there exist n, x, r, i and j such that F(n; Xys eees xk) > (r], cees 1),

, and

O —t

(8.13) ry > x; +

~

A 1
(8.14) | rj < xj -

n must be positive, hence Vi-is defined; see Section 4.1. By definition,

a Ky
X; = VE and similarly for j. (8.13) and (8.14) then give
X

By the definition of FMF’ r cannot belong to FMF("’ ,). :This contradigts
Fc FMF’ and (a) is prbved.69

Let F be consistent, and assume that F is not a submethod of FMF' Then
there exist n, x and r as in the latter part of the proof of Theorem 7.
Hence (8.10) and {8.11) follow. By consistency, F{r. +rJ; X xJ (r ' ¥y ).
But in the situation (r, +rj Xis X ), (8.10) and (8.11) say exactly what 15

needed to contradict re1at1ve1y we11 roundedness. The proof is complete.
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.t o e A S o 4 - A oy e e P -

A quota method, in the sense of Section 4.3, shall be defined by a guota
criterion which depends only on the number of seats and the total vote; see
Definition 5. The methods of Definition 14 can be described in a related way,
but the quota may depend on all the parties' votes. When the quota is
appropriately chosen for each method, the determination of the parties which
shall get a seat on the basis of the "remainder" (in addition to getting one
seat for each time the quota divides the party's vote), becomes particularly
simple. _

The method of major fractions will be considered first. When F(n; x} + r,
Definitions 13(a) and 14(b) imply that one can find a positiye real number Vi
satisfying

K X.
(8.15) max ——— < V. < min 1.
1ﬁﬂr.+%_MF_kkkh-%
1 5 Y'_1;0 1
This qgives, for all i,
X. x.
1 i ]
(8.16) e acr, < + 5.
Vg 2— 1 =Ty 2

(whenri =0, {8.16) is trivial. Otherwise, it follows from (8.15)).

This gives the following characterization of the method: Let a "price
per seat" or quota, VMF’ be given. Divide each party's vote by VMF' The
quotient is generally not an integer; round it upwards if it contains a "major
fraction" (that is, if its fractional part exceeds one half), and round it
downwards if its fractional part is Tess than one half. If VMF is cho;en
arbitrarily, these rcunded quotients need not sum to the total number of
seats and can therefore not be used as an allotment of seats. But it follows
from (8.16) that it is possible to find a VMF for which the total comes out
correctly.70 When VMF satisfies (8.15), the resulting allotment of seats
will agree with FMF'7] On the other hand, it is easily seen that if V. is
not chosen within the range given by (8.15), too few or too many seats will
be distributed.’2 Hence, for all n and X,



-44-

(8:17) ' FMF(“; Xps oees xk) = {(rl, cins rk)ez Tk,n1
there éxists a number Vyp > 0 such that
X X, ;
B < rs S+ g forall i), 3

MF MF

o[ —
—

_Genéral]y, VMF of (8.17) will not be unique. (It is unique if and only
if there is a tie, that is, if FMF(n; X) has two or more elements.) Although
y [ Serves the purpose of a quota or number 0f votes pér seat, it cannot always

M .
be chosen equal to the average number of votes per seat, V;; Neither Ean it
always be chosén to satisfy (4.2) or (4.3) of Definition 5 (with y = xi).

i=1

By exactly similar reasoning, the method of the highest average can be
characterized in the following way:

Fualns xgs woes ) = {lrps o r) €T

there exists a number VHA > 0 such that

X X,
V’L']iriiq‘l‘ for all i}.
HA HA
_ X,
Except in the case of a tie, this means ry = [VQL:} Hence the party
' HA

gets a seat for each time its vote divides VHA’ fractions being disregarﬂgd.
Going the other way, one can start with a divisor VHA and give party ihﬁjizj
seats. If VHA is chosen as large as possible, provided that all ;Re seats
shall be distributed, one gets the method of the highest average.

Comments similar to the onés made above about Vyp will apply to V,, as
well. In particular, a formula analogous to (8.15) is easily derived. VHA
will, however, always satisfy (4.3) of Definition 5; in fact, the stronger
statement V,, < V- is true. |

In the same way, when n > k,

FSD(h; Xps v xk) = {(r1, vees rk) '3 Tk,n[

there exists a number VSD > 0 such that
X,
. ’ _ .
< r. < —+ 1 for all il}.
Vo, — 1 —-VSD
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X,
(If V= = is allowed and — is set equ¢l to 0, the formula holds for all n.)

sD?
plus one seat for the remainder. (The possibility of ties is again ignored.)
Conversely, if VSD is given and party i is awarded ﬂ;l1 seats, VSD being chosen
as small as possible provided that not too many seats be distributed, the
allotment will agree with the method of the smallest divisor.75

VSD E_Vi-in‘a11 situations. Qtherwige, comments similar to the ones made
about VMF apply.

X.
Here r. = {%ﬁLj‘, and a party gets one seat for each time its vote divides V
SD

If there are only two parties, FﬁF and FLR are equal. Also, FHA will be
equal to the quota method obtained by going to the limit of (4.2) in
Definition 5.’° Similarly, Fgy is equal to the method obtained by going to the
limit of (4.3) in Definition 5.77

More generally, let there be two parties and let a real number a satisfying
-1 <a <1 be given. Then the quota method give by
(8.18) | V(n, y) = ——
is equal to the divisor method given by

(8.19) d =o+

a = 0 corresponds to FLR and FMF'

For more than two parties, the two methods given by (8.18) and {8.19} are
not equal. In particular, the quota method is not consistent; this can be
proved, for any a, by an example similar to the one used for FLR in Section 5.1.
But the two methods will be almost equal and will coincide on a large majority
of all situations.7g

The two classes of methods defined by letting a vary from -1 to 1 in the
descriptions above allow a great deal of flexibility. Various sets of objectives
can be accommodated by methods from the classes, and it is a question whether
there is ever a need for considering more general classes of methods. See
further discussion in [16].
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R e e L R ety

A series of cr1ter1a for evaluating allotment methods can be based on
the idea that the parties as far as possible shall be treated equally; the
unavoidable inequalities shall be minimized. But the problem is that this
idea can be formalized in many ways.

Fog.examp]e, let a situation (n, X). and a corresponding allotment r be.
given. F%-wi]] represent the average number of votes behind each seat won by
party i. 1In a proportional system, one would like these numbers to be as
equal as possible; differences represent “"inequalities." Therefore, if it is
possible to reduce the difference -;; - ;;— by transferring seats between
parties i and j, this should be donej It can be proved that for all situations
there exists an allotment for which no bilateral transfer of seats can reduce
the corresponding difference. Hence an allotment method can be defined which
chooses exactly the allotment for which no such reduction is possib1e.80 If
one regards this criterion as the "correct” measure of fairness or proportionality,

this method is therefore the ideal one.
- r.
Another possibility is to consider the numbers ;l s that is, the average
i

number of seats earned by each vote cast for party i. An argument similar to
the one above will lead to a different method. 81 X

Instead of looking at the ordinary differences between ?l-and ;13 one

i N

can consider their relative difference; the relative difference between numbers
a and b with 0 < a < b being defined by 2%, Thus a third method is defined. B2

Still another possibility is to chqpse the allotment which minimizes
X5

*
F s T r. T '

As one can imagine, a large number of criteria can be constructed by
comb{niﬁgg these possibilities in different ways. In [13], more than 60 such
criteria are listed and discussed.83 In my opinion, none of these stands out as
the "correct" criterion of proportionality, and neither can I find any one of
them clearly more compelling. than the others. The various criteria can give
some information relevant to the question of which allotment method should be

chosen in a given connectian, but they can in no way decide the issue, 84
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9. CONSISTENCY AND LOWER AND UPPER BOUND

No consistent allotment method can satisfy both the lower and the upper
bound condition. This follows from Theorem 5(b), by the following argument:

The theorem implies that such a method must be a submethod of FHA' But it is
easily shown by examples that no submethod of FHA can satisfy the upper bound
condition. For example, FHA(4; 5, 1, 1) = (4, 0, 0); the "exact representation"
of the first party is 52 < 3, and upper bound is contradicted.

The argument in the last paragraph depends on the number of parties being
unlimited, since the proof of Theorem 5(b) depends on this.85 A much more
elementary and explicit proof can be given, which also allows the number of
parties to be limited.

Theorem 9

{a) MNo consistent allotment method satisfies the lower and the
upper bound condition.

(b) Let K > 4 and Tet the number of parties be limited to K.
Then there does not exist any consistent allotment method
which satisfies the Tower and the upper bound condition.

(c} If the number of parties is limited to three, FMF is
consistent and satisfies the Tower and the upper bound
condition,

Proof

Assume that F is a counterexample to (a) or (b). By the lower and the
upper bound condition, F is {strongly)} ba]anced.86 Theorem 3, the proof of
which never uses situations with more than four parties, car be applied to
conclude that F is membership monotone. Consider the situation (3; 5, 1).
The exact representation for the first party is 2.5, and therefore at least
one aof the following two cases must occur: |

(A) F(3; 5, 1) » {2, 1). By membership monotonicity,
F(4; 5, 1) > (3, 1) or F(4; 5, 1) ~ (2, 2). The
latter violates the upper bound condition, hence

(9.1) F(45 5, 1) » (3, 1) .
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Consider the situation (5; 5, 1, 1, 1). The exact
representation for the first party is 3.125, and
for any of the other parties it is 0.625. Apart
from permutations among the three small parties,
the possible a]]ot@énté ére (4,1, 0, 0) and

(3, 1, 1, 0). If the former is an element of
F(5; 5, 1, 1, 1}, {9.1) and consistency implies
that the latter also is. This, in turn, implies
F(5; 5, 1, 1, 1) ~ (2, 1, 1, 1); by consistency
and the case assumption. This violates the Tower
bound condition. '

(B) F(3; 5, 1) » (3, 0). By membership monotonicity,
(9.2) F(2; 5, 1) » {2, 0) .

Consider F(3; 5, 1, 1, 1). The exact representation
for the first party is 1.875, and for the others it
is 0.375. When permutations again are ignored, the
only possible allotments are {1, 1, 1, 0) and

(2, 1, 0, 0). The former implies the latter, by
(9.2) and consistency; while the latter implies

F(3; 5, 1, 1, 1) > (3, 0, 0, 0) by consistency and
the case assumption. The upper bound condition is
violated. - This proves (a) and (b).

To prove (c), assume that EMF violates the Tower bound condition in a
situation with three parties. Assume, without loss of generality, that the
violation occurs for party 1, that is, assume F(n; Xy Xy x3) - (r], Tos r3)

and Py <Xy - 1. Since X] + Xy + X =rptr, tor, it follows that

=n
3

A 1 A 1 R . I
ro > %, +.§-or ry2 Xs * 5. Therefore, there exist i and j satisfying (8.13)

drd (8.14) in the proof of Theorem 8(a) in Section 8.3, except that
inequality (8.13) need not be strict. As was pointed out in note 69, strict
inequality in either (8.13) or (8.14) is sufficient to obtain a contradiction
to the definition of Fy,.. The proof is even simpler for a situation with two
parties. The upper bound condition is treated similarly. Since Fy. is
consistent, the proof is complete,
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10. MONOTONICITY AND {OWER AND UPPER BOUND

The method of the largest remainder has a number of desirable properties;
it satisfies the lower and the upper bound condition, and one can easily prove
that it is externally and internally vote monotone, But it is not consistent
and not membership monotone. According to Theorem 9, it is impossible to
achieve consistency and keep these desirable properties. But if consistency
is given up, can membership monotonicity hold together with the other conditions?
I do not know the answer to this question, but it may nevertheless be worthwhile
to formulate it precisely and make some comments on it.

Problem:
Does there exist any allotment method F satisfying (i) - (v) below?

(1) F satisfies- the lower bound condition.
(i) F satisfies the upper bound condition.
(iii) F is membership monotone.

(iv) F is externally vote monotone.

(v) F is internally vote monotone.

If the number of parties is limited to three, the method of major fractions
satisfies (i) - (v), by Theorem 9(c) and general properties of divisor methods.
To solve the problem when the number of parties is limited to K fon‘K > 4 seems
to me to be as difficult as to solve the general problem.

In [4], a characterization of methods satisfying (i) - (iii) is given.

Any positive solution to the problem must be a submethod of the méthod Q of
88 ' -

87

that paper.
If one of the conditions (i) - (iv) is removed, the remaining conditions
can be met. For (i), (ii) and (iii). this is trivial: (ii) - (v) are
satisfied by a submethod of the method of the smallest divisor;89 (i) and
(iii) - {v) are satisfied by the method of the highest average; and (i), (ii),
(iv) and (v) are satisfied by the methcd of the largest remainder.
(i) - (iii) and (v) are satisfied by the "quota method" of [1]. In the
framework of this paper, this method, FQ’ can be defined recursively as follows:

F.{0; Xys +ees xk) = (0, ..., 0).

Q
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To'chputé Fq(n¢1; Xps +ees xk), pick any element (r], ey rk)
of FQ(n; x], censy xk). Find those parties which can receive
seat number n+] without violating the upper bound condition.
These parties are said to be e1igib1e in the given situation.
Formal?y, the set E of eligible parties is defined by

X
-

i€ E if and only if r; < (n1) —
T X,
i=1 !

- Among the eligible parties, choose one according to the
criterion of the method of the highest average. That is, find j

X, DK,
- J i
such that j € E and rj T T’z-ri 7

Then give seat number n+l to party j, that is, let
FQ(n+1; Xqs v e xk) + (s], cees sk) with ST Ty + 1 and
sy =ry ford#J.
FQ(n+1; Xps +ees xk) shall consist of all allotments which
can be obtained in this way, by (possibly) different choices of

v and j.

for all i € E.

It is'obﬁidus‘that E is never empty, hence FQ is a well-defined allotment
method. By definition, it is membership monotone and satisfies the upper bound
condition. It satisfies the lower bound condition because FHA does: It
follows from the definition of FQ that a party in a given situation gets at
Teast as many seats by FQ as by FHA’ unless the upper bound condition causes
problems and makes the party ineligible at some stage; but if the upper bound
condition causes problems, the TQWér bound cohdition is certainly satisfied.go

Internal votemonotonicity obviously holds. But FQ is not externally
vote monotone. For example, FQ(IG; 74, 711, 7, 6) = (8, 8, 0, 0), while
FQ(16; 74, 73, 7, 6) = (8, 7, 1, 0); hence the second party loses a seat
because it gains two votes.g] The reason for this phenomenon can be described
as follows: In both situations, the first 14 seats will be divided equally
between the two large parties; there is no problem of eligibility. When the
15th seat is to be given out in the first situation, party 1 will be eligible
for its 8th seat; its exact representation is‘slightTy above 7. Party 1 then
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gets the 15th seats; the two small parties are far behind by the highest
average criterion. When the 16th seat is to be awarded, party 2 is eligible
for its 8th seat and gets it. The increase in the vote of party 2 from the
first to the second situation reduces party 1's share of the vote, Its
exact representation for 15 seats is reduced below 7, and only the two small
parties are eligible for receiving the 15th seat. Hence one of them gets
this seat, which is then irretrievably lost for the two large parties. For
16 seats there are no eligibility problems for the large parties, and party 1
wins the seat by the highest average criterion. Party 2, whose vote has
increased, must bear the loss.

I know of no method which satisfies (i) - (iv).
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11. A CHARACTERIZATION OF DIVISOR METHODS

11.1 The characterization

Theorem 10 below éssentially says that the divisor methods are exactly
the allotment methods which aré consistent, membérship monotone, vote monotone
and scale independent.

This characterization must, however, be qualified in two ways. First,
not only complete divisor methods satisfy the conditions. Second, it is
necessary to treat separately the case of "divisor methods with d] = 0."
Definition 13 simply rules out this possibility; hence Theorem 10 must do
the same. The condition necessary to achieve this is the following: If
one party gets an overwhelming majority of the total vote, it shall get all
the seats. At least when allotment methods are used in proportional elections,

this seems to be a reasonable condit'ion.92 It is removed in Section 11.3 below.

Theorem 10
(a) Let F bée a divisor method. Then {i) - {v) hold.

(1) F is cansistent.

(ii) F is membership monotone.
(i1i) F is vote mOnotone.93
{(iv) F is scale independent.

(v) For any positive integer a, theré exist x and y

(depending on a), such that Fla; x, y) > (o, 0)-94

(b} Let F be an allotment method which satisfies (i) - (v).
Then there exists a divisor method G such that F € G.

Proof
Part (a) follows from earlier results and remarks. In (v}, one can
choose y = 1 and let x be any number greater than gg., where du and d] are the

divisors given by Definition 13. 1

To prove (b), assume that F satisfies (i) - (v). For any positive
integer o, consider the class of situations {a; x, y) in which F can give one
or more seats to the second party. In order for F to be the diviser method
with divisors d1, d2, ..., this class must include all situations {(o; x, y}
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(=
(R

with = < Hg' and none with §-> -—. Hence define

1 d

« =

X ¢
1

D, = {a] there exist x, y, r and s with a = 53
s >0 and Fla; %, ¥y} » (r, s)}.

Since the votes x and y are always positive,'Da is a we?1-def1ned set
of positive numbers. It is also bounded from above, as can be shown as follows:
Choose x and y, by (v), to satisfy F(as x, y) + (o, 0). If £ s not an upper
bound95 on Du , there must exist x', y', r and s with 5;—> X r <a and
Fla; x', ¥') > (r, s). By scale independence, F{o; x'y, y'y) - (r, s). Scale
independence, applied to the definition of x and y, also gives Flo; xy', yy') >
(2, 0). Since x'y > xy', this contradicts (external) vote monotonicity.

It now follows that Da has a supremum or least upper bound.96 Define

da = sup Da .

By membership monotonicity, DaS; Da+]; hence da f_da+]. Consistency
implies F(1; 1, 1) -~ (0, 1}, which gives 1 ¢ Dl' No number greater than 1 can
be an element of D], since that would imply the existence of X and y with
x >yand F{1; x, y) =~ (0, 1}, contradicting {internal) vote monotonicity.
Therefore, d] = 1. Hence the sequence d], d2, ...s satisfies the conditions
- of Definition 13{(a). Let G be the complete divisor method given by these
divisors, _

It must now be proved that FS G. Since F and G are consistent and
membership monotone, Lemma 1{d) implies that this need only be proved for
situations with two parties. If F is not a submethod of G, therefore, there

must exist numbers x1, X2’ r] and rz such that

{11.1) F(r]+r2; Xy xz) - (r1, rz)
and
X X
1 2
—_—
d d
r r2+]

It is possible to find positive integers a and y such that

X X
* 2 97
(11.2) ag— <Yy <ag .
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(11.1) and scale independence give

(11.3)

F(r1+r2; axq axz) > (r], rz),

Choose 51, 52 and 53 such that

(11.4)

F(r]+r2+1; axys ax,s y) » (s], S, 53),

~and consider two cases:

(A)

(8)

sq = 0. ‘Then the distribution of seats between the first
and the third party in (11.4), contradicts (11.2) and the
conditions (i) - (v). Formally, this is shown as follows:
Spts, >ty therefore, by (11.3) and Lemma 1(b),

there 15 no loss in generality in assuming $1 21 and
©ax

s, > r,. From (11.2), — < d_ ; hence it is possible to

find x', y', ri' and rg' with ry' > 0, Flry; x', y') »

(r]', r3'), and

ax '
(11.5) _;l.< ?T )

Membership monotonicity implies the existence of t1 and

ts with t3 3' > 0 and F(s1; X', y') » (t], t3). Scale
independence gives F(sl; X'y, yy') +—(t], t3). (11.4),
consistency, scale independence and the case assumption
give F(s]; axTy', yy') - (S], 0). Since t; <5, and

x'y > ax\y', this contradicts (external) vote monotonicity.

>r

$3 > 0. Here the distribution of seats between the second
and third party in (11.4) will give a contradiction. Since
St s, Ly, it is possible to assume s, < r; and

Sy, < Tos by (11.3) and Lemma 1(b). This gives

Sp * 84 o * 1. (11.4) and Lemma 1(b) then imply the
existence of t, and t; with t2_5-525 ty < 55 and

F(r2+1; 8Xps y) > (tz, t3). Since Sy < Tps this gives

t3 > 0 and

>r
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ax
2
— ¢ Dr

Y +

2

The definition of the numbers da then implies

axz
¥ Ty

This contradicts (11.2), and the proof is complete.

