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Abstract 
Efficiency analyses in the health care sector are often criticised for not incorporating quality 
variables. The definition of quality of primary health care has many aspects, and it is inevitably 
also a question of the patients’ perception of the services received. This paper uses variables 
derived from patient evaluation surveys as measures of the quality of the production of health 
care services. It uses statistical tests to judge if such measures have a significant impact on the 
use of resources in various Data Envelopment Analysis (DEA) models. As the use of survey 
data implies that the quality variables are measured with error, the assumptions underlying a 
DEA model are not strictly fulfilled. This paper focuses on ways of correcting for biases that 
might result from the violation of selected assumptions. Firstly, any selection bias in the patient 
mix of each physician is controlled for by regressing the patient evaluation responses on the 
patient characteristics. The corrected quality evaluation variables are entered as outputs in the 
DEA model, and model specification tests indicate that out of 25 different quality variables, 
only waiting time has a systematic impact on the efficiency results. Secondly, the effect on the 
efficiency estimates of the remaining sampling error in the patient sample for each physician is 
accounted for by constructing confidence intervals based on resampling. Finally, as an 
alternative approach to including the quality variables in the DEA model, a regression model 
finds different variables significant, but not always with a trade-of between quality and 
quantity.  
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1. Introduction 
 

Primary care physicians or general practitioners (GPs) provide most of the basic services 

within the Norwegian health care system. The treat larger part of illnesses and diseases in the 

society, advice on preventive care in general and verifies the need for sick leave and disability 

payments. Only ten percent of the patient-contacts in primary care are referred to specialist 

care. In addition, GPs act as gatekeepers for specialised care  (hospitals and most private 

specialist practices). The efficiency of GPs is therefore of primary importance for the 

efficiency of the health care system as a whole. 

As for the rest of the health care sector the heterogeneous products and asymmetric information 

have encouraged public control with the provision and organisation of primary health care. The 

lack of specific product evaluations and prices also implies that efficiency evaluations to a 

large extent need to be done by comparing the output quantities rather than their value to the 

amount or value of the resources used, by estimating technical or cost efficiency. 

Many health care researchers have recognised that the non-parametric efficiency measurement 

methods are well suited to estimating efficiency within this framework, since these methods 

can easily handle multiple inputs and multiple outputs simultaneously without reference to 

prices, and do not need restrictive assumptions on the functional form of the production 

possibility set or on the distribution of efficiency. The most common non-parametric method 

known as data envelopment analysis (DEA) was suggested by Farrell (1957) and developed in 

a large body of literature following Charnes, Cooper & Rhodes (1981) who gave the method its 

name. The method is shown by Banker (1984) to be the minimum extrapolation estimate that 

satisfies a) convexity, b) free disposal and c) feasibility. 

There are however some important drawbacks to the DEA method. In its basic form DEA is 

deterministic in the sense that actual behaviour is assumed to be observable without error. 

Recent developments initiated in a series of articles by Banker (1996, 1993 ), Kneip, Park & 

Simar (1996)  and Simar (1996), have however given DEA a statistical foundation by assuming 

that the observations are drawn from an underlying possibility set whose properties can then be 

estimated. Asymptotic tests of model specification are thus available, and bootstrap methods 

have been developed by Simar & Wilson (1998) that can give confidence bands for the frontier 

of the possibility set. The possibility of measurement error in the observed variables in the 
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model is still not adequately taken account of in the DEA method, which implicitly assumes 

that all deviation from the frontier is inefficiency. 

An ongoing research topic is also how to model quality within the DEA framework, which 

requires that all variables are either inputs or outputs, and are available as cardinal quantitative 

measures. Guiffrida defines the “final outcome of the primary care provided” as the “health 

improvement of the population served, measured for instance, in quality adjusted life years 

(QALYs)” (A. Guiffrida, 1998, p. 17). In most empirical cases, the change in QALYs caused 

by the care provided by the GPs will not be available. To approximate the outcomes by the 

GPs one can focus on the intermediate products such as the number of consultations. To 

express the quality of the service provided one can use supplementary outcome measures. In 

DEA the quality aspects must be formulated as equivalent with products, but in such a way as 

to retain the plausibility of the convexity assumptions in the method. Petersen & Olesen (1995) 

discusses ways ordinal quality measures can be incorporated in DEA. 