Nowhere does the proof make any use of votes which are not integers.
Neither are situations with more than three parties ever used; hence the result
holds if the number of parties is limited to K for K > 3. It is wrong if the
number of parties is limited to two.98
provided by Theorem 10 has the same shortcoming as Theorem 5; see remarks in
Section 8.2. Partial divisor method must be permitted in the conclusion of
part (b),99 but not all such methods will satisfy the conditions. (Examples
of partial divisor methods which violate some of the conditions are given in
Section 11.2 below.)

In spite of this, the strength of the result should not be understated.
It does say that any method satisfying (i) - (v} will be equal to a divisor
method, except possibly on situations in which the divisor method produces a
tie. For all divisor methods, ties are extremely rare.

The characterization of divisor methods

- " e it o L e e k- -

A1l the conditions (i) - (v) are necessary to prove Theorem 10(b}, and
hence they are also independent of each other. This is shown by examples
below; for each of the conditions, an allotment method is constructed which
satisfies the other four conditions but which is not a complete or partial
divisor method. By the theorem, the method must then viclate the fifth
condition.

Consistency is the only condition which connects allotments for situations
with a different number of parties. Therefore, the other conditions, including
both internal and external vote monotonicity, will be satisfied by the method
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F. defined by
Falns xp %5) = FHA(“3 X)s X5)

Filns xps vons x) = Fyelng xps ol %))

for k > 2.

This method is also neutral. The argument at the end of Section 7 shows that if
two comb]ete or partial divisor methods are equal on all situations with two
parties, ﬁhey have essentially the same divisors. If Fi is such a method, it
must therefore be a submethod of Fyps But this is clearly impossible.

A method which is not membership monotone but satisfies the other conditions
cannot be balanced, not even weakly balanced. (This follows from Theorem 3.)
An example of such a method is Fiys defined as follows:

For a given s1tuat1on {n; x1, . xk), compute an element of

HA lZJ cees xk) Double each party's representation. If
n is even, this gives an element of Fii(n;'xi’ cens xk). If n
is odd, there is one seat left; give it to the party with the

largest vote {or to any one of these, if there are two or more
parties with an equal vote).

Fii(n; Xys +ees xk) shall consist of all allotments that can be
obtained as described above, for all possible choices of elements
in FHA(t%J; Xps eens Xy ) and all possible choices of the party
which gets the last seat when n is odd. :

It is nct d]tficult to see that F satisfies neutrality, internal and
external vote monoton1c1ty, scale 1ndependence, and condition (v). Consistency
is a Tittle more complicated but can also be proved 100 F (3 3, 2) = (3, 0)
and F (4 3, 2) = (2, 2); hence the method is not membership monotone. To see
that 1t is not a part1a1 divisor method, suppose that F . ¢ G where G is a

divisor method with divisors dy, dy, ... . Since Foi(452, 1) = ((4, 0), (2, 2)},
this w0u1d imply é;-= éé-— éL-= é;— This contradicts i (3' 3, 2) = (3 0).
3 4 7

Vote monoton1c1ty will be v1o]ated and the rest of the conditicns

satisfied by the method F111, which reacts in the "wrong“ way to an increase
Z 1 1, 101
.(n; x] cens xk) = FHA(”’ e ).

in a party's vote: "
1 K

111
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Any partial or complete divisor method is vote monotone; therefore, Fiii is
not such a method.

Scale independence is not satisfied by Fiv’ defined as follows:

"1 "k
Fiv(n; Xys «oes xk) = FHA(n; 27, L. 20,
It is éasy to show that Fsy satisfies conditions (i) - (iii) and (v) of
Theorem 10. Suppose Fivg; G, where G is a divisor method with divisors dl’
dys --. . Fi (352, 1) = (2, 1), which implies 311—3523— On the other hand,
F. (35 5, 3) = (3, 0), which gives %3% This is a contradiction.

Let FV be the method of the smallest divisor, modified as described in
note 63, so as to be vote monotone. It is easily seen that FV satisfies
(i) - (iv), but (v} is violated, since FV(Z; X, ¥y} = {1, 1) for all x and y.

A1l complete and partial divisor methods satisfy {v); therefore, Fv is not
such a method.

This completes the demonstration that all five conditions are necessary
to prove Theorem 10(b}.

As mentioned in Section 11.1, it is necessary to inciude partial divisor
methods in the conclusion of Thearem 10(b}, but not all such methods satisfy
the conditions of the theovrem, One can then ask whether the five conditions
are independent even within the class of partial divisor methods. The answer
is no; it is easy to see that any partial divisor method is internally and
externally vote monotone and satisfies condition (v). But (i), (ii) and (iv)
are independent within this class; for each of these conditions one can find
a partial divisor method which violates that condition but satisfies the others.

In note 49, an example is given of a method which satisfies conditions
(1i) ~ (v) but which is not consistent and not neutral. An example which
satisfies neutrality can be constructed by using the fact that consistency
js the only condition which 1inks allotments for situations with a different
number of parties. Let F] be the submethod of FHA obtained by breaking ties
in favor of the smaller party when there are only two parties and in favor
of the larger one when there are three or mofe parties.102 Then F1(2; 4, 2) =
{1, 1) and F](Z; 4, 2, 1) = (2, 0, 0), contradicting consistency. Neutrality
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and cbnditiqng (i1) ~ (v) are easily verified.

A method which is membership monotone but not consistent cannot be
balanced, and if it is a submethod of a divisor method, this cannot be strict.
Consider the method F,, defined as follows:

Compute an element of Fz(n; X]s vees xk) by first distributing

[g] seats according to the method of the hi$g§st average, ties
Suppose that

If n is odd,

being broken in favor of the 1argest party.

this gives an allotment (r], . rk) €T Lh .
k,gj

find the party which is next in line for seat number i%d + 1
according to FHA"but now breaking ties in favor of the
smallest party. That is, find a j:such that, for all i,

X. X X X,
s or (—3 - = 1 and X f-xi)' Then let

j i rj + 1 rs + 1
Folns x5 ""ka) > ($q5 +ves 5 ), where s, = Zri for i # j,
and sj = er if n is even and sj = Zri + 1 if nis odd.

Fz(n; Xys vees xk) shall consist of all allotments that
can be obtained in this way.

It is easy to see that F2 satisfies (iii) - (v), and consistency can also
be proved.104 F2(3; 2, 1) = (2, 1) and F2(4; 2, 1) = (4, 0); hence the method
is not membership monotone. F2 is a submethod of the divisor method given by
¢, =251, that is, by the series of divisors 1, 1, 2, 2, 3, ... .

Finally, Tlet F, be the submethod of FHA obtained by breaking ties in
favor of the party i for which [xi - 100 is minimized. Conditions (i) - (ii{)
and (v) are satisfied, but scale independence is contradicted, since F4(2; 2, 1)

= (2, 0) and F4(2; 200, 100) = (1, 1).

11.3 Genera]ized_divisor mgthods

e " T Y

The allotment method Fv’ used in Section 11.2 as an example of a method
which satisfies conditions (i) - {iv) but not condition (v) of Theorem 10, is
almost a divisor method. It can be defined as described in Definition 13,
except that d1 = 0. This is no coincidence; it will be shown below that
conditions (i) - (iv) essentially characterize a class of methods obtained by
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allowing divisors equal to 0 in Definition 13.

Definition 16
An allotment method F is a generalized divisor method if F can
be described as follows:

There is given a finite or infinite sequence
MO, MI’ een gf integers, with Me =0 and MB < MB+1
whenever MB and MB+1 exist, For each 8 for which
MB existsE }here is given a sequence of real

B8 _ ) .
numbers du , where oo = 1, 2, ... MB+T MB if MB+1
exists and o varies over all positive integers if

MB+1 does not exist. These numbers satisfy

(B) (B) _ 4(B)
du > 0 and da 5_da+].

To compute F(n; Xys «ees xk), find the largest
integer g such that MB-k_g n. Distribute n'= n-MB°k
seats by the divisor method G, given by the divisors

(B) (B)
d] ’dz y sa1e o IfM
get more than M

B

gh] EXists, no party shall
B+]-Ms_seats at this stage. Suppose
that GB(n 3 Xqs ees xk) > (r], cees rk). Then
F(n; Xps «ees xk) -+ (MB+r], cees MB+rk).

F(n; Xys ees xk) shall consist of all allot-

ments which can be obtained in this way.

The description is well defined. Since MO = 0 and the sequence MB is
strictly increasing, there will always exist a largest B for which MB-k <.
When B is chosen in this way, (M8+1-MB)-k >n - MB-k, hence the restriction

on the number of seats each party can get when G, is used, cannot cause

B
problems. _
The choice of 8 is unique for any given situation (n; Xps eees xk).
Therefore, F(n; Xqs eees xk) will have exactly as many elements as
GB(n';x], cees xk).
The numbers MB will represent "thresholds"; no party can get more thar
MB+T seats before all parties have reached MB' Between two thresholds, a

generalized divisor method works as an ordinary divisor method. There may be
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infinitely many thresholds, or there may be a Targest threshold beyond which
the generalized divisor method works exactly as an ordinary one.

For a given generalized divisor method, the sequence MO, 1, eer i8S
uniquely determined. For each B, the numbers d%s) (B), ... are unique up
to multiplication by a positive constant.

Every ordinary divisor method is a generalized divisor method; MB will
not exist for B > 0 and the numbers d(o) will be the ordinary divisors.

The method F of Section 11..2 (that is, the method F mod1f1ed as
described in note 63), is also a generalized divisor method Here MD = 0,
M] =1, MB does not exist for g > 1, d(o) = 1 and d(]) =q fora =1, 2, ..
In general, if one wants to guarantee each party at least m seats, a
generalized divisor method with M1 = m can be used. 105
Theorem 11

(a) Let F be a generalized divisor method. Then F satisfies

(i) - (iv) of Theorem 10.

(b} Let F be an allotment method which satisfies (i) - (iv)
of Theorem 10. Then there exists a generalized divisor
method G such that F & G.

Proof
Part (a) is easily proved. :
To prove (b), let F be an allotment method which satisfies (i) - (iv).
Let MO = 0, and define Q&O), fora =1, 2, ..., exactly as D was defined in

the proof.of Theofem 10. As in that proof, it can be shown that sup D%O) 1

and D(O) = ( ). If all the sets 0(0) are hounded from above, one can set

a+'|
(0) = sup D(D and use the proof of Theorem 10 to prove that F is a submethod
of the ord1nary divisor method given by d%o) déo), «-- . QOtherwise, there

will exist a largest fumber o for which Déq) is bounded from above. let M]
be equal to this number a. Then M, > 1 > My.  Define

(0) _ (0) _
da = syup Da , foro =1, ..., M].



-61-

Assume, by induction, that M_ has been defined for the positive integer

B. For aa=1, 2, ..., define

B

Déﬂ) = {a|there exist x, y, r and s with.a = 53 5 > MB

L

and F(2M +a; X, ¥) > {(r, s)}.

By consistency and vote monotonicity, sup D(B) 13- and by membership

monotonicity, D(B)Ci qéf% If all the sets D B are bounded from above, the

numbers MB+1’ g+2 etc. shall not be defined. Otherwise, find the largest
o such that qéﬁ) is bounded from above, and define MB+1 = MB +a. Sincea > 1,
MBH > MB' In any case, define

dée) = sup DéB),

for all positive integers o if MB+1 is not defined, and for a =1, ..., MB+1
otherwise.
If M 1 is defined, one then goes on to define D$B+]), etc. The numbers

M, and d B§+defined in this way will satisfy the requiremenis of Definition 16.
Let G be the generalized divisor method determined by these numbers.

In order to prove F< G, situations with two parties will first be
considered. Suppose that there exists such a situation which contradicts
F < G. That is, assume that there exist numbers X1s X3 Ty and r, such that

(11.6) F(r1+r2; Xy s x2) - (rl, rz)
and
{(11.7) not G(r1+r2; X1 x2) > (r1, rz).

Let these numbers be chosen so that min(r], r2) is as small as possible,
subject to (11.6) and (11.7). Let B be the largest number such that
MB 5_m1n(r1, rz), which is well defined by the properties of the sequence
MO’ M], Define

i i—MB,for‘i=T,2.
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There must exist numbers r¥ .and r2 with G(r+ros x s Xo) + (P], r ), and
there is no loss of genera11ty in assuming ry > r] Fytry > ZMB, wh1ch
implies r? > MB and g > MB If MB+1 ex1sts and r, > MB+1’ then fz > MB +
This implies ry > HB+1 by the definition of G. Hen;e e MB+1’ which
contradicts the definition of g. This contradiction shows that ry < MB+1’
provided that the latter number exists.

There are two ways in which (11.7) can hoid. For one thing, r, can

exceed the next “thresho]d"-MB+]. Formally,
(11.8) M8+i exists and m >'MB+1eMB.
If (11.8) does not hold, MB << MB+1 for i =1, 2 {(or MB-E r, and

MB+1 does not exist). Then (11.7) 1mp11es that the part1es representation
above the "threshold" MB is inconsistent with the divisor method GB of
Definition 16. Since ry > r{s this implies

I
ot

Then positive integers a and y can be found such that

S X
(11.9) aﬁIEj—< y < a;ﬁéj—-'
dm m,t]
By 2
d(Bl] is also defined when {11.8) holds, in which case it is clearly

m
possible to choose a and y such that the right-hand inequality in (11.9) is

satisfied.
(11.6) and scale independence give F(r]+r2; axys axz) > (rl, rz).
Now s;, s, and s4 can be chosen such that

(11.10) F(3M

Bfm]tmziis axys axy, ¥) > (s], 552 $3).

If Sy < MB’ then ;> MB for i = 1 or 2. By consistency, there exists
a s1tuat1on with two part:es in which F can give the allotment (s . 33). This

allotment can never be produced by G, and since 55 < MB §_m1n(_1, rz) the
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choice of r] and ro is contradicted. Two cases remain:

(A) S5 = MB‘ As in case (A) of the proof of Theorem 10, the

allotment of seats to the first and the third party in
(11.70) will contradict the assumptions. If (11.8)} holds,

D&B) is not bounded from above, and it is clearly possible
1

to find numbers x', y', r ' and ry' with ry' > Mg,
F(2Mgtm 3 x's y') > (r)"5 ry'), and

If (11.9) holds, such numbers can be found by the left-

hand inequality of (11.9) and the definition of d;B)
1
As in (A) of the proof of Theorem 10, one can assume

S;p Zryand s, >r,. EMB +my o= MB + r]-f.MB + 545

therefore, membership monotonicity implies the
existence of t, and tg with t; > r)' > M, and
F(M8+s]; X', y') + (t1, t3). From this and (11.10),
a contradiction to external vote monotonicity can be

derived.

(B) sS4 > MB. This is similar to (B} in the proof of

Theorem 10. s] < r1 and s2 <r, can be assumed, and

s2 S3 21, *+ MB + 1 follows. Hence there exist

t, and t, w1th ty < 555 tg 5_53 and F(M8+r2+1; Xy, y) -~
(t2, 3). ty, <5, <y gives t3 > MB; therefore,

a; € 0(511. The right-hand inequality of (11.9) is
contradicted.

F and G.are both consistent and membership monotone. F < G now follows
by Lemma 1(d), and the proof of Theorem 11 is complete.
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12. MAXIMIZING UTILITY
| D;_uj; ..+ Of real numbers be given; where u, is a
06 ahjoyed by a voter if the party for which that

Let & sequence u
measuré of the utility
person has voted is awardéd ¢ séats in an election. Furthermore; assume
that total social utility can be found by adding the utility of the voters.
If there are k parties which get Xys -v-s X, VOtES and rq, ..., ¥, seats,
the social utility is

(12.1) U ¥ = ] %geuy
1 i

1 bt

i
Now it is possible to define an allotment method by requiring that
social utility be maximized. That is, an allotmeht method can be defined by
(12.2) F(n; x} = {reT, Uk, 1) > U(x, )
for all s < Tk,n}‘
Presumably; the persons who vote for a party will préfér that the party
get as many seats as possible. Therefore; it is reasonable to assume

(12.3) 7 foro =0, 1, ... .

ua < um_
Another reasonable assufiption is that a Seat is more preciobus to a party
and its voters when the party has few seats than when it has many. Formally,
this means

u, - ua_1 > uu+i - ua; fora=1; 2; ..

A slightly weaker condition is obtained by requiring that the seats at least
not becorie fore valuable as a party dets more of them; that is
107

(12.4) Uy, = ud;i'z Ui - U, fora=1; 2; ... .

When tonditions (12.3) and (12:4) hold, the method défined by (12.2)
will be a divisor method; as shown by the following théorem.
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Theorem 12
Let a sequence Ugs Ugs oees of real numbers be given, assume that (12.3)

and (12.4) are satisfied, and let the allotment method F be defined by

(12.2). Let G be the divisor method given by the divisors du = ————l-————,

Uy ~ Uu-1
fora=1, 2, ... Then F = G,
Proof
It follows from (12.3) and (12.4) that the sequence dT’ d2, eby s
well-defined, and that 0 < d, f_da+1 for all . The sequence therefore
defines a divisor method by Definition 13.
When party i gets its seat number i the social utility is increased by

xse{u, - u By (12.4), this expression is, for each i, a non-decreasing

).
i ri r1-1

function of r,. Therefore, it is possible to find the elements of F(n; X) by
distributing one seat at a time, each time giving the seat to the party for

which the number xi-(ur 41 7 U, ) is largest, where rs is the number of seats
i i X,
party i has previously been awarded. Since x.+{u -u_ )= — , this
1 ri+] ' dr.+1
is equivalent to the computation of allotments for the divisor melhod G, as

explained in Section 7.]08 The theorem follows.

Conversely, any divisor method can be obtained by maximizing a utility
criterion; if the divisors are d1, d2’ ...y the utility u, of having voted
for a party which gets a seats can be defined by |
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13. MERGER AND DIVISION

13.1 Definitions

The question to be asked in this section i$: What happens when two
partiéS'mefge? It will be assumed that the merger does not cause any real
change; that is, it is assumed that the merged party’s vote is equal to the
sum of its parts"votes, while everything else remains unchanged. In formal
terms, the question is: What is the connection between (r], rys ""‘Pk) and
(ST, Sgs +ees sk), when F(n; Xps Xos vees xk) + (r], Pos wees rk) and
F(n; X] + Xps x3, cees xk) - (s], 53, cevs sk)?

In general, it is not reasonable to require that the new party get
exactly as many seats as its parts got. For one thing, Such a requirement
will immediately contradict internal vote monotonici'ty.m9 It is possib1é,
however, to require that the merging parties never lose because of the
merger. Instead, it can be required that they never gain. Weaker conditions
are obtained by requiring that the merging parties shall never lose {or win)
more than one seat. Still weaker versions are of course possible, but will
not be consideréd here. When the possiblity of ties is taken into account,
this leads to the following definition.

Definition 17110

An allotment method F is said to

(a) encourage merger if F(in; X1s Xos +eid xk) - (rl, o oo rk)
implies the existénce of (51, 33, cees sk) with
F(n; x1 t Xps X35oeeis xk) + (s], S35 ees sk) and
S12T YT

{b) restrict loss by merger if F(n: Xys X3 +ees xk) >
(r], Ty vons rk) implies the exiSténCe_oF (515 Sgs --n 5, )
with F(n; Xp ¥ Xps Xz ues xk) -+ (51, Sgs +ees sk) and

(¢) discourage merger if F(n; X)s Xps vees xk) -+ (r], Tos ooes rk)
implies the existence of (51, Sgr eea sk) with
F{n; Xp ¥ Xy X5 veis xk) -+ (s], Sgs e sk) and
Sp I Ty
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(d) restrict gain by merger if F(n; Xps Xos aes xk) -
(T1, Pos «evs r.) implies the existence of (51, Sqr vees sk)
with F(n; X; + x2i1§3, cers xk) > (51, S35 vevs sk) and

s.I f_r] + r2 + 1,

In a case where no ties are involved, condition (a) simply says that
the merging parties do not lose, When there are ties, the condition says
that no matter how the ties are broken prior to the merger, it is possible
to break the tie after the merger in such a way that the merging parties
have not lost. This does not imply that a loss can never occur if the ties
112 The latter
condition is stronger than (a); for example, it is not satisfied by the
13 while that method satisfies (a), as will
be seen below. Similar comments apply to parts {b) - {d).

The trivial method F_ satisfies all the conditions of Definition 17.

T
This means that the conditions by themselves are not very strong. Together

before and after the merger'are broken independently.

method of the highest average,

with other conditions they will, however, have considerable strength; see,
for example, Theorem 15 below.

Because of the phenomenon just described, Definition 17 does not
treat merger and division symmetrically. The definition considers the
possible effects of merger, and another set of concepts is obtained by
looking at division instead. For example, the following definition would
correspond to (a):”ﬂr -

F is said to discourage division if F(n; Xp + Xy Xga vees xk)

> (s], S35 eees sk) implies the existence of (r1, Fps +ees rk)

with F(n; X1s Xos «ees xk) > (r], Pos +ees rk) and

ry tr

17 T2l
The difference hetween these two sets of definitions is not very

important; only when ties occur can there by any difference at a]].lls

e e A - e -

The method of the largest remainder neither encouraées nor discourages

merger,]]ﬁ but it satisfies the weaker conditions of Definition 17.
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Theorem 13 _
The method: of the--largest remainder restr1cts Toss. by merger and

restricts gain: by merger. 17

Suppose that FER‘";=xﬁ’ cees xk) (r], cees rk) and:

FLR(n; Xp ¥ Xoys Xgs eens xk)i+ (s1gws3, ches sk) Since the total vote and
the total number of seats remain: unchanged, so- does. the: exact representation
of parties 3, ..., k. The exact representation. of the merged: party is the
sum of these numbers for its parts. Moreover, it is clear that

Li].' + Lﬁzj < |.;E + gz.l <. l.g"_l + 1.?(2] + 1.

Assume- that S <Tryp ¥, - T. Then parties 1 and: 2 must both have
been awarded seats for. their remainders in the: first situation, while the
merged' party did not get such a seat in the second situation, and
Lx]j + szj wA; x2J . This jmplies x - Lx2J > 0, and: hence
X * - Lx + X J> X1 Lx Ek Since the same number of seats are
distributed-on the basis of the remainders. in- the two situations: and: the
remainders  for parties 3, ..., k are unchanged, this:?s?achntradfction.

Assume that Sp > T, ¥ 1. It fol1ows'ﬁhat=[§r + §2J = L§]Jf+'L§2J + 1,
Moreover, the merged party must have been: awarded a seat for its remainder,
while neither party 1 nor party 2 got such a seat in the first situation.
Since x2 - szj < T, it also: follows that x1 + x Lx] + xzj < x Lx J.
This is a contradiction, because fewer seats are d1str1buted on: the bas1s of
the remainders in the second' situation. than in the first.

The: theorem: s trie for any quota method: (see Def1n1t1on 5 in Section 4.3).

The proof canube'appTiedéeSSEnt$alﬁy‘unthanged* Vo= V{ny Z X; Y will be the
X5 i={
same in the two. situations: under consideration, and TT"S sybstituted for x

in- the proof. 18

13.3 Divisor methods

For gomplete divisor methods, there exists.a: straightforward connection
between the divisors defining: the method: and its satisfying the various parts
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of Definition 17. The characterization also permits "divisor methods" with
d1 = 0, as described in Definition 14(c).

Theorem 14]]9

Let F be a complete divisor method, or a "divisor method with

d] = 0" as described in Definition 14{(c). Let dl’ d2, ...y be

the divisors which define F. Then:

{a) F encour?ggs merger if and only if da+8 f-du + dB fpr all
o and B.

(b) F restricts Toss by merger if and only if dygy S 4, + dg
for all o and B.

(c) F discourages merger if and only if dyp-q 2 4, + dg for
all o and B. '

(d) F restricts gain by merger if and only if da+B >d + dB

for all o and B.

Proof
(a) and (d} will be proved; the proofs of (b) and (c) are similar.

For {(a), let da+B f-da + dB for all a and B, let F(n; Xps Xgs ccea xk)

- (r], Tos «evs rk), and assume that the allotment has been found by

computing quotients ai-and ordering them as explained after Definition 13 in
41

Section 7. Let a be the value of the largest quotient which belongs -to any

of the parties 3, ..., k and for which no seat was awarded. Then

jh—r> a and j&; > a 121 The assumption d <d_ +d_ then implies
d - d, = P ritr, — ryecor i
r r 12 1. 72
1 2
X1 + X2
4> a By the definition of a, parties 3, ..., k can at most have
r,+r
1°2

n - (r1 + r2) quotients greater than a. In the situation (n; X] ¥ Xos Xga eues xk),
it is therefore possible to give the first party at least " + rz,seats. Hence
F encourages merger.

To prove the converse implication, assume that d for some

atB du * dB
a and B. Then it is possible to find positive integers x and y with
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?T_—x and JL— -———JL Assume that é£-< EF—; the opposite case can be
a o+B ‘ o kB o B
treated s1m1}ar1y By break1ng ties in favor of part1es 1 and 2, one can

find rys v, and ry suchi. that F{2o+8-1; Xs ¥ x) + (r], Vs r3) and ry < a,
which g1ves ry + r2 >a + 8. But F(2a+B-13 X + y, x} > (sqs 53) implies
s3 > o and 5, <o+ g therefore, F does not encourage merger.

Tp prove {d), let da+B > da + dS for all a and B, and assume that
F{n; Xys Xps wees xk) - (rl, Fos +ees r3). Let b be the value of the
smallest quotient for which any of the parties 3, ..., k got a seat. Then

X X
1 2 C s
b > and b > Since d > d +d » this implies
d ]+] dr2+1 ]+r2+2 = r1+1 r2+1
X+ %, '
b > ——=-. Parties 3, ..., k have at least n - {r, + r,) quotients equal
~d _ ‘ = 1 2
r1+r2+2

to or greater than b; in the situation {n; x; + X5 X35 +..» X, ) one can
therefore avoid giving the first party its seat number " tr,* 2. This
shows that F restricts gain by merger.

Conversely, if d < d + d, for some o and B, there exist integers

B B
X and y with E_ < TT_“Z and gL- 7T"“x" There is no loss of generality in
o otB B. o+
assuming a—- 3_§Lu. By breaking ties in favor of parties 3 and 4, one can
o B

find ry, 1y, ry and r, such that F(3a4B-25 X, ¥s X» X) »—(r1, Py F3s rp)s

ry > a and Py 2 % which gives rptr,<ath- 2. F(30+p-2; x + ¥y, X, X) »

(51. S3s 54) implies $; > at B hence F does not restrict gain by m,erger-.]22

Parts (a)} ghd (d) of Definition 17 mqke up a natural pair of conditions;
when ties are ignored, they say that a merger never leads to a loss of seats,
and if there is a gain it amounts to at mqét one sggt.' Theorem 14 implies
that a divisor method will satisfy these two conditions if and only if
da+B =d + dB for a1l o and 8. If d, > 0, there is n?Z;oss of generality in
assuming d, = 1, and it follows that d = o for all a. Hence the method
of the highest average is the only d1vxsor method which encourages merger

and restricts gain by merger. Similarly, parts (b) and (c) of Definition 17
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will hold for a method covered by Theorem 14 if and only if da+B-1 = da + dB'
- This gives d? =0, and if d2 > 0, the method of the smallest aivisor emerges.

13.4 A result from 1907

The conditions of Definition 17(a) and (d) will characterize the method
of the highest average not only within the class of divisor methods, but
within a considerably Targer class. A result to this effect was announced
as early as 1907 by the Danish mathematiciar A. K. Erlang. In [9], Erlang
made the following claim:]24

In order that none of the voters, by using their votes in
especially sophisticated ways (instead of voting for their
party list), shall be able to alter the outcome of the elec-
tion to their advantage, it is necessary and sufficient that
one observes the following ground rules:

I. A party must not be able to gain by a part of it not voting.

II. A party must not be able to gain by a part of it voting for
another 1ist.

III. A. By merger of two smaller parties into a larger one,
none of the parts can lose (by division of the
larger party none of the parts can gain),

III. B. By merger of two parties into one, the total gain (by
division of one party in two, the total loss) cannot
exceed one seat,

It shall now be shown that there is only one Egable method,
the one proposed by the Belgian d'Hondt, ]

As quoted, Erlang's claim is not correct. His proof uses conditions

which are not stated.]26

The idea, however, is correct. The proofs of
Theorems 15 and 16 below are based on Erlang's work, and Theorem 16

corresponds closely to his result.

13.5 Characterizations of FHA and FSD

T T e e e e ——

The characterizations of FHA and FSD given at the end of Section 13.3
are generalized by the following theorem.
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Theorem 15]2
| (a) An allotment method F is consistent and strong]y balanced,
;encourages merger and restr1cts ga1n by merger 1if and on]y

if F = FHA

(b) An a]]otment method F 1s cons1stent and strong]y ba]anced
d1scourages merger and restr1cts 1oss by merger if and 0n1y

if F= FSD

Note that the conclusion of the theorem is equallty, not only inclusion
as in severa] other theorems It 1s necessary to requ1re that F be strongly
balanced, since F is weak]y ba]anced and satisf1e; the rest of the conditions.

It fo11ows from the proof be?ow that the theorem is correct if the
number of part1es is 11m1ted to K for K > 4

In the proof, it is necessary to make iterated use of the conditions of
Def1n1t1on 17. But it is not 1mmed1ate1y obv1ous how th1s can be done. If

F encourages merger and F(n X3 Xgs X3 x4) > (r], ros r3, Ty ), then there

128

exist $1> 83 8 and Sg w1th F(n kl + x2, x3, x4) + (51, 53, 54) and s] > 1,
Moreover, there exist t] and t4 with’ F(n x] + X, + Xgs x4) > (t], 4) and

‘ t1 3_51 + S5 But th1s does not necessar11y g1ve t] > r] + r + r3s since
noth1ng is known about the re]ationsh1p between r3 and $3 Th1s problem

could have been taken care of by a s]1ght strengthen1ng of Def1n1t1on 17, but
this is unnecessary s1nce cons1stency and membersh1p monoton1c1ty imply that
it is p0551b1e to make 1terated use of the cond1t1ons, that is, apply them to
A generaT resu1t to th1s effect can be

aj case is needed for the proof of

merger of more than two part i
proved from Lemma l(b) but only a spe
Theorem 15.

Lemma 2
Let F be a cons1stent and membersh:p monotone allotment method assume
F(r + r2, x], xz) *> (r], rz), and 1et n be a p051t1ve 1nteger

(a) If F encourages merger, then there exist 51 and s, with
F(nr1 + rps nx]. xz) > (s], s ) and 31 > nry.
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(b) If F restricts loss by merger and " > 1, then there exist
51 and s, with F(an-n+]+r2; nX; x2) -+ (s], 52) and

512"ﬁ -n+1.

(¢} If F discourages merger, then there exist 5 and‘s2 with
F(nr1+r2§ nXqs xz) - (51, 52) and sy < nry.

(d}) If F restricts gain by merger, then there exist s; and s,
with F(nr1+n-1+r2; nX, » x2) > (s], 52) and 5, <nry +n - 1.

Proof

Parts (a) and {d) will be proved; (b) and (c) are similar. The proof
is by induction on n.

For n = 1, all the parts are trivial.

Assume that (a) holds for a giver n, that is, suppose that there exist
$1 and S, such that ‘ ' |

(13.1) F(nr1+r2; nXqs x2) - (s], 52)

and Sl > nry. This implies S5 < 1y Choose r1', s]' and 52' such that
F((n+1)r]+r2; Xy, Xq x2) > (s]', r]', 52‘), and such that the sum

(13.2) s=8¢" | * [rp=ryt' |+ |52-52'[

is minimized. Assume sz' > Yo (This will lead to a contradiction.} Then
j 3 ] 1 1 - = - L] -
$,' > S,. Since spt ot tsyt = §n+])r] tr,=s b ts,, this implies
that either s]' < sy or r1' < Ty If the former holds, {13.1) and Lemma 1(b}
can be used to change 51' and sz' so as to reduce the sum in (13.2},
contradicting the choice of 51' and 52'. If the latter holds, let m = rl' + 52‘.

Since F(r1+r2; X1» x2) -+ (r], rp), Lemma 1(a) implies the existence of
f](m) and rz(m) with F(ms x;5 x5} » (r](m), rz(m)) and either rj(m).i ry for

i=1and 2, or ri(m).i r; for 1 =1 and 2. Substituting r](m) and rz(m)
for r]' and 52', which is possible by consistency, reduces the sum in {13.2)
and gives a contradiction. Hence 52'_5 ro Since F encourages merger, there

i i . ' : : o~ e 1
exist t; and t with F((nf])r]+r2, (n+1)x], xz) - (t1, t,) and t1;2-51 +.r],.
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anté‘if’ ¥ ff’ 2 Gn*TifT + rz - 523_3 Gn*PNrT,.this\proves part (a) for
n + 1 and completes the induction step. _
Then suppose (d) holds for n. That is, ﬁheré'exist.sy and‘s2 wi th
o e e T T Hanea & - CAGea B ! . ' : n .
and sy <nary +n - 1. " Hence Sg 2 ¥y Choose ry ", 3%y S, and s," such that

These numbers shall be chosen so as to minimize a sum similar to (13.2). From

the aSsumption'sz' + 52" < 2r2; a contradiction can be derived. (52' + 52“ <
. " : ot 1 ) . 1 !

2r2 g_fz f S, gives s, + ry > s, + - Hence either 51 > 8 0rryt >

Also, either sz' < Ty < S, 0r 32"'< ry < S, Theri one can proceed as above.)

Therefore, 32' + 52" > 2r2. Since F restricts gain by merger, there exist

tT’ t2 and t3 with

F((n+1)r1+n-1+2r2; (n+1)x], X5 xz) > (t], t, t3)
and t, < sj‘_+ Pt = (n+T)r-1 -1 2r, - s, +s,") £ 1 < () 4.
This also gives t, + ty 3_2r2 - 1. Hence t, > 1, or ty > rp;  there is no Joss
of generality in assuming the former. By Lemma 1(b), there exist t]‘ and t2'
with

Fne1)rptiro s (m41)%y5 %) = (875 t5'),

and either t, < t,' for i = 1and 2 or t, > t;' for i =1and 2. In both
cases, t]' 5.(h+1)r] + n. This proves (d) for n + 1, and the induction step
is completed.

Proof of Theorem 15

Fya and FSD ¢ledrly satisfy the conditions of parts (a) and (b),
respectively.

To prove the other half of (a), assume that the allotment method F is
consistent and strongly balanced, encourages merger and restricts gain by
merger. F is membership monotone by Théorem 3.
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First it will be proved that F is internally vote monotone. Suppose
this is not the case. By consistency, a counterexample can be reduced toc a
situation with two parties, and there exist X1s Xos T and hz with

(13.3) F{rytras x, XE) - (r1, rz).
X) < X,
and
r >'r2.
If ry=ryt 1, one can find an integer n such that (n+1_)x1 < Xy By
Lemma 2(a) there exist 59 and Sy with
FUn+1)rptros (nt1)xys X5) > (55 8,)

and 512 (n+1)r], which gives Sy < Ty Lemma 2(d) and consistency can now
be applied to prove the existence of t1 and t2 with

F(s]+n52+n-]; (n+1)x1, nxz).+ (t], tz)

and tz.ﬁ ns, +n -1, implying t] > 8. By assumption, (n+1)x] < MX,.
Moreover, t2 <ns, - 1 <nr, +n-1-= nry - 1 SR T 1 <8y - 2 f-tl - 2.
Therefore, if ryp =yt 1 it is possible to find another counterexample to
internal vote monotonocity in which the smaller party gets at least two seats
more than the larger one. Hence there is no loss df generality in assuming
vy 2Ty + 2 in the first place.
Then choose rT', r1" and rz' such that

F(r1+r2; X1s Xo = Xqs x2) -> (r]', ry"s r2').

Clearly r1' + rz' <rytr,, and by (13.3) and Lemma 1{b)}, rz' <, can be

assumed. Hence rT' + r]"_z 1 Since F encourages merger, there exist 51 and

52 such that

F(r.l+r‘2; ng XZ) d (S'l! 52)
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and s;.> r'1 +ryt. Hence's, > rsand s, <rp <y -2, This contradicts
the assumpt1on that F is strongly ba]anced and 1nterna1 vote monotonicity
is proved _
F& FHA and FHA" F will be proved separately. In each case, it is
enough to prove the inclusion for situations with two parties, by Lemma 1(d).
If.F < F, does not hold, there will therefore exist x;, x,, ry and r,
such that

(13.4) CF(rytrss g, XZ) +> (f]S}rg)L
~and
X X,
12 & 2. %

Lemma 2(a), appl1ed to (}3 4)-with n = n2.+ J, 1mp1ies,the ex1stence of
$1 and Sy such that

F((rzﬂ)r]*rz! (rzﬂ).x]e Xz) * §-51e 52)

“and sy x7(ry#1)ry, which gives S, < Ty Lemm 2(d), with n = ry, implies
the existence of t, and t, such that -

F(S'l"'r]sz"'r]"]: (rz"'”x]s Y']xz) ’* (t-l: tz)

and t, < r} 2 tr- 1. Hence t1 > 8y > (r2+l)r 12, ey -1 >t
But (13.5)° aives r} 2 > (r +1)x Therefore, 1nterna1 vote monotonicity is
contradicted, and F«: FHA 15 proved

If FHA < F does not hold, a counterexamp]e with two parties exists.
Since Ft:‘FHA, this must be a situation in wh1ch FHA leads to a tie between
two a]]ocations of the seats, while F produces a un1que a1lotment That is,

there exist X1 22, " and ra such that " > 1,

(13.86) F(r. +r2, Xy2 xz) (r}, rz)
and
1. %
(13.7) : T-FTT

2
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Among the situations for which (13.8) and (13.7) hold, choose one for which
rytr is minimized.

ryEr, t 1 is impossible; it would imply X] = %, and contradict
consistency of F. Hence two cases must be considered:

(A) rp<ry,t 1. Then X] < X and

r T

Since " > 1, the choice of r and ro implies:
F(rz; Xy xz—x]) > (rl-l, rz-r1+1).
F& FHA and consistency then give

F is neutral by Theorem 2, and the fact that F encourages
merger can be applied to the second and third party to give
the existence of Sy and s, such that

2
F(r]+r2; Xy xz) + (sT,'sz)
and s >yt 1. This contradicts (13.6).

y >r, + 1. Then x] > Xo and

17% %
r]—r2—1 r2+1

Here the choiée of " and rs implies:
F(r1—1; Xy =Xg5 xz) -+ (r1-r2—2, r2+1).
Since F & FHA’ consistency now gives:
F(r1+2r2; X17X5s Xos Xo x2) > (r1-r2—2, rps r2+1, r2+1).

F restricts gain by merger, hence there exist S12 S2 and 52'
such that | '
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- and $7 21y - 1. It follows that 5, + 5, 2 2r2 + 1, which

gives s, >r, tlors,! >+ 13 assume the former. Since
F < FHA’ s.I =ro- 1 §nd sz =1, + 1. Consistency now
contradicts (13.6).

Ihis cgmp1gtes the proof of part (a) of the tho\ap\r‘em.]29

For (b}, assume that the allotment method F is consistent and strongly
balanced, discourages méfger and restricts loss by merger. F is membership
monotone. F will not be internally vote npnptong; but‘it will satisfy the
following s]ight]y weaker condition:

(13.8) - There“do not exist numbers x;s X,, ry and r, such that
Flrytros Xy %) > (ri, ry)s

x]-< Xps T4 > 1y and r > 2.

This means that internal vote monotonicity perhaps can be violated by
a smaller party getting one seaf while a larger party gets none, but this is
the only possib]e type of vio]gtion. |

If (13.8) does not hold, one can find numbers Xps Xgs T and rs which
contradict it. There exists a positive integer n such that (n+2)x < nX,.
By means of Lemma 2(b) and (c), a situation can now be constructed in which
a smaller party gets at least three seats more than a Targer one; hence
ry X rz + 3 can be assumed in the first place Then find r] » ry"s 1y and
r2“ such that

F(PR2ros xpa XpmXgs Xp0 X5) > gty 1" 1oty 1yl

~ Choose these numbers such that rzf + rz" is minimized. If rz' + r2“ > 2r2;

then r]' < r],'and there ié no lcss of”genera]ity in assuming Ty

>r
2"
Lemma 1(b) can be used to increase r] and decrease rz » contradicting the
| 1] 1 n
choice of rz and r,". Hence ryt 4 rp' < 2r2 anq rtEnt 2 Since F
restricts loss by merger, there exist $1s Sp and 52’ such: that

F{ry¥2rys %os X5 X5) + {5 555 55')s
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and sy >yt kvt - 1> e -1, Then s, +5,' < 2r, + 1, and s, <1, Or
52‘ <1y Hence F is not strongly balanced. This contradiction proves
(13.8).