The survey data used in this study makes available variables for a sample of GPs, together with 

patient quality evaluation responses from a sample of each physician’s patients. The perceived 

quality of service is measured on a scale from one to five, facilitating a cardinal interpretation 

of the results. The approach used in this paper is therefore to use as quality variables the total 

quality evaluation score defined as the product of the average quality evaluation score and the 

number of consultations. These quality variables are then entered as outputs in the DEA model. 

While recognising that patient quality evaluation score does not measure the quality or health 

outcomes of the GPs production directly, we would argue that it captures important quality 

aspects for two reasons. Firstly, some of the questions pertain to health outcomes, as the 

patients perceive them. Secondly, patient satisfaction is a quality aspect in itself; for the same 

health outcome a satisfied patient is of greater value than a dissatisfied one. While the patients 

are not directly asked about their satisfaction, their evaluation of quality will to some extent be 

coloured by the importance they attribute to the quality aspect in question. 

Unlike most DEA studies, we have in this study direct information on the error structure of the 

quality variables. The scalar quality measures for each GP is an estimate derived from a sample 

of patients for that GP. The main methodological contribution of this paper is therefore to show 

how this error structure can be accounted for. Firstly, there is selection bias in average quality 

evaluation score stemming from the fact that GPs have a different mix of patients. Secondly, 
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there is a sampling error due to the fact that only a subsample of each GP’s patients has been 

surveyed. 

Section 2 presents the available data. In section 3 the assumed data generating process is 

described and the DEA method briefly presented, and in section 4 the method for correcting for 

selection bias is discussed. Section 5 uses the available statistical hypothesis tests to determine 

model specification and presents the results of the basic DEA model. Section 6 shows the 

resampling method used to estimate the confidence intervals for the efficiency estimates and 

the results of this analysis. Section 7 seeks to establish some determinants of efficiency by 

TOBIT estimation. In section 8 an alternative way of taking account of the quality variables 

through regression analysis is presented, while section 9 concludes. 

2. Data 
 

The data has been collected from a stratified sample of 60 GPs in Norway in 1998 as part of 

the European Patient Expectations and Priorities (EUROPEP) research programme (O.J. 

Kvamme and P. Hjortdahl, 1997, O.J. Kvamme et al., 2000). Table A.3 in the appendix lists 

the questions that each GP was asked (Q1-Q13), and includes information on the number of 

hours used by the GPs on consultations and other tasks, the number of consultations, the size of 

the practice and the number of support staff, as well as questions relating to organisation and 

finance. 

In addition, each GP were to distribute a patient questionnaire to 40 of their patients. These 

were asked to return the questionnaire directly to the research group, and were reminded once. 

The patient questionnaire consisted of two parts, a set of evaluation questions and a list of 

personal characteristics.  

The response rate for the GP's was 100%, but on average only 30 patients were given 

questionnaires. Of these less than 90% responded. After elimination of outliers, only 52 GPs 

remain in the sample with an average of 27.6 patients each. The sample is clearly to small to 

give any exact estimate of the level of GPs efficiency, but should be large enough to uncover 

structural features of their production function, including what quality variables significantly 

influences resource usage. 
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Table A1 in the appendix lists the quality evaluation questions (A1-A25), where the patient 

was asked to respond on a scale from one (worst) to five (best).  

For the answers to reveal true differences between the GPs average quality level, the average 

patient evaluation should not just be random noise but be significantly different across GPs.  

The last two columns of the table show the results of an ANOVA analysis which show that for 

all variables the difference between the GPs is significant at the 5% level, and for all except 

one at the 1% level. 

Table A.2 in the appendix shows the mean values of the personal characteristics of the patients. 

Again there is a significant difference in the patient mix across GPs, implying a potential 

selection bias if patient evaluation is influenced by these personal characteristics. 