Next it will be proved that F never gives two seats to a party unless
every party has been given at least one seat. If this is not true, there

exist Xys X5 and r with r > 2 and
Lemma 2(c) then gives
F(rs xps nx,) + (r, 0)

for all n. But it is always possible to choose n so large that Xy > Xq3
hence this contradicts (13.8).

This shows that F(n; Xps wees X ) E FSD(n; X1s ++e» X, ) whenever n < k.
It also shows that when there are more seats than parties, F gives every party
at least one seat., If F is not a submethod of FSD’ a counterexample can be
reduced to a situation with two parties, and there must exist numbers X1
Xps 1 and Yo with ™ > 2, To > 1,

F(r}+r2; Xqs x2) > (r], rz)

and
ok
rT oy

Lemma 2(b) and (c) can now be used to find n, t, and t, with
F(n; roxqs (rg-1)x,) + (t1,'t2)

and t] 2wy -yt 1 and t2 5_(r1-1)r2. Then t}.i 2 and t] > tz,'gﬁa‘the
weakened version (13.8) of internal vote monotonocity is contradicted.
F< FSD fo110ws:

If F and FSD are not equal, there must exist a two-party situation in
which they are unequal. This must be a situation in which FSD produces a tie
while F has a unique allotment. Specifically, there must exiSt_xT,_xz,fr]_and



and efther

ry =1 and‘rz =0

or
‘ e
r-l-,z_z; Y‘z‘i] and—r..fl—;T=-r:-2-_.

There must exist a rational number a such that X; = nya and Xy = hza,
for positive 1ntegers ny and nz; Fix such an a. If necessary, change the
numbers Xy xz,'?T and‘fz such that, among the two-party situations in which
the votes are integer multiples of a and for which F and FSD are not equal,
the sum x1l+ X is min;ggzed. This is well defined since it is equivalent
to minimizing ny £ n2.

X, = X, will contradict consistency. If x; < Xy,

F(2ryrrys xps Xgs Xy X29X1) + (r1-1, ri=Ts o rz-r1+2),

by the choice of x; and x,, consistency, and the fact that F < Fop. If
X-I > ng

Fry#rss Xy-X55 Xps Xp) + (ry-rs-T; vy, r2¥1),
for the same reason. In both cases, it can be cdn¢1uded‘fhat there exist t,
and t, such that
Flrp#ess Xis Xo) + (ty5 t,)

and t1 f_ri - T, since F restricts loss by merger and discourages merger,
(Lemma T(b) s used.in the first of the two cases.) This contradicts (13.9).
The proof of Theorem 15 is complete.
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It is possible to obtain a result which is a bit closer to Erlang's
claim than is Theorem 15(a), by removing the condition that F be strongly
balanced, and instead require that it be internally vote monotone. (Erlang's
conditions I and II presumably correspond to external vote monotonicity, which,
by Theorem 4, is at least as strong a condition as internal vote monotonicity
for consistent methods.)

‘Theorem 16
An allotment method F is consistent and internally vote monotone,
encourages merger and restricts gain by merger if and only if

F = Fup

Sketch of Proof

FHA satisfies the conditions. Conversely, it is sufficient to prove
that the conditions imply that F is weakly balanced. Then the proof of
Theorem 15(a) can be applied, since that proof uses the condition that F is
strongly balanced {as opposed to just weakly balanced) only to derive vote

monotonicity.
First it can be proved that for any positive integers m and n, there
exist r and s such that

F(n; mx, x) + {r, s)
and r > min{m, n). The proof is by induction on m.
If there exist x, r and rp with

Frytrys Xy x) > (rys 1)

and ry > ryt 3, one can conclude that

L. X 131
F(r]+r2, Xs r1’ x) > (rz, 0, r1)

Merging the first two parties will give a counterexample to vote monotonicity,
since F restricts gain by merger. '
‘ If

HZHQ;x,x)+(HQ,rL
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one c&h“fih&‘éig S5 and 55 such that

F(3reds 255 %5 %, %)+ (05 545 854 55)

"By consistency; S5 25, > s can be aéSﬁﬁédﬁ Sy > r+ 3 will imply s3> 55 %3,
which is impossible by the above and consistency. Two possibilities remain:
(A) s3=s;=r+ 2’.51 = . Then ihé first fﬁo‘pérties can be merged, giving
a coh;?ad1ctidﬁ to intérnél_VOté m0ﬁot0ﬁ{city;‘ (B) $; =S, = r+ 1, which
implies that F is weakly balanced in the situation (2r+2; x, x).

Consistency now implies that F is weakly balanced, and Theorem 16 follows.

A corrésponding résult for Fop would be:
Ari allotment method F is consistent and satisfies condition (13.8),
discourages merger and réstricts loss by merger if and only if
F = FS‘D'-

I have; however; not been able to prove this without introducing
ilembership monoténicity in the premise; in which case it becomes an immediate
consequence of the proof of Theorem 15(b)}. (The fact that F is balanced is

only used to prove (13.8) -and-membership monotonicity.)
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14, LARGE AND SMALL PARTIES

14.1T Definition

e —

In political discussion of methods for proportional representation,
an important issue is whether a certain method favors small parties, or
favors large parties, or neither. An ungualified statement that "the method
F favors large parties" is hardly meaningful. But one can ask whether a
method favors large or small parties compared to something else, be it a
132 or another method. The latter possibility suggests the
following definition.

criterion

i Definition 18
Let F and G be two allotment methods. F favors small parties
compared to G if

F(n; Xps vees xk) > (r], cens rk),

G(n; x], vy Xk) > (51, sy sk)!

. < X
X; 3? and

.t r,. =5, +5,.
P1 3 51 SJ

imply

r. > S,..
T =1

The condition says that if party i is smaller than party j and F and &
give the two parties the same total number of seats, then F shall give the
smallest party at Teast as many seats as G gives it. The definition treats F
and G symmetrically; hence there is no need for a separate condition “favors
large parties."

Because of the possibility of ties, F will generally not favor small
parties compared to F.]34 If F favors small parties compared to G, F' S F
and G' £ G, then F' favors small parties compared to G'.

Definition 18 does not give rise to a complete relation among methods.
That is, there exist two methods such that neither favors small parties
compared to. the other. For consistent methods, the relation is transitive.
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That is, if F favors small parties compared to F' which favors small parties
compared to F", then F favors small parties compared to F".]35

In Definition 18, F and G are applied to the same situation. An
alternative formulation would have allowed two different situations and
would have compared the representation for two parties with equal votes in
the two situations and equal total reprESEntatib“.]36 For consistent methods,
tbe two formulations are equivalent; in general, the latter version is

stronger than Definition 18.

14.2 Divisor methods

For divisor methods, it can be easily determined from the divisors
whether one method favors small parties compared to another.
Theorem 17

Let F and F' be complete or partial divisor methods, defined by

the divisor sequences dys dy, ... and &,', dy)7, .., respectively.

d d' , _ ,
(a) 1f 2> P, for all o and g with o > 8> 1, then F
favors small parties compared to F'.]37

(b) If F favors small parties compared to F', then

d. d° _
agii dq for all o and g with a > 8 > 1.
B B
Proof
d d'’

(a) Assume that 39-> 32+ for a1l o > B, and supposé that the premise of

, I T . . , .
Definition 18 holds. Then +JL-3_ 1, by the définition of F. If

dr. df.+1
J 1 X, X
; > r. +1, the assumption then gives Hfl- > = . Ify,=vp, + 1,

the same formula follows because X > X;. Hence, when the method F' is
used, party j must get its seat number tj before party i gets number Py ¥ 1.
If ry< Ty the same follows by internal vote monotonicity of the method

F'. ry + rj =5t 55 now implies S5 < Ty and the proof is complete.
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d d '

(b) Suppose that EE'< HQT for some o and B with o« > B. Then there exist
B B d X d "
positive integers X1 and Xo such that ag-< LR EQT . o> B implies

g %2 %
d >d,, and hence X, > %,. Moreover,
o— B 1 2

FlatB-15 x5 X5) + (rys rp)
implies r, < B - 1, while |
F-’"(CH'B'.I; x-l s xz) > (5] » 52)

implies 52
been constructed, and the proof is complete.

> B. Hence r, <s,. A counterexample to Definition 18 has

The theorem holds and the proof applies even if the strengthened version
of Definition 18 is used.!° If F and F' are strict, complete divisor methods
and all their divisors, when appropriately normalized, are rational numbers,
strict inequality is obtained in (b).139 The proof works even if d1 =0 or
d]' = 0 is allowed (see Definition 14(c) in Section 8.1}.

The theorem implies, for example, that FSD favors small parties compared
to FMF’ which favors small parties compared to FHA’ More generally, let a
and a' be real numbers between -1 and 1, and let F and F' be defined from
these numbers by equation (8.19) of Section 8.5. Then F favors smaT] parties
compared to F' if and only if a < a'.

- i T e e -

If a party gets a majority of the total vote, it is certainly a "large"
party. It might seem reasonable to require that such a party get at least
half the seats. This motivates the following definition.

Definition 19
An allotment method F preserves the majority if

F(n; Xys eees xk) > (r], cers rk)

and
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;imply
n
" 2%

The -idea behind this concept is related to the one underlying the lower
bound condition; see Definition 6. Both conditions establish a “minimum
requirement" for a party's representation. In general, preservation of the
majority is the weaker condition; it only applies in certain situations and
to the largest party, while the lower bound condition is non-vacuous for all
parties whose "exact representation" is at least one. But when the number
of seats is odd, none of the two conditions implies the other.140

The converse of Definition 19, that is, a requirement that a party can
get a majority of the seats only if it has a majority of the vote, does not
seem Tike a reasonable condition. (I am here thinking of proportional
elections, not other uses of allotment methods.) It would imply that in a
situation where one party has almost half the vote and the other parties are
small, seats would have to be given to parties with almost no votes.

The method of the highest average preserves the majority. Within the
class of consistent methods, FHA will essentially be the boundary between
those methods which do and those which do not preserve the majority, when
methods are ordered by the relation of Definition 18.

Theorem 18
(a) If F is a submethod of Fua» then F preserves the majority.

(b) Let F be a consistent allotment method and assume that F,
favors small parties compared to F. Then F preserves the
majority.

{c¢)  Let F be a consistent allotment method, and assume that F
favors small parties compared to FHA and is not a submethod

of FHA‘ Then F does not preserve the majority.
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Proof

| =
{(a) let F "FHA’ and assume

(b)

(c)

F(n; Xys eees xk) > (rT, vees rk)

and
X, > ) X .
gAY
For all j, one has
X 3&1
(14-]) F':I:-FT':Z_ T'J. .
Summing this for all j # i gives
N gy
?VF?T-f-";"Jl
i b
JFiJ

Together with the assumptions, this implies

r. +1> yr.,
! #i J
which gives
i n

and (a) is proved. (Cases where ry = 0 for some or all j # i must
Let F be consistent, and suppose that Fua favors small parties compared
to F. Assume F(n; Xps vees xk) + (r1, cers rk) and Xy > j;ixj' Then,
clearly, X; > xj for all j # 1. The assumptions now imply that if S5 and
s. are chosen such that FHA(r1+r.; X xj) > (Si’ sj), then s; < r. and

it i i i

427y (14.1) follows, and the proof can proceed as in (a).

Suppose that F is a consistent method which favors small parties compared
to FHA and preserves the majority. Moreover, assume that F is not a

submethod of FHA' From this a contradiction will be derived.



FHA,is consistent and membership monotone. Lemma 1(d) applies,
and there exists a two-party counterexample to F £ FHA' That is, there

exist xj, Xos 1y and r, such that

(14.2) F(r1+r2; Xy x2) > (r}, rz}
and

X, X
{(14.3) .2

r‘-l rzﬂ

(14.3) implies the existence of s; and s, with s, > v, and

i : ; P e
FHA(r]+r2, X1s XZ) + (51, 52). If Xy > Xga this contradicts the
assumption that F favors small parties compared to FHA'

Now it will be proved that F is strongly balanced. If not,
consistency implies the existence of x,r and s such that r < s - 2 and
F(r+s; X, x) » (r, s}. It is possible to find a rational number]41

Y . risiz Y . rs+l
such that y > 2x but 5% < YretT and hence 2x el Then choose t],
2 and t3 such that
F(2r+2s+15 X, X, y) + (1 tps tg).
t3 3ﬁr + s + 1, since F preserves the majority. If t3 >r+s + 1, then
£t t2 <r+s -1, and there is no loss of generality in assuming

rts-1 4 , ;oas Y Y X X
t1_§ B The choice of y implies s 'f-r+s+2 < E(res+T) f_t;+] . By
consistency, the first and third party“can now be used to construct an
example satisfying (14.2) and (14.3), with Xy > Xo- (Use y, X, ty and t
for Xys Xos r1 and Fos respectively.) This is impossible by an earlier
argument. Hence t3 =r+s+1, Then-tI + t2 =r+s, and t] = v can
be assumed by consistency. Then

X
£ < gveE S T

and ‘aga¥n an example can be ‘constructed in which (14.2) and (14.3) hold
'and.x1 > Xy This contradiction proves that F is strongly balanced.
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Theorem 3 now implies that F is membership monotone.

In (14.2} and (14.3), the possibility X1 > %o has already been
ruled out. If X| = Xos then ry > Ty + 1, contradicting the fact that
F is strongly balanced. Hence X < x2' Since F preserves the majority,

ry <ty It is possible to find a positive rational number y such that
Yy < Xy - x1 and
X
: 2 Ni
(14.4) < .
r2+1 rp=1 +]

Choose s], S, and S3 such that
F(Zrn+1, X1 x2, y) - (s], So» 53),

and such that Sy is minimized. Xp > X + y, and since F preserves the
majority, Sp > + 1. If $; < Tps (14.2) and Lemma 1(b) can be used
to transfer one or more seats from the second to the first party,
contradicting the choice of $y- Hence S92 7 which implies S3 2Ty - M-
But then the representation of the second and third party, together with
(14.4), contradicts the assumption that F favors small parties compared

to F The proof is complete.

HA"

Part (b) is true if the number of parties is limited to K for any K > 2.
If K > 4, the same is true for part {(c). (Four parties are needed in order to
apply Theorem 3. If one is willing to assume membership monotonicity, the
case K = 3 can be included.) The assumption that F is not a submethod of
Fyp» s essential in part (c). 142 ' .

If F is a complete or partial d1v1sor method, the assumption of
consistency can be dropped, and parts (b) and (c) will still ho]d.143
this statement is neither more nor less general than the theorem, since partial

divisor methods need not bhe consistent.

Formally,

For quota methods, defined in Section 4.3, there exists a result similar
to Theorem 17. ' '
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Theotgm 19
Let F and F' be quota methods defined by the quota criteria V
and V' respectively.

(a) If ¥(n; y) > ¥'(n, y) for all y and a1l n > 2, then
F favors small parties compared to F'.

(b) If F favors small parties compared to F', then
V(n, y) > V'(n, y) for all y and all n > 2.

According to Definition 5, V(n, y) and V'(n, y) are only defined when
n>t. ‘ﬂente the condition of Theorem 19 only applies to such values of n.

Proof

(a) Assume that F and F' satisfy the premise but not the conclusion. Then
there exist n, X, ¥, s, i and j such that

F(n; X) » T,
F'{n; x) > 5,

s < .

and

n <1 implies s, = 0, hence n > 1 can be assumed. Let y be the
sum of the votes in the vector X, and define

X.
X,

L i
and similarly for party j. Then X, > X;o v is either |R;] or IR;] + 1,
while 53 is either [Rjj or ngj + 1. Since ry > sj, this is only possible
it | |
TSRS
Py 3 Lx;d +
and
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(14.5) sy = [ijl = hﬁjl-

The assumptions and (14.5) 1mp1y"

{14.6) 0 <% - Ry < ?j - X5 < 1.

If [%.] Lﬁij, ry < s; implies r, = Liij and s, = {iij + 1. Since
F gives party j a seat on the basis of its remainder while party i gets
no such seat, ﬁj - Lijj > % - [iij. Simitarly, %, - L%} > % - LKjJ.
Together with the assumption [iij = Lﬁij, this contradicts (14.5) and
(14.6)}. The only other possibility permitted by (14.6) is Liij = Lﬁi] + 1.
Then (14.6) gives ii - Liij > X, - Lijj and %; - Lijj > % - L%

i
Therefore, r, = Lﬁij +1ands, = Liij, contradicting r, < s,.

(b) If the conclusion fails, there exist y and n such that n > 1 and

V(n, y) < V'(n, y). A rational number x can now be chosen such that144

Yy - (n-lgv'(n, Y) ¢y < L= (n-EgV(n, y)

x is positive since V' satisfies (4.3) of Definition 5. It is also clear
that x < %& Now F(n; y-x, x} = (n, 0), while F'(n; y-x, x) = (r], r2)

implies ry > 0. Hence F does not favor small parties compared to F', and
the proof is complete,

The conditions (4.2) and (4.3) of Definition 5 are never explicitly used
in the proof of (a). But it is assumed that the number of seats a party gets
is either the whole number of times the quota divides its vote, or one more
than this. If F and F' are methods given by quota criteria that do not
satisfy {4.2) and (4.3), Theorem 19(a) will still apply to any situation in
which the latter statement holds for both methods. Part {b) uses (4.3) but
not (4.2) of Definition 5.

Part (a) does not hold if Definition 18 is strengthened as indicated in
the last paragraph of Section 14.1. If V(n, y) and V'(n, y) are always
rational numbers {or irrational votes are allowed), strict inequality can be
obtained in the conclusion of (b). ' ' |
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If F and F' are defined by equation (8.18) of Section 8.5, from real
numbers a and a’, respectively, then F will favor small parties compared to
F' if and only if a < a'. This also holds in the limiting cases where a or
a' is 1 or -1. In particular, the method of the largest remainder favors
small parties compared to the method obtained by setting a = 1, that is, the
method obtained by going to the limit of (4.2) in Definition 5.]45

The limiting method just mentioned wiIT'preserve the majority. This
holds even if ties are broken against the largest party. But no quota metho
which satisfies (4.2) preserves the majority; a situation with three parties
is sufficient to provide a counterexample.

a
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15. PRIORITY METHODS'?6

15.1 Definitions

o -

The class of divisor methods, studied in Sections 7, 8 and 11, is a
fairly wide and general class of allotment methods. 1In particular, Theorem 10
shows that the class contains every method which satisfies a set of rea%onab]e
conditions given there. | I

As mentioned in the comments to Theorem 10(b), the characterization of
that theorem is not, however, entirely satisfactory; see also the comments
to Theorem 5(b). The problem is that a divisor method will allow relatively
many ties, that is, there are many situations in which more than one
allotment is possible. Some ties will occur in any consistent method.
But as pointed out in connection with Theorem 10, it is possible to find
proper submethods of divisor methods which satisfy all the requirements of
that theor'em.]48 That is, at least some ties can be eliminated without
destroying consistency and other desirable properties.

A complete divisor method distributes the seats according to a certain

¢riterion of priority, based on quotients of the form gL . When quotients

r
are equal, there is a tie. A way of breaking the ties could be to refine

the priority criterion so that one party sometimes is placed ahead of another
even if the quotients are equal. This is the idea behind the'approach in
this section.

147

Definition 20

{a) A priority relation is a binary relation R defined on all
pairs of the form (x, r), where x is a positive rational
number (the vote of a party) and r is a positive integer
(a number of seats), such that

(1) R is transitive, that is, whenever {x, r)R(y, s)
and (y, s)R(z, t), then (x, r)R{z, t},

and

(ii) R is complete, that is, for all x, y, r and s,
at least one of (x, r}R(y, s) and (y, s)R(x, r)
is true.]4
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{b) A priority relation R is semi-strict if (k, r)R(x, r+1)
for all x and r. '
(c) A priority relation R is strict if (X, r+1)R{x, r) is
false for all x and r.
A pair {x, r) is supposed to represent the priority for a party with
x votes of getting its seat number v, The relation R shall mean "has at
least as high a priority as." Theérefore, if (x, PR(y, s) and a situation
is given in which one party has x votes and another has y votes, the former
party has at least as strong a claim on its seat number r as the latter has
on its seat number s, 20
When R is a priority relation, P will denote the relation defined by

(15.1) (x, r)P{y, §) if and only if (x, r)R(y; s)
and not (v, s)R{x, r).151
It can be proved that P is transitive. P is also asymmetr1c, that is,
(x, r)P(y, s) ‘and (y, 5)P(x, r) canriot hoth be true. In particular, P is
1rref1ex1ve, that s, (X, r)P(x, r) 15 wrong for all x and r. Clearly,
(x, P)P(y, s) implies {x, YIR(Y, §).° The intuitive mearing of P is
"has a strictly higher priority than,"

_ If the priority relation R is semi-strict; a party will néver have a
higher pr1or1ty of getting its next seat than it had of getting the last one.
More géenerally, an earlier seat always has at least as high a pr1or1ty as a
Jater one; Définition 20(b) implies that (x; r)R{x, &) wWheriever r <s. For
a strict relation R, v < s implies (x, ¥)P(k, s). Hence thée priority for a
later seat will be strictly loWer than the priority for an earlier one.

Any strict relation is semiistrict.

It shoild how bé clear how an allotment method is defined from a given
priority relation.
Def1n1t1on 21 53
An aliotment method F is a pr10r1ty fethod 'O if there exists
a priority relation R such that F can be defined recursively
~ in the following way:
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(i} F(0; X) > .;., xk) = {0, ..., 0).

(i1) For n > 1, F(n; Xys wees xk) shall consist of all allotments
(SI’ vees sk) which can be constructed as follows:

Take any (r], cees rk) in F(n-1; Xps eees xk),
and find an i such that
(xi, ri+T)R(xj, rj+1) for a1l =1, ..., k.

Then Tet
r. +1 '
i

5.
i

S.
J

r. for j#1.

j J#

F is a semi-strict priority method (a strict priority method) if R
can be chosen semi-strict (strict).

It is easj]y seen that for any priority relation R and any Xps eevs Xp
and ri, ..., rk;t there exists an i such that (xi, r1+1)R(xj, rj+1) for all
j=1, .... k. (This i need not be unique.) Hence any priority relation R
will define a priority method F. Except for certain uninteresting cases
involving relations that are not semi-strict, there exists only one R which
corresponds to a given priority method.154

Ties can and will occur in any priority method; their frequency depends
on how "fine" the priority relation is. In particular, F{n: X1s oo xk) can
get more than one element because F(n-1; Xys eoes xk) has more than one element,
or because there is more than one i such that

{x,

i ri+1)R(xj, rj+1) for all1 =1, ..., k.

Any divisor method is a priority method. Specifically, the divisor
method given by the divisors dT’ d2’ «..s Can be derived from the priority
relation given by

. .. X
{x, r)Ryly, s) if and only if 3;33 3&-.
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A11-généna}jzedadivisor methods {see Definition. 16). are also priority methods;
the ccrrgspondin?_griority relation can easily be constructed from the
numbersqgé and d—Bd‘.

The partial divisor method described in note 50, which is a proper
submethod of the divisor method:FHA, is also a priority method. 1Its priority

relation is given by

(%, r)R(y, s). if and only i-.'ﬁ?-:; > {- or
x_¥ |
(7 =1 and x > y)

'Any-priority.re1&tion can be represented by a real-valued function.
That is, for any priority relation R there exists a function fR such that

(xs r)R{y, s) if and: only if‘fR(x, r) z.ﬁR(y, s).]55
Conversely, if a function FRLis given and R is defined as above, R will be
a priority relation. Sometimes, it may be convenient to. represent a priority
method by fR rather than.by R. For example, for the divisor method;with
divisors d1, d2’ ... a representing. function is gjyen by

fo {x, 1) = F.
Ry. dr

In other cases,, the. representing. function offers no. advantage. For the method
of note 50, such. a function does exist as a mathematical object. But it is
not easy to describe such a function, and. if the function was given by an
algorithm or a formula, it would. not necessarily be obvious which method. it
represented. Theoretically, it makes no.difference whether priority methods
are represented: by relations. or functipns.156

Let F be defined.byrthe,priqnity,re]aijon R. It can be proved: that F
is (external]ygand?interna]ﬂy),vote;monotone‘if

x >y implies. (x, r)P{y, r), for all x, y and. r.
Moreover, F is scale independent if

(xs r)R(y, s) if and.only. if {ax, r)R{ay, s}, for
all x,.y, r and s, and all positive. rational numbers a.
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If R is semi-strict, these conditions are also necessary for the corresponding

properties of F.]57

ok e o e ——— - - -

It is immediate from Definition 21 that any priority method is membership
monotone. Perhaps one would expect all priority methods to be consistent as
well. For methods that are not semi-strict this is, however, not necessarily

the case.158 But the converse implication holds.
Theorem 20
Let F be a consistent and membership monotone allotment method.

Then F is a priority method.159

Proof
Let F be consistent and membership monotone, and define the relation
R* by -

(xs v)R*(y, s) if and only if
F(r+s-2; x, y) ~ (r-1, s-1)
and F(r+s-1; %, y) =~ (r, 5-1),

for x and y positive rational numbers and r and s positive integers. R¥ is,
in a sense, the priority relation induced by F; {x, r)R*(y, s) means that
there is a situation in which a party with x votes is in line for its seat
number r while a party with y votes is in Tine for its seat number s, and
the next seat is given to the former party.

In general, R* is not complete and transitive, hence it is not a priority
relation. But it does have a property related tc transitivity, given by (15.2)
below. Let P* be defined from R* as P was defined from R by (15.1). If
(xs *)R*(y, s} and (y, s)R*(z, t), transitivity would require (x, r)R*{(z, t).
This need not hold, but one can at least conclude that {z t)P*(x, r) does not
hold. Similar conditions hold for lorger chains of pairs connected by R*.

This turns out to be sufficient to continue the proof.

Formally, the following statement holds:
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(15.2) There does not exist any sequence (x], r]), cees (xk, rk) of
pairs, where k > 2, Xis +ees X ave positive rational numbers
and s ---s 1 are positive integers, such that

(xi, ri)R*(xi+], ri+]) for i =1, ..., k-1
and
(xk, rk)P*(x], r]).

To' prove (1552), assume the opposite, that is, suppose that such a
sequence exists. The definitions of R* and P* give

(15.3) ° Flritrig=2 xm’ Kigg) > (el mg=1) for i = 0, s k- 1,
(15.4) F(ri+ri+]-1; Xis x1+1) > (ri, r1+1-1) fori=1, ..., k-1,
(15.5) Firytr =23 x5 %) > (ry-1, r 1),

(15.6) FOrp#r =15 xps %) > (ry-1, 1),

and

(15.7) not F(ry+r, -1; Xps %) > (rys r-1).

For a given n, one can ask whether it is possible to find S0 +ers Sy
such that

(15.8)] s; <r; for i 51, ..., k, and
{15.9) F(n; Xps +ees xk) »-(51,7..., sk).
Since r],-..., rk are positive integers, this clearly is possible for n = 0,

but for sufficiently large n some P would have to be greater than or equal
to ry. Let n be the largest number for which (15.8) and (15.9) can be
satisfied, and choose s;, ..., s, accordingly.

By membership monotonicity and the choice of n, there will now exist

t1, cees tk and i such that
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(15.10) F(n+1; Xys wees xk) -+ (t1, cees tk)
(16.11) tj = sj <y for j # i
(15.12) ti =5+ 1 = ry

Choose i as small as possible for (15.10) - (15.12) to hold.

If 1 > 1, consider the two parties i - 1and i. Ift, ,=s, ¢r. ,-1,
{15.4) and consistency can be used to move one seat from party i to party i - 1
in the allotment given by (15.10). This contradicts the choice of i. Therefore,
ti_y < Pj_q = 2 which implies t, , +t; <r. ; #r, - 2. Then (15.3) and
Lemma 1(b) can be used to transfer one or more seats from party i to party
i - 1, after which tj 5_rj -1 for j=1-1, i. This contradicts the choice
of n.

Hence i = 1. If L <P - 2, Lemma 1(b} can be applied to (15.5), in
the same way as above, to get a contradiction to the choice of n. The only
remaining possibility is tk = rk'i 1. Since t1 = r],lggnsistency now
contradicts (15.7). The proof of (15.2) is complete.

Now it is possible to extend R* to a transitive and complete relation.

That is, there exists a priority relation R such that, for all x, y, r and s:

(15.13) {x, r)R*(y, s) implies (x, r)R(y, s),
and
(15.14) (x, r}P*(y, s) implies (x, r)P(y, s).

(P is defined from R as before.) The meaning of (15.13) is that if (x, v) has
at least as high a priority as (y, s) according to the incomplete relation R¥,
then the same is true in R. And (15.14) says that if this relation is strict
in R*, it is also strict in R. Note that if (x, r) and (y, s) are incomparable
in R*, nothing is said about their relation in R; they can have equal priority,
or one can have higher priority than the other. R is complete, hence any two
pairs must be comparab]e.]s]
Let F0 be constructed from R by Definition 21. The proof will be
complete if it can be shown that F and F, are equal. Let k and x;, ..., x|
be given. F{n; Xps +ees xk) = Fofn; Xys oees xk) will be proved by induction

on n.
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A115methpds are equal when there are no seats to distribute. Let a
positive integer n be given, and assume that F and F0 are equal on
(n-13 Xqs -ees xk). This is the induction hypothesis.

Suppose
(15.15) E(n; x],l..., xk) + (r], cees rk).

‘ Léiﬂ?é;f_is membefship monotone, theré ékist s], vens Sk and 1
such that ST T T T

(15.16)

(15.17)
(15.18) s.=r,-1.

Since F is consistent, (15.16) and (15.15) give

F(si+s'; Xy XJ) * (S.i: Sj)

J 1
and

F(Si+sj+1; Xgs xj) > (51+]’ sj}

for all j # i. This gives
(xi’ Si+1)R*(xj’ sj+1) for all j # i.

(15.13) and the completeness of R then give
(15.19) (xi, 51+])R(xj’ 5j+1) for all j.

The induction hypothesis is

(15.20) FO(n-l; Xqs vees xk) + (s], vevs sk).
The definition of FO gives the desired conclusion, namely
(15.21) Fo(n; Xps eers xk) + (rl, cees rk).

Conversely, assume that Fis sevs T satisfy (15.21). By the definition

of F,, there must exist Sys +ees Sy and i satisfying {15.17) - (15.20). The

0
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induction hypothesis gives (15.16). By membership monotonicity of F, there
must now exist tl’ K tk and i' such that
(15.22) , F(n; X1s eees xk) + (t1, cers tk)’

= 3 4! =
tj sj for j #i', and ti', Sii + 1.

If i* = i, (15.22) is the same as (15.15), which completesfheinducﬁion step.
Otherwise, :

(x'i ) S'i 1+])R*(Ki, S'i+1)

can be derived from (15.16) and (15.22), by consistency of F, If

(Xil. S?+])P*(xi’ 51+1), {15.14) implies (xi., Si‘+1)P(xi’ Si+1)’ which
contradicts (15.19). Hence '

(x'i’ 51+1)R*(x1-|3 S_i l+])-
The definition of R* then requires
F(Si+si'+1; Xys xi.) -+ (si+1, Si')'

Consistency can then be applied to (15.22), to give (15.15). ‘
Hence it follows that F and F0 are equal for situations in which n seats
shall be distributed. By induction, F = FO' Theorem 20 is proved.

It should be noted that the proof of (15.2) uses the assumption that the
number of parties is un]imited;' The rest of the proof of Theorem 20 makes no
use of situations which have more parties than the situations about which
statements are made. In fact, (15.2) and Theorem 20 hold even if the number
of parties is limited to K for K > 3.192 e proof of this statement is a
littte complicated; therefore, it was not incorporated in the proof above
but is given separately below.

Now let F be consistent and membership monotone when the number of
parties is limited to K for K > 3, According to what has just been said,
(15.2) holds, and R and F0 can be constructed as in the proof abovef FO is
defined for any number of parties, and the_proof shows that F ahd_Fb.are equal
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is membership monotdné; and it can
63 Henice F can be consistently

when -there ‘are K or fewer parties. Fo
also be proved that Fo is consistent. 1
extended to situations with any number of parties. The extension is unique,
by Lemma 1(d).

Proof of (15.2) when. the humber of parties is limited

Assume that (15.2) is false, and find the shortest possible sequence
(%75 r1}, cees (% s rk) which provides a counterexample. k = 2 will
imnediately contradict the definition of P*, If k = 3, the proof above
will not use more than three parties ard can be applied. The case k > 4
remains.

If (x1, rT)R*(xk-T’ rk-T)’ then the pairs (xz, r2), oo (X oo rk_zl
can be deleted from the sequencé, and it will still provide a counterexample
to (15.2). Since k > 4, at Teast one pair is deleted and the sequence is
made shorter. This contradicts the original choice of sequence. If
(xk_], rk-T)P*(XI’ r]}, the pair (xk, rk) can be deleted while the violation
of (15.2) is maintained. Again the original choice of sequence is contradicted.
The_conc]usion js that (x], rT) and (x
to R*, ,

The next step is to prove the following:

k-1* rk_]) must be incomparabie according

(15.23) Let m > 2 and Tet (xq, ry)s ooy (X 1)
be given. If (xf, ri)R*(Xi+]’ Tig
all i =71, ..., m~ 1, ther there exists

sm_< rm~§u§h that )

1) for

For-m = 2, this is immediate from the definition of R*; Sy can be choser:
equal to o = 1. To prové (15.23) by induction, assume that it holds for
all sequences of length m, and consider a sequence of Tength m + 1. The
induction hypathesis guarantees the existence of smj< rm satisfying

(15. 24) Flryts s Xps X) > (rys s ).

This, together with (xm, rm)R*me+1, rm+1)’ must be used to find s ., < ro.,
sych that
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(15.25) | Hrﬁswq;xr ﬂﬁﬂ +(ﬁ,smn)
Find the largest n for which there exist t1, tm’ tm+1 satisfying
ti rso- 1 fori=1,m m+ 1 and

F(ns xps X0 Xq) > (b, s to0).

Add a seat number ntl. By membership monotonicity, this seat can be given
to one of the parties without affecting the others. Let the resulting
allotment be (t,', t ', ¢t .;'). Thent '+t ' <r +r
the second clause in the definition of (xm, rm)R*(xm+1, rm+1) can be used,
together with Lemma 1(b), to redistribute seats between the two last
parties to obtain tm+1' STy " 1. By (15.24), the same lemma can then
be used on the first two parties, resulting in either t1'.i ry and

will. contradict the choice of n.

-~ 1; hence

’ - ! 1
ty S8 2T Lort,'>r,. t'<r

—m 1 )
Hence t1f > and, by consistency,
(15,26) F(t1 Pt Xy xn+]) +.(t1 . 3.
] = ) I . . . '
If t, rys this immediately gives (15.25), since t ' < 1oy If

t]' > rys one can take one seat at a time away from the allotment of (15.26),
each time using membership monotonicity to take the seat from one party and
leave the representation of the other party unchanged. Eventually, the
first party is brought down to r seats, and we have (15.25) with some
Sl < tm+1 < T (Formally, Lemma 1(a) can be invoked here.) This
completes the proof of (15.23).

Returning to the assumedicounterexample to (15.2), one can apply
(15.23) for m = k - 1 and find the corresponding s, ;. Choose t,, t,

and tk such that

(15.27) F[r1+rk_]+rk-3; Xps X 19 xk) - (t1, t 1o tk)'

If the situation of (15.27) allows more than one allotment, tk_1'sha11fbe'
chosen in the following way:

(i) If possible, choose t - 1.

k-1 = k-1
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(i1) Among the possible choices of t,_, for which t, _ 1-5'rk“] -1, or
among those for which tk 12 Tkl if tk 151 ™ 1 is impossible,
choose t, ; to minimize |t _; - (r,_; - D[

In other.wqrds, tkél shall be chosen equal to the earliest possible number i
in the sequence o1 " 1, Pl ~ 2y vveus 1, 0, rk_],_rk_] + 1,

If ty_1 > Tgope then either t, <r, - Torty <r -1. In the
former case, (15.23) and Lemma 1(b) can be used to transfer seats between
the first two parties in such a way that either t >ryor tk-] <S1 2
ey = 1+ This must reduce t,_1» hence the original choice of t, ,
contradicted (i) or (ii). In the latter case, that is, if tk < ry- 1,
reduction in 1 can similarly be obtained by applying Lemma 1(b) to
the last two parties in (15.27), using the fact that

(15.28) F(r _y*n-2; X1? X > {r g -1 r -1,

which follows from the assumption (xk_], rk_1)R*(xk; rk). Hence
tk—]-i k-1 is impossible.

If tk-] <Py - 1, then t1 + tk_z rytr - 1. F(r1+rk-]; Xys xk)
+ (r] -1, rk) follows from the assumption (xk, rk)P*(x], r])' therefore,
one can assume t, >r, -land t >r.. Thent , +t <n ;+1 -2,
and seats can be transferred from the third to the second party, by (15.28),
such that t, , <r ;- 1land t <r - 1. This transfer increases t, _,
without bringing it above k-1 = 1, hence the original choice cannot have
been made according to (ii).

Therefore, t,_; must be equal to r,_, - 1. The assumption (xk’ rk)
P*(x]. r]) impl ies F(r1+rk-2; X1 xk) > (r1—1, rk-l), and by consistency,
it is possible to choose t] = r1 -~ Yand t = - 1. Then consistency can

k
be applied to the first two parties in (15.27) to get

F(r]+rk_1—2; Xqs X _1) - (r -1, rk-I'])'

By membership monoton1c1ty, this implies that F(r +rk 1 -1; ]. Xy - 1)
contains at least one of (r s Tl -1) and (r IR rk_]) Hence either
(x], ry)R* (x 10 N ]) or (x 21 Tke ])R (x], r]). But it was shown above
that (XI' ry ) and (x k10 ' _]) are incomparable according to R*. This
contradiction completes the proof of (15.2).
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15.3 A characterization of consistent and baTanced methods

s g G e S ey T e S R R N S S e R e R S RN W W M R A e

Presumably, one is mainly interested in methods which are balanced,
in the strong or weak sense of Definition 11. One should expect strict and
semi-strict priority relations to correspond to strongly balanced and
weakly balanced methods, respectively. Indeed, this is the case. When
these conditions are imposed, all priority methods are consistent. Hence
a complete characterization of these methods is obtained.

Theorem 21

(a) An allotment method is consistent and weakly balanced if
and only if it is a semi-strict priority method.

(b) An allotment method is consistent and strongly balanced
if and only if it is a strict priority method.

The three classes of methods characterized by Theorems 20, 21{a) and
21(b) are really different. The method which gives all seats to the largest
party (or to one of the largest parties in case of a tie), is consistent
and membership monotone, but ndt‘weakIy balanced. Hence it is a priority
method, but it is not semi-strict.'® F_
monotone and weakly balanced; therefore, it is a semi-strict but not strict
priority method. (The corresponding relation gives all pairs equal priority.)
Finally, any strict divisor method, such as FHA’ is consistent, membership
monotone and strongly balanced, and is therefore-a strict priority method.

is consistent, membership

Proof

Assume that F is consistent and weakly balanced. By Theorem 3, F is
menbership monotone, and by Theorem 20, it is a priority method. Let R be
the priority relation constructed in the proof of Theorem 20. Since F is
~weakly balanced,

F{2r; xs x} > (r, 1),

for any x and r. This allotment can be constructed by the procedure of
Definition 21, and it is easy to see that this is possible only if |
(x, r)R(x, r+1). Hence R is semi-strict, and the "only if" part of (a)
is proved. | ' ' '
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If F is consistent and strongly balanced, everything of the above
applies. In particular, R is semi-strict. If R is not strict, there
exist x and r such that {x, r) and (x, r + 1} have equal priority according
to R, Then

F(2r; x, x) » (r+ 1, r- 1),

which contradicts the assumption that F is strongly balanced. This proves
the "only if" part of (b).