3. DEA model  
 

The individual GP is assumed to face a given technology or production possibility set P , in the 

sense that  

 { }( , , ) ,  can be produced with P X Y S Y S X=  (1) 

where X is a vector of inputs, Y is a scalar of the quantitative output (number of consultation) 

and S is a vector of total qualitative outputs or product aspects. In parallel with the data 

generating process suggested by Kneip, Park & Simar (1996), each GP chooses independently 

and from the same distributions, the input levels and an output mix, which in this case can be 

formulated as an average quality evaluation level sl=Sl/Y in each real quality dimension. 

Conditional on this choice of inputs and quality (X,s)  the GP chooses an output efficiency 

level, E2  that is the ratio of actual to maximal feasible output of the quantitative product 

2Y E Y= . Since each qualitative variable Sl=slY  is proportional to Y, this implies that the 

resulting maximal output levels in all must be feasible in all dimensions 

2 2
( , , ) ( , , )SYX Y S X PE E= ∈ . It can be seen that the chosen efficiency level can be defined 

by the Farrell (1957) technical output efficiency 

  



 6

 2 , ,Y SE Min X Pθ
θ θ

  = ∈  
  

 (2) 

With the additional assumption that the density of efficiency is such that one will observe 

points arbitrarily close to the frontier when the number of observations is sufficiently large, the 

DEA estimate of the technology 

 ˆ ( , , ) , , , 1DEA
j j j j j j j

j N j N j N j N

P X Y S X X Y Y S Sλ λ λ λ
∈ ∈ ∈ ∈

  = ≥ ≤ ≤ = 
  

∑ ∑ ∑ ∑  (3) 

can be shown to be consistent. The DEA estimate of the Farrell (1957) output technical 

efficiency is then simply 

 2
ˆ ˆ, , DEAY SE Min X Pθ

θ θ
  = ∈  

  
 (4) 

which can be solved by linear programming. The formulation in (3) and (4) is equivalent to the 

variable returns to scale (VRS) DEA model suggested by Banker, Charnes & Cooper (1984). 

Banker (1993) suggests several asymptotic tests for model specification based on comparing 

the distributions of the estimated efficiencies in the different models, with the null hypothesis 

that these are equal. Kittelsen (1999) evaluates these in Monte Carlo simulations and finds that 

they give crude but usable approximations of the true significance levels and power functions. 

In this paper we use the Kolmogorov-Smirnov D+ test of one-sided hypothesis (N.J Johnson et 

al., 1994) that is conservative but usable in small samples, as well as the ordinary T-test for 

comparisons of group means (G.K. Bhattacharyya and R.A. Johnson, 1977) that has more 

power but tends to over reject the null in small samples. The tests are used to choose the scale 

assumption (VRS or CRS), and to select the variables to include in the DEA-model. In 

particular it is necessary to restrict the set of quality evaluation variables to those that have a 

significant impact on efficiency and resource use. 

 

4. Selection bias 
 

In the ANOVA analysis shown in table A.2 it was demonstrated that the patient mix was 

significantly different across GPs. To the extent that these characteristics in part determine how 
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satisfied a patient is, the average quality evaluation score of the patients 
1

inl l
i ij ij

a a n
=

=∑  of a 

given GP i for each of the quality variables l=1..25, will be biased by his/her patient mix. For 

example, if  female patients are more easily satisfied than male patients, then the average 

quality evaluation for GP’s with many female patients will be higher than for GPs with few 

female patients, even though the target average quality level l
is is the same. Given a target 

average quality level, we will specify a linear relationship between the reported quality 

evaluation level of a patient and the personal characteristics of that patient,  

 
1

( )
K

l l l k k l
ij i k ij ij

k
a s b b uβ

=

= + − +∑  (5) 

where k
ijb is the characteristic k for patient j with GP i, and l

iju  is a random error term. As 

formulated the second term in (5) captures the characteristics deviation from the mean 

characteristic in the sample kb , so that l
is is the target quality level for an “average person”. 