Conversely, assume that F is a semi-strict priority method, defined
from the semi-strict priority relation R. In order to prove that F is
consistent, assume that the premise of Definition 8 holds. Suppose that

r, >s, and r. < s, ; if the inequalities go the other way, a similar
W T2 o9 9 _
proof appliies; and if ri =S5 s there is nothing to prove.
_ _ 2
F(n1; X) - r, and ¥t must be possible to construct this allotment by

the procedure of Definition 21. In particular, party'i] must have received

its seat number r; ata time when party j] had rj or fewer seats.
1

1
Therefore, there exists r' with r' < rj and
-V

' (xi], rs )R(xj s r o+ 1),

1 1

A similar érgument can be applied to the allotment F(nz; ¥) +~ s, to prove

the existence of s' with s' <s; and
2

. » 5. JR(y. , s' + 1),
(sz SJZ) (y12 s )

Since X, =y, 4 %X, =¥.,8" +1<s., +1<vr, andr' +1<r, +1<5s_,
L TR PR LR PY aERr IR S B P

semi-strictness of R gives

Ay, »s' + R(x; & 7. )
Yo 1" 7N

and

PO Y ! + . ¥ . N
(g 7+ DRy s )
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These four relations constitute a cycle of pairs connected by R. By
transitivity of R, all the pairs involved must have equal priority. Semi-
strictness implies that all the following pairs haye equal priority:

(y, + 8" #+1)y cuuy {y: 5 s ),
2 T2

.o, ! S P S s
(y‘]2 r +1)s s (yJZ rJ] 1)

Now consider a construction of the allotment F(n,: y) + 5, as
described in Definition 21. A new allotment for the same situation can be
constructed, by distributing the seats exactly as in the old allotment
until party j2 is about to get its seat number rj +1. Party 12 now has
at most s' seats, and by the above argument it mult have at least as high
a priority as party j2 for getting the next seat. The priorities must, in
fact, be equal, since party j2 got the seat originally. Hence the next
seat can be given to party 12. This change from the original allotment
does not change the highest of the priorities of the seats which are next
in Tine for parties 12 and 32' Hence it is possible to go on awarding
seats to parties different from 12 and j2, exactly as this was done in the
original allotment. Every time the original allotment gives a seat to
party jzg an argument similar to the one above can be used to show that
this seat can be given to party iz instead, as long as the number of

seats for this party does not exceed r. . But this number will never
1
exceed .3 when all the n, seats are distributed, party j2 will have rj
1 1
seats, each party j different from 12 and jz will have sj seats, and hence

party i, will have exactly r, seats. This is the allotment T, the
existence of which should be broved. F is consistent.
If F is not weakly balanced, there must exist n and x such that

(15.29) F{n; x, x) ~ (r, s)

implies |r - s| > 1. For given n and x, choose r and s to satisfy {15.29)
such that |r - s| is minimized. Assume r > s; the case r < s is similar,
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Since R is semi-strict and r > s + 1, {x, s + 1)R{x, r). Hence one can
prove that

F(ny x, x) > (r -1, s +1),

by simulating the construction of allotment (15.29) but giving the first
party's seat number r to the second party. r -1 >s + 1 and

[(r-1) - (s+1)} < |r - s]; therefore, this contradicts the choice of r
and s. This contradiction shows that F is weakly balanced and completes
the proof of the "if" part of (a).

The "if" part of (b} is now trivial. If F is a strict priority
method defined by the strict relation R, F is semi-strict, and therefore
consistent and weakly balanced by (a). If F is not strongly balanced,
there exist x, r and s such that r > s + 1 and

F(r+s; x, x) » (r, s).

Since the first party got its seat number r at some time, there must exist

s' < s with
(%, P)R(x, s' + 1),

But sﬂ + 1 < r; hence this contradicts the assumption that R is strict.

The theorem holds and the proof can be applied without change if the
number of parties is 1imited to K for K > 4. Four parties are necessary
because of the reference to Theorem 3. If membership monotonicity is made
a part of the premise, the case K = 3 can be included.

; The construction of the priority relation R in the proof of Theorem 20
is implicit and indirect. Only the incomplete relation R* is constructed
directly from F, and then R* is extended by methods which have nothing to

do with F. When F is weakly balanced, it is possible to construct R
directly. This provides an alternative proof of Theorem 21, and this

proof is given below. '
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Alternative proof of Theorem 21

The alternative proof applies to the "only if" part of Theorem 21(a},
which is the part of the proof which depends on Theorem 20.. The purpose is
to eliminate this reference.

Assume, therefore, that F is consistent and weakly balanced. Then
F is membership monotone. The point is to prove that F is a priority
method; otherwise, the earlier proof can be applied.

Define R by

(x,r*}R(y, s} if and only if there exist r' and s' with

r'>r,s' <sand F(r'+s'; x, y) > (r', s').

For any x, ¥, r and s, there exist r' and s' with F{r+s-1; x, ¥) ~
(r',ss'). r' >r implies (x, r)R(y, s), while r' < r implies {y, s)R(x, r).
This proves that R is complete.

R is also transitive, which can be.proved as follows: Assume
{x, r)R(y, s) and (y, s)R(z, t). By definition there exist r', s', s"
and t" such that

(15.30) Fir'+s's x, y) > (r', '),
(]5.3]) F(s“+t“; ¥, Z) > (S", t"),
r'>vr,

s" >s >s', and
t > t".

Find s 51 and t] such that
F(r+s+t-13 x, ¥, z) + (r1, S tl)'

Choose ry as large as possible for this to hold. If rp<r, then

sq t t] >s + t. (15.31) and Lemma 1(b) can be used to change S and t1
such that either Sq >s" or t1 < t" < t. Inm both cases, S 258> s'. But
then (15.30) can be used to transfer at least one seat from the second to
the first party, contradicting the choice of 1 Hence ry > r. Then
{15.31) can again be used to guarantee either 5, 28" >s0rt < t".
Since sy * t, <s+t -1, both these possibilities give t1‘<,t.

Consistency gives



-T10-

F(r1+ tT; Xy Z) > (r1, tr)’

from which (x, r)R(z, t) follows. ,

" Hence R is a priority relation. Let F0 be the priority method
defined from R. Then F0 is membership monotone, F < F0 can be proved
by an argument similar to the one used in the proof of Theorem 20; {15.19)
follows from (15.15) and the definition of R.'®
FOQ F remains. Since F is weakly balanced, F(2r; x, x) -~ (r, r)
for all x and r. This gives {x, r)R{x, r+1), and R is semi-strict. Fo
is consistent by the "if" part of Theorem 21(a), Lemma 1{d) applies, and
FoE F need only be proved for two-party situations. '

The following implication will be proved below: Assume that x, y,

T1» Tos Sq and Sy satisfy ry > Tos Sy < S5

{15.32) F(r1+sT; Xy ¥) =+ (rT, 51)
and

{15.33) - F(r2+52; Xs ¥) + (r2i Sz)f
Then

(15.34) F(rT+s]; X, y) ~ (ri-l, s1+1).

For any x and y,_Fb(n; X, ¥) < F{n; x, y) will now be proved by
induction on n. This is obvious for n = 0. Assume that it holds for
situations with n - 1 seats,'and assume

{15.35) : Fo(n;‘ Xy ¥) + (r, S_)f-
There is no Toss of generality in assuming that when this allotment is

constructed, as described in Definition 27, the last seat is given to the
second party. Hence

(15.36) Egln=Ts x5 y) > {r, s - 1)

and (¥, s)R(x, r+1).
By the definition of'R, there exist r' and s' such that v' < r, s' > s agd

(15.37) F{r'+s'y %, y) =+ (r', s').
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The induction hypothesis implées that (15.36) holds for F. Since F is
membership monotone, either

{15.38) Fin; x, y) > (r+1,s5 - 1)
or |
{15.39) F(n; x, y) > (r, s).

If (15.38) is true, one can define rp=rt 1, s]’; s -1, 1 = r' and
Sy = s', Then r >ty and $1 < Sy (15.32) holds by (15.38), and (15.33)
is true by (15.37). (15.34) is now the same as (15.39). The latter
formula must therefore be true in any case. This completes the induction
" step, and Fg € F must hold. |
The proof that (15.32) and (15.33) imply (15.34) remains. Assume that

the two first formulas hold. By Lemma 1(b), there exist ry and S3 such that
F(r]+s]; X, ¥) (r3, 53)

and either r3_3 r2 and 53_3 52, or r3 < T and 53 5_52. -In both cases,

ry < rI,'and 53> 5y Hence there exists a positive number m Such that
(15.40) F(r]+s1; Xs ¥) +'(r] -m sy + m).

Among the positive integers m for which (15.40) holds, choose the smallest.
Assume, in order to deriye a contradiction, that m > 2.

Find Tae Sg and 54 sych that

(15.41) F(r]+251; Xs ¥s ¥) ~ (r4, S40 54').

If possible, chooge s to satisfy rm ML T, < rl; If this is not possible,
choose r, to minimize |r1 - rgl. Let Is, - s4'| < 1; this is possible
since F is weakly balanced. Assume rg <ty - m Then both Sg and 54' are
greater than Sps which gives rg ¥ 8y < ¥yt sy (15.32) and Lemma 1(b) can
be applied to the first two parties. This leads to an increase in ry
without bringing it above ry, contradicting the original choice of ry. Next
assume r, > ri. Then Sp < 8 and 54'.5 P and Tyt Sy > M f 5, (15.40)
can be used to reduce Ty without bringing it below ro- m;.again contrad1ct1ng
thg original choice. Hence r; - m< 1, < r]."fﬁfﬁuj;ﬁ::; '
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| if1r1 =M<, <rp, at least one of Sy and sy must lie strictly.
between s, and s+ m; fhéfélis no loss of generality in aSSuming‘
57 < 83 < 84 + m. NowauSé.Lémma 1(b) on {15.41) and (15.32), letting
I = {1, 2} and o(i) = i. The conclusion can be written
F(r]+s1; X; ¥} + (r1 ~m', s] +m'),

where either - m < ry and s, + m' < 5., or else these two inequalities
are reversed. In both cases, 0 <m' <m. This contradicts the original
choice of m.

The on]yvremaining possibility is rg = r; - m Thens, +s,' =25, +m,
and s, = s, + L%J can be assumed. In analogy with (15.41), choose rss s
and Sg such that

F(2r1+s1-m;'x; Xs ¥) + (rs, r5', 55).

An argument entirely similar to the one applied to (15.41) can now be
pursued. sy + m and ry-m play the roles of r; and s, respectively. It
is possible to choose Sg such that Sl < Sg < 8 +m If S; < S5 < 8y +m,
a contradiction to the original choice of m follows. The possibility Sg = s]
remains; then r5 =Ty - [gi can be assumed. Now Yg ¥ 5S4 =" + 5. By
consistency, re and Sg can be substituted for Ty and 34 in (15.41). Since
m>2, ry -m< rg <1y will then hold. But then an earlier argument
applies, and again the choice of m is contradicted.

The assumption m > 2 has led to a contradiction. Hence m = 1. But
then (15.40) is {15.34); and the proof is complete. '
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This distribution is not the only aspect of an electoral system. .In
particular, individual representatives must be chosen from among each
party's candidates, and the system must contain rules which determine
this choice, A1l issues but the distribution of seats among the
parties are ignored in this paper. Other aspects of electoral systems
are discussed, to some extent, in [16]. o '

This loose statement can be made precise in different ways; see, for
example, Theorem 9 in Section 9 below.

In particular, I will mention the recent contributions of M. L. Balinski
and H. P. Young. Before starting working on this paper, I was aware

of their article [1]. Later, I have had the opportunity to study other
works by Balinski and Young, in which many of the issues raised in this
paper are discussed. Specific references are made, and their approach
and resuhts are compared to mine, in subsequent notes.

See, for example, notes 86 and 161.

If the election is conducted and the result determined separately in
several districts, the entire discussion here applies to any one district.
Some problems related to aggregation of results over many districts are
discussed in [16]. '

The concept is used in social choice theory. A procedure is said to be
anonymous if interchanging two persons' ballots never changes the
outcome. It then followsithat no change in outcome will result if the
ballots are permuted in an arbitrary way among the individuals. See,
for example, [20] page 72 or [11] page 183.

To be precise, for any k and n, the set of vectors X for which F(n; x)
has wore than one element, is of dimension k-1.

In particular, this example shows that all consistent methods must
contain ties, see Definition 8 in Section 5 below.

In connection with the treatment of ties, there is a difference between the
approach of this paper and the one of Balinski and Young; see, for example,
[2]. While an allotment method in this paper is a set-valued function, .a.
method in the sense of [2] is a set of single-valued functions, ‘defined on
the same domain. The difference has the following consequence: Let a
"method," in some intuitive sense, be given. Consider two situations in-



12.

13.
14.

15.

16.

-114-

: 'wh1ch the- a11otment of seats to parties is not un1que, -assume, for

example, that there are two possible allocations in each situation.
Then there are four "combined outcomes." An allotment method will give
these: four possibilities equal status. A method in the sense of [2]
will distinguish between combined outcomes that can be obtained by the
use of one function from the method, and outcomes that can only occur
1f different functions are used in the two situations. There will
exist a method which contains functions corresponding to all four
possibilities, and methods which are proper subsets of this one.

The former and any of the Tatter will formally be different methods.
But the "full" method and some of its proper subsets will have the
property that they, for every situation, allow exactly the same
allocations of seats.

The "standard" methods studied by Balinski and Young will be uncountable
sets of functions, although the set of situations is countable and only
a finite number of allocations is possible in each situation. Each
standard method has an infinity of subsets which allow the same allot-
ments everywhere but are formally different methods. This richness

of structure does not seem to add anything.

On the whole, the difference between the two approaches is not very
important, but it does have an impact on some of the definitions given
below.

If M is a method in the sense of [2], there is a natural way of defining
a corresponding allotment method, name]y by F(n;

{f(n: x v xk)lf € M}. It is not in general oﬂv1oﬁ§ hoﬁ one shall
go the ather way. One can set M = {f|{f{n; x . X.) € F(n; x . xk)
for all n and x .y X .}, but this may des{roy desibable prope}tIes,

“such as membersk1p monotBnicity (see Definition 9 in Section 5). This

jssue is5 discussed further in note 36.

It is hard to imagine how a party can exist and participate in an
election without getting any votes. It is equally difficult to believe
that the restriction X; > 0 will cause any problems in other contexts

where allotment methods can be used, such as the apportionment of
representatives among geographical districts.

For an example, see Theorem 5(b) in Section 8.

This may be difficult in connection with proportional representation,
but possible in other applications.

Note that this restriction normally makes a condition weaker, since it
need only hold on a more limited set of situations.

In fact, almost all the results can be proved without assuming the
existence of anything but integer votes. The proofs are formulated so
as to make this clear. Exception can be found in Sections 13 and 14;
see Theorems 16, 18(c) and 19{b), and notes 131, 141 and 144.
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Usually, it would not make any difference if this generalization were
made and irrational votes allowed; most results would still hold.
(Exceptions are pointed out in notes 130 and 155, see also note 120.)
Even when the votes are assumed to be rational (or integers), certain
other quantities which occur in description of methods and in proofs
must be allowed to take on irrational values; see notes 52 and 96.

It is sufficient to assume that (4.1) holds for integer values of a.
For if a = E-, where p and q are positive integers, then the weaker
form of (4.1) gives F(n; Xps +ens xk) = F(n; PXps «ees pxk) and

F(n; aXys +ees axk) = F(n; qaXys -ees qaxk). Since qax; = px,, this
;E£;Z$s (4.1) for the given a, which was an arbitrary positive rational

If one allows irrational votes, the é of Definition 2 must be allowed
to take on any positive real value.

The measures are closely related to what is known as the £P-norm. (and
the £ -norm). F _ can, in effect, be obtained as the limit of F p
I £
p tends to infinity. (To be precise, it is the "Tex1cograph1c version"
of F _ which is equal to this Timit, see note 23 and accompanying text. )
£,
Equivalently, one can say that F 5 minimizes the length of the "error
£

k- Tk

"~

vector" (x1 -r X

]" vy

In [2], this method is referred to as the Hamilton method. The name

used in this paper is also used elsewhere; see, for example, [18] and [17].

The reason for choosing this name is that the last seats are given to
the parties which have the largest "remainders," measured by X; - inj.

when each party has been awarded one seat for each time'vi-divides~its
vote (which is Li.] times for party i).

The word "complete" is used, whenever necessary, to d1st1ngu1sh F from
any of its submethods.

This result is by no means new, in whole or in part it can be found in

[12], [1] and [8].
To be precise, let r and s be two possible allocations for a situation
(ns x), let ays ..., @ be the numbers Ix1 - r1|, cees |X X - kI in
decreasing order, and define by, ..., b, simitarly from |x - s1| .

» |% - s, |. 7 is "better than" s if there is an i such that
a; < b, and ay = bj for al1 j=1, ..., i - 1; r and § are "equally good"
ifa, =b; fori=1, ..., k. The lexicographic F  chooses the alloca-
tions in Tk n which are "best" in this sense.
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The. equlvaience of this. descr1pt1on and Definition 4 is easy to prove.

The deductions way bring a party's vote below 0, but no seat will be
awarded on the basis of a non-positive vote.

Several quota methods are discussed in the literature, but I have not

seen: the general concept formulated elsewhere. (I have used it pre-
E13us]y in [14] ) The concept is not related to the "quota method" of
1]. ‘

It would not make much difference if the quota also were allowed to
depend ‘on the number of parties.

For example, the methods FHA’ FMF and FSD (see Definition 14) can be
described as "quota methods" in this broader sense; see Section 8.4.

It is known as Droop's method or Hagenbach-Bischof's method. If the
number of votes is large compared to the number of seats, one can define

V(n, y) z'lﬁﬁTj + 1, which corresponds to the standard way of describing

the method. If the number of votes is small, however, this will not
satisfy (4.3) and can cause problems. (This was pointed out in [12].)
Hence "slightly greater" must be defined in some other way.

In [1) and [5], these conditions are called "lower quota". and “upper
quota“; a method is said to "satisfy quota" if both are fulfilled.

Formal]y, the weakened lower bound condition is re > x -1, qnd the
weakened upper bound condition is ri < x1 + 1. There are three theorems

below where any of these. cond1t1ons appear in the premise, namely
Theorems 5{b}, 6(b) and 9. In each case, the weakened conditions are
sufficient, see notes 60, 65 and 86. When the conditions occur in the
conclusion of a theorem, the strong version is always established.

®hen there are two parties, the "extended" condition is no stronger
than Definition G(a) For three parties, the extended Tower bound
condition is equivalent to the conjunction of the lower and the upper
bound. condition.

The. situation (2; | » 1), with four parties, will also show the
1ncons1stency of the cond1t1on As above (see text accompanying note,
30), the cond1t1on can be weakened slightly by permitting 7} r; = ) xi-l.
iel ie€]
This condition is satisfied by FLR when the number of parties is limited

to 4, but ¥t is inconsistent for larger number of parties by the example
in the. text.

This is not the same as the condition "binary.fairness" of [8]. The
latter condition is equivalent to the definition of F 13 see Def1n1t1on 3.
£
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Hence, by Theorem 1, binary fairness characterizes the method of the
largest remainder. (This is also pointed out in [3].) The condition
“binary consistency" of [8] is, however, related to pairwise fairness;
see note 66 and Theorems 7 and 8.

The definition is inspired by [1]. The consistency condition of [1]
is, however, considerably weaker than the condition of this paper.

In [2] and [5], consistency is defined in a way which is close to the
definition here. The definition of [2] and [5] applies only to member-
ship monotone methods, as is made clear in [5]. It is also a little
weaker than consistency in this paper. The premise of Definition 8-
says that two parties have the same votes and the same total representa-
tion in two situations; no reference is made to the order in which the
seats were awarded (nor would such a reference make sense). In [5],
the corresponding premise includes the condition that the last seat,

in each of the two situations, were given to one of the two designated
parties. A stronger premise, of course, makes a weaker condition.

See further discussion in notes 36 and 158,

In [2] and [5], the corresponding condition is called monotonicity or
house monotonicity.