We estimate (5) by 25 OLS regressions with GP dummies di (leaving out i=1), 

 1
2 1

ˆˆ ˆ ˆ( )
N K

l l l l k k l
ij i i k ij ij

i k
a d b b uα α β

= =

= + + − +∑ ∑  (6) 

The estimate of the target quality levels and the total quality for each GP and type of quality is 

then given by 

 1
ˆˆ ˆ ˆ ˆ,l l l l l

i i i i is S s Yα α= + =  (7) 

which is used as outputs for the GPs in the DEA model. 

Since the focus of the analysis is on the correction of the quality evaluation score averages 

rather than on the patient characteristics coefficients themselves, the specification of each of 

the 25 regressions was not evaluated individually. Nevertheless it is worth noting that the 

patient characteristics coefficients were significant as a block in all regressions, as were most 

of the individual coefficients. In this sense the quality level used for the GPs were significantly 

corrected by this procedure. 
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Table 1: Regression of dependent variable a22 “patient evaluation of  physician waiting time”  on N-1=51 
physician dummies and K=6 individual characteristics for 1361 patients. Introducing patient characteristics in the 
regression in addition to physician dummies raises R2 from 0.135 to 0.282 and adjusted R2 from 0.131 to 0.251. 
The number of stars** and *** corresponds to the significance levels 5% and 1%. 

Code Variable names B Std. Error Sig. 
const  3.067 0.161 ***0.000 
BD1D Gender (0=female, 1=male) -0.184 0.064 ***0.004 
BD2 Year of birth -0.024 0.002 ***0.000 
BD3 Highest completed education 0.001 0.032 0.964 
BD4 Number of physicians visits last 12 months 0.018 0.007 ***0.007 
BD5 Evaluation of own health status -0.062 0.031 **0.046 
BD6D Presence of serious disease (0=no, 1=yes) -0.032 0.069 0.645 

 

As an example, table 1 gives the patient coefficient estimates for one of the 25 regressions of 

the form (5). These coefficients can be interpreted as the marginal effect on the average quality 

evaluation of waiting time on the scale from one to five of a patient characteristic, controlling 

for which GP the patient has seen. Male patients and younger patients tend to be less satisfied 

with waiting time, while the frequency of visits tends to increase evaluation levels. 

 

5. Basic DEA results 
 

While we have available only one non-quality output, there are 25 potential quality outputs and 

three potential inputs. To include them all in a DEA model with 52 units would not be 

informational, since it is a feature of the DEA methodology that a large number of variables 

combined with a small number of observations biases efficiency estimates upward, including 

estimating all those units that have the largest level on any output variable fully output 

efficient. Instead we test the model specification by means of the statistical tests described in 

section 3. Since we at the outset have a small sample we will want to reject a small model 

easily, and choose to accept all alternative variable and scale assumptions if the significance 

level is less than 10% on either the D+ test or the T test. 

Table 2 summarises the hypothesis tree. As a basic model we choose to include the number of 

hours worked treating patients as an input and the number of consultations as an output. In step 

1 the possible inclusion of additional inputs is tested, but neither the number of other 

employees nor the GPs use of time for other purposes than treating patients were significant.  
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In step 2, all 25 quality variables were candidates, but only the two most significant are listed 

in the table. None of the quality variables have a very strong influence on resource usage, but 

the evaluation of the waiting time is significant at the 10% level with the T-test. This variable 

is therefore included as an output in the DEA model. In the next step the remaining 24 quality 

variables were candidates to be included in addition to the waiting time variable, but all were 

clearly insignificant. Finally, the scale assumption was tested, with strong support for variable 

returns to scale. The resulting DEA model has two outputs, one input and variable returns to 

scale. 

Table 2: Stepwise specification hypothesis tree. In steps 2 and 3 all the corrected patient evaluation variables s1-
s25 are entered, but only the first of the insignificant results is shown. The number of stars * and **  corresponds 
to the significance levels 10% and 5%. 