When F is membership monotone, there will in some cases be a natural
Tink between allotments for different situations. (This is not the
case for an arbitrary allotment method, see_the discussion in note 11.)
In particular, if F(n; X} + ¥, then F(n+1; x) will contain scme allot-
ments s for which s, > r. for all i, and perhaps some for which this is
not true. T— 1

More can now be said about the connection between allotment methods

and methods as.defined by Balinski and Young. If F is a membership
monotone allotment method, a method M in the sense of [2] is given

by M = {f|f is house monotone and f(n; x) € F(n; x) for all n and x}.
Then M will be non-empty and house monotone, and if an allotment method
F' is constructed from M as described in note 11, F' and F will be
equal., If F is consistent, so is M (consistency taken in the appropri-
ate sense each time). But M can be consistent without F being (an
example of this is given in note 158). Therefore, consistency as
defined in this paper is, in a sense, a stronger condition than con-
sistency as defined in [2] and [5]; see also note 34, In this paper,
membership monotonicity will follow from consistency and another reason-
able condition (see Theorem 3 below), and in most results where con-
sistency is a part of the premise, it is not necessary to make member-
ship monotonicity a separate assumption. In the works of Balinski and
Young, both consistency and house monotonicity are generally assumed.
This difference is a consequence of the different definitions and is
not very important,

If the order in which F and M are constructed from each other is
reversed, the correspondence is a 1ittle more complicated. Let M be a
house monotone method in the sense of [2], and let F be obtained from M
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as-in:note 11.  Then F is a membership monotone allotment method. But
if M' is constructed from F as above, it can only be concluded that

Mg M'. (Consistency of M is not enough to guarantee M' = M.) Any of
M and F can be consistent without the other being. This lack of
symmetry is caused by the "richness" of the system of possible methods
M; many different methods M collapse into the same F by the construction
of note 11, and only certain "complete" methods can be obtained from an
F by the construction described in this note.

To be pedantic, one first uses the fact that F(ri+rj; X3 xj) is non-
empty to find a pair (ri', rj') in this set. Since ri‘ + rj' =t rj,
consistency can be applied to the situaticns (nl; x) and (ri+rj; X;s Xj)’

to get F(ri+rj; X xj) -+ (ri, rj).

In [2], this condition is called symmetry. The word neutrality is often

. used in social choice theory about a related condition; see, for example,

[20] page 72 or [11].page 183. ‘“Neutrality" means neutrality in rela-
tion to parties. Neutrality in relation to voters is called. anonymity
and . is embodied in the definition of allotment methods; see note 8 and
accompanying text.

The problem is that if F(n;-x], %o x3) -+ (rl, ros r3) and F(n; Xo» Xy x3)
> (52, Ss 53), it can conceivably be the case that r; + v Fosg + S5 for
any two parties i and j. Then consistency cannot immediately be applied.

When the number of parties is 1imited to two, consistency and neutrality
are equivalent conditions. A consistent method which is not neutral
cannot be weakly balanced, see Definition 11 and Theorem 3 below. The.
generalization of consistency to more than two parties, see the end of
Section 5.1, immediately implies neutrality.

The term "balanced" is taken from [2].

Example: If x >y and n < 3, F(n; x, ¥) = (n, 0) and F(n; y, x} = (0, n).
Otherwise, F{n; x, y) = FLR(n; X, y). The theorem breaks down because

consistency is a rather weak condition when the number of parties is
Timited to two (see note 39 above). I do not know whether the theorem
is correct when the number of parties is limited to three, but I would
guess that the answer is yes.

See note 9 and accompanying text.
The "quota method" of [1] is internally but not externally vote monotone.

(It is also membership monotone.} This method is described in Section 10
below. The method F(n; x) = (n, 0, ..., 0), which gives all seats to

: party 1 regardless of the votes, is externally but not internally vote

monotone, It is also possible to find neutral methods which have these
properties, but my examples are fairly complicated (and not very :
interesting).
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This again has to do with the weakness of the consistency condition
when the number of parties is limited to two. The following method,
defined only for situations with two parties, is consistent, membership
monotone, and internally but not externally vote monotone: If x >y >
x - 1, then F(n; x, y) = {(n, 0) and F(n; y, x) = (0, n). Otherwise, ~
F(n; x, y) = FLR(n; X, ¥}. (F is strange, but it is not entirely

inconceivable that it captures the spirit of actually existing political
phenomena: If the vote is a close call, the winner will "overcompensate
and take all the seats; if the winning party has a more comfortable lead
in the votes, it can afford to share power and seats with the loser.)

The idea of defining this class of methods emerges from the studying
of special divisor methods such as FHA and FMF ?defined and discussed

in Section 8 below). The general concept has earlier been defined in
[14], [1] and [2]. d{a) in [1] and [2] corresponds to d o+ in this

paper., The definition used in [1] is somewhat'different from the one
used in the other papers, but the equivalence of the two formulations
can easily be proved.

In [13], divisor methods are studied, but the general concept is not
formulated explicitly.

The word "complete" is used whenever necessary to distinguish divisor
methods from partial divisor methods, defined in (b) below.

Note that a partial divisor method is not a partial function in the
sense that it may be undefined for some situations; a partial divisor
method F is an allotment method, and F(n; x) must be defined and non-
empty for all situations (n; x).

In practice, it will often be unnecessary to compute all these numbers,
If it is clear from the outset that party i will get at least r and
X, X

at most r? seats, only H;L“ ces EJ: need actually be computed.
- "

r.

i i
A convenient way of organizing the computation is to arrange the quo-
tients inan n x k matrix, the entry in column i and row a being
X

Hl;‘ Then one checks off the n largest quotients, and counts the number

(o
of checks in each column,
For example, take any divisor method and break all ties in favor of the

first party or parties; "first" referring to the ordering of the parties
votes in the vector x = (x], vees xk) That is, if the quotients

><

-l~, on the basis of which the parties compete for their next seat, are

d

o1 . .

equal for two or more parties, then the seat .shall be given to the first
of the parties which have this largest quotient. This is a membership
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1mdhbiphé‘ahd“scaTe;independent partial divisor method which is not
" consistent.” Neither is it neutral. For exampies of neutral methods

which satisfy all but one of the three conditions mentioned above, see
Section 11.2.

For Tater reference, an example is given: Consider the divisor method
given by da = o for all a. (This is the method of the highest average

(FHA), discussed in Section 8 below.) Whenever there is a tie, break

it in favor of the largest party. (If the parties have an equal number
of votes, break the tie arbitrarily.) Hence the unique allotment in the
situation (2; 2, 1) is (2, 0), while FHA(Z; 2, 1) = {(2, 0), (1, 1)}.

This method is actually in use, in Norwegian municipal elections; see
"Tov om kommunestyrevalg og fylkestingsvalg" {local elections law) from
10 July 1925 no. 6, section 34. (The law gives an algorithm which is
somewhat different from the one described above, but the equivalence

is easily proved.)} For electorates as large as in actual elections,
ties are highly unlikely. The difference between this method and FHA is
therefore mainly theoretical.

Again, the statements need not be true for partial divisor methods.
One part is true, however: If F is a submethod of a strict divisor
method, then F is strongly balanced.

The example involves only two parties, the votes are integers, and the
divisors du and du' are allowed to be irrational. In particular, it

follows that the full strength of the class of divisor methods can only
bée obtained by allowing irrational divisors, although the votes are
supposed to be rational; the same would be true if only integer votes
were allowed. See notes 82 and 84 for a method with irrational
divisors which is in actual use.

The method has many names. It often called the d'Hondt method, after
Victor d'Hondt, a Belgian who proposed the method in articles published
approximately 100 years ago. In {2], it is called the Jefferson method.
The phrase highest (or largest) average is used in [18] and [17] {in
the former, however, this name refers to a broader class of methods).
The reason for the name is the following: If party i has already been
awarded r; seats, it will compete for its next on the basis of the

, X Xs
number H_J"* = Fﬁ}T . (See the discussion of computational aspects,
| r.+l T
j

after Definition 13 in Section 7.) This number is the average number
of votes behind each of the party's seats if it gets the one for which
it presently is competing, Thus the seat is given to the party for
which this average is highest. Yet another name is "the method of the
greatest divisor" (used in [13]); this name is explained below, see
note 74. :
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This method alse has several names: the odd number method, because the
sequence of divisors equivalently could have been given as 1, 3, 5, ...:
the Sainte-Lagué method, after a Belgian who proposed the method early
in this century (this name is used in [18] and [17]); and the Webster
method, used in [2]. The name "the method of major fractions," also
used in [13], is explained below; see note 71 and accompanying text.

Again an explanation of the name is given below; see text accompanying
note 75,

The method is intended to guarantee each party at least one seat, and
it does not make much sense when n < k. Therefore, some ad hoc rule

must be applied in this case. The one chosen in Definition 14(c) is

designed to make possible the characterization in Theorem 6 below.

As defined here, F D is not vote monotone. Another possibility is to
give the n seats-t§ the largest parties when n < ki see note 63.

Essentially the same result is proved in [6], In that paper, member-
ship monotonicity is included in the premise; see the discussion in
note 36.

The non-trivial part of the proof, namely the proof of part (b), is
based on a technique used in [1].

Indeed, the sequence can be chosen in uncountably many different ways.

The proof will work even if one only assumes the weakened versions of
the lower bound condition mentioned in comments after Definition 6;

see text accompanying note 30, When this weakened condition holds, it
can be proved that F is weakly balanced, which is enough for the proof
in the text to proceed. (Later in the proof, only the weakened con-
dition is needed.) The proof that F is weakly balanced goes like this:
By consistency, it is sufficient to prove that Definition 11{b) holds
for situations with two parties. Assume that F(2r; x, x) + (r+1, r-1)
for some x and r, which is the most "unbalanced" allotment permitted by
the weakened Tower bound condition. Consider the sifuation {(3r+15 x, X, Xx).
Here the exact representation of each party is r + 3 Apart from permui-

tations, the only possible allotment is (r+l, r, r). Consistency gives
F(2r; x, x} = (r, r), which is exactly what is needed to conclude that
F is weakly balanced.

See note 9 and accompanying text.
A similar result can be found in [6].

If FSD is redefined for situations {n; Xys «ies xk) with n < k so as

to require that the n seats be given to the n largest parties, the method
and all its submethods bacome internally and externally'vote monotone.
(See note 56.) The theorem holds for the redefined method if either
internal or external vote monotonicity is added to the premise of (b).

In {(a) and (c), both these conditions can be added to the conclusion.
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Here it is essential that all votes are strictly positive.

As in Theorem 5(b), it is sufficient to assume the weakened form of
the upper bound condition; see note 30. By an argument similar to the
one used in note 60, it can be proved that F is weakly balanced.

(If F(2r; x, x) > (r+1, r-1), the situation (3r-1; x, x, x) is
considered, )

The concept originates in [8], where it is called “b1nary cons1stency "
(To be precise, binary consistency, as formulated in [8], is not
contradicted by certain strongly biased allotments which do contradict
relative well-roundedness. But the concept is presumably intended to
be equivalent to Definition 15.) The name "relative well-roundedness,"”
as well as the formulation of Definition 15, is taken from [3].

|
.

This description is strictly correct only when 21 +1 > r; > ii +
But if r, g_ii + 1, the over-rounding is even more striking.

In [3], membership monotonicity is a part of the premise, see discussion
in note 36 above.

For Tater reference, note that the contradiction is obtained even if
only one of (8.13) and (8.14) is a strict inequality.

Fractions which are equal to one half have been ignored so far. To
obtain an allotment with the correct total number of seats, it may be
necessary to round some such fractions upwards and others downwards.

This explains the name "the method of major fractions."

Ostensibly, the range permitted by (8.15) depends not only on n and x,
but.also on r. It can be_shown, however, that_the range does not
depend on the particular r chosen from FMF(n; X), if this set has more
than one element.

The reasoning may perhaps seem circular, since VMF originally is given

by (8.15), which in turn depends on FuF- But in fact the right-hand

side of (8.17) makes no reference to all of this and does not depend
on the earlier definition of FMF; hence it provides an independent

definition of the method. The proof that (8.17) defines the same
methods as the one given by Definition 14(b) is given 1nforma11y above
and can easily be formalized.

The method is often defined this way: see, for example, [9] and [1].

‘It also explains the name "the method of the greatest divisor."

This explains the name. In [1] and [8), the method is defined in this
way; in the latter paper it is called "o-quota."
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This is str1ct]y true only if ties are ignored. To be precise, the
“Timit method" is a submethod of FHA It breaks t1es in favor of small

parties, in contrast to the submethod descr1bed in note 50.
Again, ties must be ignored.

The limiting cases a = 1 and a = -1 correspond to FHA and FSD’
respectively; see the previous paragraph

A1l methods considered here are scale independent; hence the votes can
be normalized to sum to 1. For any k and n, the set of situations
then becomes a bounded set. The statement in the text can be made
precise in terms of a measure on that set.

One gets the "divisor method" defined by d_ = Z%é%%ll.. The problems
caused by the fact that d1 = 0 are solved as in Definition 14(c).

This criterion gives the method of major fractions.

One gets the "divisor method" given by da = Ja{a-1); d1 = 0 is again

taken care of as in Definition 14(c¢). The divisors are irrational
numbers and cannot all be made rational by rescaling; see note 52.
Also, the method is in actual use; see note 84,

Some of the criteria do not uniquely define a method, while others lead
to methods which are not membership monotone. From the remaining cri-
teria five different methods emerge, namly the ones described in
Definition 14 and notes 80 and 82. A systematic presentation of the
five methods and criteria defining them, can be found in [2].

The topic discussed in [13] is not distribution of seats to parties in
proportional elections, but apportionment of the House of Representatives
of the USA. ({The U.S5. Constitution prescribes that the representatives
he apport1oned among the states "according to their respect1ve numbers,"
that is, in proport1on to their population.) In my opinion, the remarks
in the text apply in this case as well. Professor Huntington, however,
argues that certain criteria are clearly superior. These determine a
unique "method of equa1 proportions," namely the one described in

note 82. This method is presently used for. apport1onment of the House
of Representatives.

This result is also given in [2], where its proof depends on a theorem
in [1], the proof of which uses an unlimited number of parties.

See the proof of Theorem 5(b). The lower and the upper bound condition
can be weakened as described .in note 30 without affecting the result;
the argument of note 60 can be used to show that F is weakly balanced,
and the rest of the proof applies without change.
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The difference in basic framework, see notes 11 and 36, is unjmportant
here. Methods satisfying (i) - (ii1) are called “"quotatone” in [4].

-To be. precise, any solution must be a submethod of the allotment method

Fﬁ-defined from 0 as described in note 11.

Fgp itself, as given by Definition 14(c), is not vote monotone, but
the submethod described in note 63 satisfies (ii)'- (v).

This is not really a proof, but it gives the idea. A formai proof is
given in [1], where it is also proved that FQ essentially is the unique

method satisfying (i) - (iii) and a weakened form of consistency;
uniqueness is here interpreted as in Theorem 5{b).

The use of four parties is essential; the method is externally vote
monotone when the number of parties is Timited to three.

The size of the majority required to take all the seats, will of course
depend on the total number of seats. This condition is not necessarily
a reasonable one in other connections where allotment methods can be
used.

By (i), (ii) and Theorem 4, it is unnecessary to distinguish between
external and internal vote monotonicity.

In the presence of consistency, vote monotonicity and scale independence,
this says exactly what was announced above: No matter how many seats
there are, if a party has a strong enough majority, it takes them all.

A number u is an upper bound for a set U if u > v for al] v € U,

The number u is the supremum of U if u is an upper bound for U and no
number v- < u is an upper bound for U. If a supremum exists, it clearly
is unique. It may seem obvious that any set of real numbers which is
bounded from above, has a supremum. But in fact this is a nontrivial
property of the real number system. For example, the rational number
system does not have this property. It follows that although the set
Du contains rational numbers only, da need not be rational; see note

52 above. The existence of suprema is discussed in any basic textbook
in real analysis; see, for example, [19], Chapter 1.

The number a is included, and a and y are required to be integers, in
order for the proof to work even if only integer votes are allowed.

This again has to do with the lack of strength of the consistency
condition when there are only two parties. An example of a method

which is not a complete or partial divisor method but satisfies (i) - (v)
when the number of parties is limited to two, can be constructed as
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follows: Let du(n)=<1 - E%T‘ and let Fn be the divisor method with

divisors d](n), dz(n), «... Then define F(n; x, y) = Fn(n; Xs ¥).
F satisfies (i) - (v). (The only condition which could possibly cause
problems is membership monotonicity, but the proof that this condition
holds is not difficult.) It is also easily seen that F cannot be a
submethod of any divisor method, even for the restricted case where -
there are only two parties. F cannot consistently be extended to
situations with three or more parties.

Again the method of note 50 can serve as an example; it satisfies
(1) - (v) but is not a complete divisor method.

As noted in the comments to Definition 8, it is sufficient to verify
consistency when one of the two situations involved has only two
parties, The definition of F1.1 implies that at most one party gets an

odd number of seats. Now one can consider the four cases given by

k1 =2 or k2 =2, rs + rj is even or odd, where the symbols are used

as in Definition 8. ]The cgses in which k = 2 are fairly straightforward.
Then consider the cases with k1 = 2 and k2 > 2. If ri + r =S5

is odd, yi2 or yJ must be the largest (or one of the 1arges%) in %he
vector (y], s Yy }. If this number is even and n, is odd, there must
exist 1 ¢ {iz, jz} with Y52 ¥4 and Y g_yj . (If ny is even, there

is no problem.) 1In all the cases, the conclusion of Definition 8 can

be derived.

Even if one only accepts integer votes, FHA("; y), as a formal function,
is defined for all positive numbers Yis rees Yo Therefore, F... is

iid
well defined in this case as well.

This description is not completely preéise, but it should be clear
what "breaking ties" means; see also note 49.

That is, the [%J seats are allotted according to the method of note 50.
If there is a tie between parties with equal votes, it can be broken
any way.

never gives an odd number of seats to more than one party. The
p;oof of consistency can be divided into cases in the same way as was
done for the method Fﬁ in note 100. In each case it can be shown, in

the terminology of Definition 8, that r # S3 implies Xj = Xi oo
Consistency then follows. 1 2 10N
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Such. a minimum requirement is probably not a reasonable condition in
proportional elections, but it may be imposed in other connections when
allotment methods can be used. (Compare note 92 and accompanying text.)
Minimum requirements are discussed more thoroughly in [1] and [4], where
the possibility of the requirement being different for different part1es
is also considered.

No attempt will be made to explain what "utility" is or how it can be
measured. One can think of it as some measure of pleasure or content-
ment, but more tangible interpretations are also conceivable. In
general, the realism of the approach of this section is open to
criticism in a number of ways. This issue is not discussed here, but
some possible objections are mentioned in [16].

This condition cerresponds to "diminishing marginal utility" or "concave

utility functions," concepts often used in welfare economics. If (12.4)
does not hold, the method defined by (12.2) need not be membership
monotone.

See the second description in the comments to Definition 13.

If F is internally vote monotone, F(1; 2, 2, 3) = (0, 0, 1) and
F(1; 4, 3) = (1, 0), contrary to the proposed condition.

In a sense, this definition assumes that only neutral allotment methods
are considered. If F is not neutral, part (a) will, for example, not
really say that F encourages merger, but only that F encourages a
merger of parties 1 and 2. In the theorems below, neutrality will
follow from other conditions and need not be assumed.

In [9], concepts similar to parts (a) and (d) were introduced; see
quote and discussion below. In [2], the term "stability" refers to a
property which for all practical purposes is equivalent to the

-conjunction of (b} and (d}, the phrase "encourage coalitions" is used

of {(a), and "encourage schisms" denotes (c}.
Formally, this condition would read:
F(n; Xps Xgs cees xk) -+ (r], Fos wees rk) and
F(n; X] * Xps X35 eeny xk) -+ (51, Sgs +ees Sk)

imply S z_r] + ry

Example: Fop(25 1, 1, 1) > (1,.1,0) and FHA(é; 2, 1) » (1, 1), contra-
dicting the condition of note 112.

In the strengthened version of note 112, merger and division are treated
symmetrically.

The use of the phrase “encourage schisms" in [2] does not mean that
division is considered; the concept is equivalent to Definition 17(c}.



115,

116.

117.
118.

119.
120.

121.

122.

123.

124.
125,

126.

-127-

If the "division conditions" are used instead of the conditions of
Definition 17, Theorems 13 and 14 still hold. (The proof of Theorem 13
applies unchanged, and the proof of Theorem 14 can easily be modified.)
In Theorems 15 and 16, certain technical problems arise; they are not
discussed in detail here.

Examples: FLR(Z; 7, 7, 8} = (1, 1, 0) while FLR(Z; 14, 6) = (1, 1);

and F o(15 3, 3, 4) = (0, 0, 1) while F p(1; 6, 4) = (1, 0).

This result is also proved in [2].

Moreover, the proof works even if the conditions of Definition 17(b} and
(d) are strengthened as indicated in note 112. ‘

Parts of the theorem can be found in [14] and [2].