Critical level D+ T
90 % 0.210 1.290
95 % 0.240 1.660

Step Alternative Variables/Scale assumptions  
Input q4 Number of hours per week treating patients   

Output q10 Number of consultations per week   
Basic 
model 

Scale CRS Constant returns to scale   
H0: q4,q10,CRS 

q65 Other employees per physician in practice 
(q6/q5) 

0.135 0.150
Step 1 

Additional 
 input 

q11 Number of hours per week not treating 
patients 

0.096 0.391

H0: q4,q10,CRS 
Additional 

 output 
s22 The patients evaluation of the physicians 

waiting time in his practice 
0.192 *1.412

Step 2 

 s23 The patients evaluation of the physicians 
ability to perform help in emergencies  

0.173 1.133

H0: q4,q10,s22 ,CRS Step 3 
Additional 

 output 
s23 The patients evaluation of the physicians 

ability to perform help in emergencies  
0.077 0.261

H0: q4,q10,s22, CRS Step 4 
Scale VRS Variable returns to scale  *0.212 **1.884

Result (Model I):   q4,q10,s22, VRS  

 

The inference from the hypothesis tests is that only the provision of quality with regards to 

waiting time has an influence on resource usage that is strong enough to be measurable in a 

sample of this size. This implies that reducing waiting time is costly, in the sense that to do so 

requires either an increase in the time spent on patients or a decrease in the number of 
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consultations. It must be emphasised that the waiting time variable is only measured as 

important in the production process of the GPs, and does not directly reveal the social 

evaluation of this quality aspect. Conversely, the insignificance of the other evaluation 

variables does not imply that they have low social value, only that providing these quality 

aspects is not measured as costly.  

 

Figure 1: Salter diagram of technical output efficiency Model I. 

 
The main efficiency and productivity estimates are presented in table 3. Figure 1 is a Salter 

diagram showing the distribution of technical output efficiency as estimated in the preferred 

DEA model I, where the width of each column is proportionate to the only input. Output 

efficiency shows a large dispersion, with an average of 74% and a minimum of 37%. While 

most GPs have an efficiency between 60% and 90%, there is a clear tail of very inefficient 

GPs. These have fewer consultations per hour of patient contact than other GPs with a 

comparable quality level as measured by the evaluation of waiting time. 

In addition to the preferred model I, results for two other models are also presented in table 3. 

Model II is equivalent to model I except that the corrected quality measure S22 is replaced by 

the original sample evaluation measure A22. Results are in fact remarkably similar in the two 

models, suggesting that while the correction was deemed necessary for the individual GPs’ 
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measure of quality, it had little impact on the average estimates. Model III is the VRS version 

of the basic specification that did not include any quality measures. The efficiency estimates 

are on average 3% lower in this model, indicating that including patient evaluation has a 

noticeable, but not great influence. 

Table 3: Main efficiency and productivity results from DEA models. Model I is the model preferred by the 
specification tests, while results for models II and III are shown for comparison. 

Average Min Stdev 

Model I: with corrected quality (q4, q10, s22) 

E2 - Output increasing Efficiency 0.738 0.367 0.186 
E3 - Productivity 0.673 0.341 0.168 

E5 - Pure Scale Efficiency 0.921 0.428 0.109 

Model II: with uncorrected quality (q4, q10, a22) 

E2 - Output increasing Efficiency 0.737 0.367 0.186 
E3 - Productivity 0.671 0.340 0.168 

E5 - Pure Scale Efficiency 0.920 0.428 0.111 

Model III: without quality (q4, q10) 

E2 - Output increasing Efficiency 0.708 0.333 0.181 
E3 - Productivity 0.628 0.286 0.156 

E5 - Pure Scale Efficiency 0.898 0.396 0.107 
 

 

6. Sampling error 
 
One of the principal drawbacks of the DEA and other nonparametric methods is the inability to 

take account of measurement error in the variables. In its basic form, DEA is unable to give 

standard errors or confidence intervals for the efficiency estimates. In addition, it has been 

claimed that even symmetrically distributed measurement errors in the data may give biased 

estimates for efficiency, since “good” outlier will potentially affect the position of the frontier, 

and therefore biased efficiency estimates for the units that are referenced, while “bad” outliers 

will to a greater extent only affect the efficiency estimate of the outlier itself. 