Strict inequality will hold between da+5 and da + dB if and.only if

F encourages merger in the strengthened sense of note 112. (If some
of the numbers da are irrational, irrational votes are required to

prove that strict inequality is acnecessary condition for the
strengthened version of Definition 17(a).) Similar remarks apply to

parts (b) - (d).

In order to make the proof formally correct, the possibility of
ry = 0 or dr =0 fori =1 or 2 should be treated separately. It is

j : :
easily seen that the entire proof can be carried through:in these
cases.

It is essential that this proof makes use.of four parties, while only
three parties were involved in the corresponding proof of part (a).

d, =0 will imply d_ = 0 for all «. The "divisor method" defined from
these divisors is F%.

Translated from Danish by this author.
Here follows a description of the method of the highest average,

similar to the one given in Section 8.4; see note 74 and corresponding
text.

The unstated conditions are slightly stronger than consistency, but
follow from consistency and membership monotonicity. (I interpret

_Erlang's first two conditions as correspoding to external vote mono-

tonicity.) In [15], it is proved that Eriang's claim, and not only
the proof, is erroneous. The allotment method used to show this can
be described as follows: Let a situation (n; Xys +ees xk) be given.

If n > 2 and there is a party whose vote exceeds a fraction ﬁ%f of
the total vote, that party shall get all the seats. Otherwise, the
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method: of the highest average shall be used. This method obviously
satisfies I' and I, and:I1I is not difficult to prove. In the
situation (2; 3, 2) the method gives both seats to the first party,
wh11e;FHA(2; 3,.2) = (1,.1). The method is not consistent, but it is

neutral. and satisfies several other of the conditions previously
discussed. In particular, conditions (ii) - (v) of Theorem 10 hold.

Similar results are given in [2]. The results of that paper may seem
stronger than Theorem 15, since they do not contain any condition
corresponding. to restriction of gain {(or loss) by merger. But such:a
condition (called stability, see note 117) is used in the proof and

is necessary for the result. (The divisor method given by d. = a +.1
is different from F,, but satisfies the rest of the conditiofls.)

This also means that Theorem 15 is not, strictly speaking, a generali-
zation of the characterizations at the end of Section 13.3. The class
of divisor method and the class of consistent and strongly balanced
method: are incomparable; neither is a subset of the other. Theorem 16,
however, is a generalization of the result from Section 13.3.

A shorter proof can be given by using Theorem 27 in Section 15 below.
(This corresponds to the proof given in [2].) Since F is consistent
and strongly balanced, it is a strict priority method. Let R be the
corresponding priority relation. Lemma 2(a) and (d), and the fact that
R is strict, can be used to prove {x, r)R(nx, nr) and (nx, nr)R(x, r)
for all x and r and all positive integers n. Then it can be proved
that R is exactly the priority relation which defines FHA’

Similar remarks apply to the proof of Theorem 15(b). Here Lemma 2(b)
and (c¢) imply that {x, v} and (nx, nr - n + 1) have equal priority.
The method used at the corresponding point in the proof of part (a),
which essentially is induction on ry + T cannot be applied here.
The. reason is. the possibility that ry T 1, r, = 0 and.xT # Xo Note

that the proof in no way depends. on. non-integer votes being allowed;
if both Xy and X, are integer, one can choose a = 1. The proof does

not work, however, if irrational votes are allowed.

Here it seems essential that non-integer votes are allowed. If it is
assumed that F is scale independent, only integer votes need be used.
For example, a standard of comparison. can be the "exact representation,”
X defined in Section 4.1. It is meaningful to say that a method -

favors large (or small) parties compared to this criterion.

A similar condition is formulated in [1].
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134. For example, Definition 18 is not satisfied if F = G is a complete
divisor method. But a method which only Teads to ties when two
part1es have an equal number of votes, such as the method described
in note 50, will favor small parties compared to itself. These
phenomena are consequences of the specifics of the definition and
should not cause any problems.

135. It is not clear that transitivity holds_for methods wh1ch are not
consistent. If F(n; x) + v, F'(n; x) > t and rotro= ot 4 tJ

there will not necessarily exist any E'with'F'(n; x) +—§'and

$: ¥ sj =r. ¢t rss hence the assumptions about F' cannot be used.

If the methods are consistent, everything can be reduced to two-party
situations, in which case such an s will always exist.

136. Formally, the alternative condition is the following: F(n1; Xps ores % )
1

> (r], vees rk1), Gln,s Yis weeo yka) - (51, cees skz), Xil = yiz xj]
=y. and ry * =5, +s; imply ri>s; . The ‘definition in [1]

I2 ) 2 2 h “ '
is formulated in this way (at least it allows ny # "2)

137. This part is also proved in [1], us1ng a different but eguivalent
definition of divisor methods.

138, See note 136 and accompanying text. F and F' of Theorem 17 may be
partial divisor methods which are not consistent, hence the two
versions of the definition need not be equivalent.

, d ' X d
139. If o= -*+ for some o > B, one can find Xy and x, with 1. =
d d 2 X5 dB
(Here rationality of the divisors is essential, unless irrational votes
are allowed.) Since F is strict, da > clB and X1 > Xy In the

situation (a+g-15 Xy, X,), both F and F' produce a tie between (a-1, B)
and (o, 8-1). This contradicts Definition 18.

140. One can ask whether it is possible to strengthen the condition of
Definition 19 in the same way as was attempted by the "extended Tower
bound condition" in Section 4.4. That is, one can ask whether there
exist methods which gquarantee that any coalition of parties which have
more than half the vote get at least half the seats. The answer is
no, as is shown by the situation (13 1, 1, 1). For any aliotment,
there will exist a coalition of two parties with no seats.

141. Here, and acain in the discussion of the case Xy < X, below, it may be

necessary to use a non-integer vote y. This can be avoided if F is
scale independent. But then the assumptions, together with membership
monotonicity which is proved below in the text, imply that F is a
complete or partial divisor method. Hence the proof could have
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proceeded as in note 143 The proof that F is a divisor method goes
as follows: Consistency and preservation of the majority imply internal
vote monotonicity. Hence, by Theorem 11, there exists a generalized
divisor method G such that F&€ 6. If, in the notation of Definition 16,
M, exists, then F(BM]; 3, 1, 1) = (MI’ Ml’ M1), and F does not preserve

the majority. It follows that G is an ordinary divisor method.

142. The submethod of FHA which breaks all ties in favor of the smallest
party is consistent and favors small parties compared to Fua- By (a),
this method preserves the majority.

143. Let F be a complete or partial divisor method, given by the divisors
d], dz, cen (d] = () can be permitted.) Suppose that FHﬁafavors small

parties compared to F. ‘Theorem 17(b) implies that for all

a>B821. If F(n; X) ~ ¥ and party i has more than half the total
vote, rs z_rj for all j. (Being a divisor method, F is internally

vote monotone.) Equation (14.1) of the proof of Theorem 18 follows,
and one can proceed from there. Conversely, assume that F favors
small parties compared to FHA' If d] =0, F(3; 3, 1, 1) = (1, 1, 1),

and F does not preserve the majority. If d] > 0, the divisors can be
normalized so that d1 =1. If da = o for all o, F C:FHA Otherwise,
Tet a be the smallest integer for which d # a; thena > 2. d <a
contradicts Theorem 17{b), hence da >a. Find integers x and y such
that ax <y < dax. Then F(20-1; %, (a~1)x, ¥) = (1, a-1, a-1), and

F does not preserve the majority.

144, Again, it may be necessary to choose an x which is not an integer.

If F and F' are scale independent, this can be avoided. F is scale
independent if V(n, ay) = aV¥{n, y) for all n, y and positive rational

numbers &; and similarly for F', (In fact, it is sufficient to assume
that this holds for positive integers a; see note 18.)

145. See note 28 and accompanying text.
146. The ideas of this section are inspired by [5].
147. For example, consistency requires F(1; 1, 1) = {(1, 0}, (0, 1)}.

148. An example, which has been referred to several times before and will
be used again later, is given in note 50.

149. Note that the possibility x = y, r = s is included here. Hence
{x, r)R{x, r) for all {x, r), that is, R is reflexive.



150,

151.

152.

153,
154,

155,

196.

157.

-131-

The formulation in [5] is essent1a11y equal. But there the pair {x, r),
where r > 0, represents the party's priority of getting its seat number
r + 1, that is, of getting another one when it has r seats. See also
note 156

Since R is complete, P could equivalently have been defined by
(x, r)P(y, s) if and only if not {y, s)R{x, r). The version in the
text is chosen for later reference.

These statements can be proved from transitivity and completeness of
R; see discussion in [20], Chapter 1* or [11], Sections 7.1 and 7.2.
Unfortunately, the terminology is not uniform. When R and P are as
in the text, R will be an ordering in the sense of [20], while P will
be a weak order in the sense of [11].

The name "Huntington method" is used in [5].

Proof: Let R and R' be semi-strict priority relations, defining the
methods F and F', respectively. If R # R', there exist x, y, r, s
such that (x, r)R(y, s) is true and (x, r)R'(y, s) is false {or vice
versa). Consider the situation (r+s-1; x, y). It is possible to find
1 S with ryxr and F(r+s-1; x, y) ~ (r], s,). But if

F'ires-1; x, y) ~ (rz, 52), the definition 1mp11es that (x, rz)R'
(¥, 53+T), where Sq is the number of seats the second party had when
the first party got its seat number Toe Hence S3 2 Sp3 and if Yy > s

semi-strictness contradicts the assumptions. Therefore, F # F', It
is also easy to see that F and F' are different if R is semi-strict
while R' is not. (This also follows from the proof of Theorem 21
below.) Assume, however, that R and R' are defined by

(x, r}R(y, s) if and only if r > s; and

(x, r)R (y, s) if and only if ¥r>1 orr=s =1,
Then F and F' are equal; they both consist of all allotments in which
one party gets all the seats. But R and R' are formally different,

The set of pairs (x, r) is countable, and the existence of fR can be

proved by induction on an enumeration of this set. Proofs can be
found in [7], page 200 (Theorem 22) and [10], page 14 (Theorem 2.2).
Countability of the set of pairs {x, r) is essential; if irrational
votes are allowed, the method of note 50 is an example of a priority

‘method which cannot be represented by a real-valued function. (See

discussion in [10], page 27.)

In [5], the concepts are defined in terms of representing functions.
Such a function is called a rank index.

If R is not semi-strict, there may be pairs whose relative priority
does not matter, hence the condition on R can be violated while F still
has the corresponding property. The method which gives all seats to
the largest party {or one of the largest parties, in case of a tie),

is vote monotone and scale independent, but it can be represented by
relations which do not satisfy!the conditions.
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Examples must be quite strange, but here is one: Let x # vy, let the
pairs (x, 1) and (y, 1) have equal priority, and let (x, 2) have

higher priority than (x, 1) while (x, 3) and (y, 2) have lower priority
than (x, 1). It is clearly possible to find a priority relation for

which this holds; the unspecified parts of the relation do not matter.

Let F be derived from this relation. Then

F(3; %, ¥, x) > (2, 0, 1);

the two first seats are given to the first party and the third to the
third party. Moreover,

F(25 x, y) > (1, 1);

the first seat is given to the second party. Consistency, applied to
the first two parties, now gives :

F{3; x, ¥, x) = (1, 1, 1).

But this is impossible. Before the third seat is distributed, the
first or the third party (or both) must have one seat. (x, 2) has
higher priority than any other relevant pair, hence that party (one
of these parties) must get the third seat and end up with two seats.

In the notation of Definition 8, this counterexample has k] = 2 and

k2 > 2, It is not difficult to see that any priority method will
satisfy Definition 8 for k2 = 2.

If a method M in the sense of [2] and [5] is constructed from this F
as described in note 36, M will be consistent. In fact, in the frame-
work of [5], every priority method (Huntington method) will be con-
sistent; see the discussion in notes 34 and 36 of the relationship
between consistency as defined in this paper and in [5].

The purpose of introducing priority methods was to give a characteriza-
tion of a broader class of consistent and membership monotone methods
than the class of divisor methods {or generalized divisor methods).
Therefore, the fact that not all priority methods are consistent .can
be taken as an indication that the definitions are not entirely satis-
factory. (The flaw may 1ie in the definition of consistency or in

that of priority methods.} But if one is interested mainly in balanced
methods, Theorem 21 shows that the problem is not a serious one.

A similar statement makes up one half of the main result in [5]. (The
other half is the opposite 1mp11cat1on which holds in the framework

of that paper; see the previous note.) But what is proved in [5] is a
tittle weaker than the stated result namely the following: Let M1 be

consistent and (membership) monotone. Then there exists a Huntington
method {priority method) M such that MIC: M2 Examples can be con-

structed in which M # M] This problem has to do with the "richness
of structure" of the system of methods as defined by Balinski and Young
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(see discussion in notes 11 and 36), and perhaps also with the relative
weakness of their consistency condition. It is a "problem,” however,
only on a formal Tevel; any consistent and (membership) monaotone method
is "almost" equal to a Huntington method, and that is what matters for
practical applications.

The'proof of {15.2) is different from, and simpler than, the one in
[5]. The difference has to do with differences in basic framework and
in the definition of consistency; see notes 11, 34 and 36.

The existence of R follows from well-known results in the theory of
relations; in particular, Szpilrajn's extension theorem [21]. A
discussion can be found in {10], Section 2.3. Only an outline is
given here. ,

Let Wy, Wy, etc. denote pairs of the form (x, r}. Define R0 as the
transitive closure of R*. That is, wROw if and on1y if there exists

a SeqUeNCe Wy, ..., W) such that w = Wis W, R*w. i+ fori=1, ..., k-1,
and w' = w,. (Th15 includes the poss1b111ty k = 1, hence wRaw for all
o bY (15.1). (15.2) can be used to prove
that wP*w' implies ngw‘. Then identify any two pairs w and w' for
which wROw' and w'Row. (Formally, this amounts to dividing by an

w.) Moreover, define P from R

equivalence relation.} No pairs w and w' for which wP*w' will be
identified. R0 and P0 are well-defined on this reduced domain, and

P0 will be a strict partial order in the sense of [10]. P is now con-
structed by extending P0 by Szpilrajn's theorem, and R is defined by

whw' if and on]y if not w'Pw., (Equivalently, wRw' if and only if
w=w'"orwPw'.) This gives R on the reduced domain; one gets back to
the original doma1n by letting any pairs which were identified have
equal priority in R. It can then be demonstrated that R is a priority
relation satisfying (15.13) and (15.14).

The proofs of Szpilrajn's theorem, as given in [21] and [10], use the
axiom of choice, or some equivalent mathematical principle. The proofs
work regardless of the cardinality of the sets involved. Since the set
of pairs (x, r} is countable, it is not necessary to invoke such strong
(and disputed) principles. An entirely constructive proof of the
extension theorem can be given for the countable case, by induction on
some enumeration of the countable set of pairs of the form (w, w'):

If (w, w') is the first pair in this ordering, construct R1 from R0 as

follows: If wRow' or w'ROw,or both, then R1 = RO. Otherwise, w]R1w2
if and only if either WIROWZ' or w]Row and w‘Rowz. That is, the pair
(w, w') is added to RO’ and the transitive closure is taken. R2 is
constructed from R] in the same way, using the second pair in the
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enumeration, etc. Finally, R is the union of RT’ R2; ... That is,
WTsz if and only if there exists an m such that w]mez.

This is not true when the number of parties is limited to two, as

shown by the following example. For any positive rational number x,

Tet o{x) be the remainder when | x| is divided by 3; hence o(x) is

equal to 0, 1 or 2. Compute F(n; x, y) by using the method of the
highest average, but breaking ties as follows: If o(x) = o(y), break

a tie any way. If either o(x) + 1 = o(y), or o{(x) = 2 and c(y)

break ties in favor of the party with x votes. If either o{(x) = (y) +1,
or o{x) = 0 and o(y) = 2, break ties in favor of the party with y votes.
This covers all possibi1it1es and gives a well-defined, consistent and
membership monotone method when there are only two parties. F is also
strongly balanced. If F were a priority method, it must be defined by
a strict priority relation. (See Theorem 21 below, the relevant part
of the proof does not use situations with more than two parties.) This
priority relation, in turn, must define a consistent and membership
monotone method on situations with an arbitrary number of parties.

(See Theorem 21.) This method must coincide with F for two-party
situations, and will also be called F. Consider F(45; 1, 2, 3}. At
least one element of T3 4 must be a possible allotment here. But for

each of the 15 elements of T3 4+ One can pick out two parties, and use

consistency to obtain a contrad1ct1on t6 the definition of F for two-
party situations. .In particular, if a smaller party gets more seats

than a larger one, these two parties prov1de the contradiction. The
remaining possibilities are (0, 0, 4), (0, 1, 3), (0, 2, 2) and (1, 1, 2).
The two last parties give the counterexample in the f1rst and second

case. The third case would give F(2; 1, 2} + (0, 2) and the fourth
would give F(3; 1, 3) = (1, 2), also contradicting the definition of F.

It follows that F is not a priority method. Neither can F be consis-
tently extended to situations with three or more parties.

The relation R* defined from F satisfies (15.2) for k = 2; but for

k > 3 examples can be found which violate (15.2). F was chosen to be
strongly balanced, in order to show that the "only if" part of Theorem
21 is also wrong when there are only two parties.

The method constructed in note 98 is also consistent and membership
monotone when there are two parties, and it is not a pr10r1ty method.

This will not be proved in detail, but a sketch is. given. Let x and

r > 0 be given. r is said to be a hurdle for x if_?x, s}R(x, r) for

all s = Ty vooy ro T is always a hu rdle for x. If r is a hurdle for
X, the pair (x, r-1) is said to be firm. The méaning of this is the

following, with reference to Definition 21 and the method F0 Ifr

is a hurdle for x while r + 1 is not, and a party with x votes gets its
seat number r, then that party must 1mmed1ate1y be awarded further
seats, up to but not including the next hurdle for x. {Provided, of



-135-

course, that this many additional seats are to be awarded at all.) Only
if (x, r) is firm can a party with x votes have r seats and remain at
that number while seats are given to other parties. If Fo(n; Xps vees xk)

+ (r], cees rk), at most one of the pairs (xi, ri) can fail to be firm.

It is easy to dispose of the case k2 = 2 of Definition 8; the relevant
part of the distribution of seats in the k]—party situation can be
simulated in the situation with k2 = 2 parties. Then consider the case
Ky
(r], rz), F ("2’ Xqs wes xk) - (51, cens sk) and Py * ro = sy s,
It is necessary to prove Fo(nz; Xps vees xk) > (rl, Pos Sgs -es sk).

Suppose that this allocation contains two (or more) pairs which are not
firm; in particular, assume that (x1, rl) and (x3, 53) are not firm.
{This is essentially the only possibility.) Consistency, with k2 =2,
gives F0(51+s.; Xss xj) -+ (Si’ sj) for all i and j with 1 < i < j < 3.
Lemma 1(b) can be applied to situations with two and three parties
(where Fy is equal to F and therefore consistent) to get

Fo(s 5,455 X15 Xp» x3) -+ ], $5s 53); Another application of
consistency to this three-party situation gives Fo(s]+52+s3; X1> Xo» x3)
- (r1, Ty 53), which is impossible if neither (x], r]) nor (xs, 53)

is firm.

=2, k > 2. To simplify the notation, assume Fo(n; X1 x2) -

Consistency of F0 is now proved in essentially the same way as in the

proof of the "if" part of Theorem 21(a). A1l seats from one hurdle to
the next, including the former but not the latter, are lumped together.
A formal proof must consider separately the case where (x3, 53), cens

(xk, sk) are all firm, and the case where one of these pairs is not firm.

In the example of note 158, the problem was that the allotment which
should have existed by consistency, contained two non-firm pairs. Here
this possibility can be ruled out 51nce F is assumed consistent on
three-party situations.

164, A corresponding priority relation is given by: (x, r)R{y, s) if and
only if either r > s, orr=sand x > y.

165. So far, the condition that F is weakly balanced has been used only to
conclude that F is membership monotone. Therefore, the construction of
R used in this proof would have been meaningful in the proof of Theorem
20. The resulting R would be a priority relation, F0 could be con-

structed, and the proof of F< F0 would apply. But FOSE F could fail.
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when F is not balanced. For example, 1et F be the method which gives

all the seats to one party but can givé the seats to any party; see the
end of note 154. F is a consistent priority method, but the construction
outlined above gives F0 = FT # F.
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