As DEA is a linear programming model, some researchers (e.g. A. Charnes et al., 1985) have 

used sensitivity analysis from mathematical programming theory to ascertain ranges within 

which data may be varied without changing the frontier estimate. This is a non-statistical 
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procedure since it does not use empirical information on the actual variability in the data. In 

recent developments, Simar & Wilson (1998) have developed bootstrap methods to resample 

from the distribution of the data in order to bias correct the efficiency measures, to calculate 

standard errors and confidence intervals, and to use in hypothesis testing. What their method in 

essence does is to generate distributions of the frontier of the production set, based on the 

sampling error in the sample of observations. It does not take account of any measurement 

error in the variables themselves, but uses the original observed variable values for each unit 

for calculating the efficiencies. In this section we suggest a procedure that is both more 

ambitious in that it takes account of measurement error in one GP variable, but clearly less 

ambitious in that it does not simulate the sampling error in the sample of GPs. 

In addition to the selection error induced by the fact that GPs have a different mix of patients 

along the characteristics we have information on, there will be remaining measurement error in 

the quality evaluation variable stemming from the fact that only a sample of each GPs’ patients 

were questioned. If a different set of patients had been asked, one would have received 

different responses and calculated a different GP quality evaluation level. While the ordinary 

average response 22
ia  is an unbiased estimator for the mean evaluation of waiting time for all 

the patients of GP i, this estimate has a standard error. Similarly the correction regression (6) 

gives us a standard error for each GPs corrected quality level 22
îs . This is a sampling error in 

the patient samples, but a measurement error in the quality level variable of the GPs. We have 

therefore additional information on the extent of error in the quality variable ˆ lS  that is used in 

the DEA model, and this information should be used to evaluate the extent of error in the 

resulting efficiency estimates 2Ê  from (4). 

In parametric analysis, the standard error of derived estimates can be calculated analytically 

using information about the functional form. In nonparametric methods such as DEA this is not 

an option, and resampling suggests itself as the natural way of tackling the problem. By taking 

a large number B of draws from the distribution of the evaluation variable ˆ l
iS for each GP, and 

using these in B DEA runs, we can generate a resulting distribution of the efficiency estimates 

that can be used to calculate confidence intervals and standard errors resulting from the 

measurement error of GPs’ quality evaluation level. 
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Since we will want to retain the correction for selection bias obtained in section 4, the 

resampling must be done from the distribution of the corrected 22
îs  rather than the original 

average 22
ia . This could be done by drawing from the t-distribution parameterised by the 

standard error of 22
îs  estimated in (6) and (7), but the we know that the underlying distribution 

of the quality evaluation answers with mean 3.4 is very skewed towards the high end of the 

domain (1,5). We choose instead to redraw with replacement from the empirical distribution of 

patients’ answers, corrected for any effect of patient characteristics. Each patient is assigned a 

response that is their estimated response had they been an average patient, which is equivalent 

to their GPs’ estimated quality evaluation level plus the patient’s individual residual from (6). 

 
1

ˆ ˆ ˆ( ) , 22
K

l l l k k l l
ij ij k ij i ij

k
a a b b s u lβ

=

= − − = + =∑  (8) 

Redrawing with replacement from 22
ija for each GP i with the same sample size as in the 

original, gives us B new estimates 22ˆ̂
ibs . These will have an expected value equal to 22

îs  since 

22ˆ( ) 0ijE u = . Rerunning the DEA model B times gives us a distribution of B efficiency estimates 

for each GP. 

Figure 2: Efficiency estimates with resampled quality evaluation variable s22. 
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Figure 2 shows the results of the resampled efficiency estimates with B=1000 samples. The 

mean of the resampled mean efficiencies 73.7% is in fact very close to the original mean 

estimate 0.738, and the curve shows the efficiency estimates to be close for all the individual 

GPs. There is therefore no clear bias in the original efficiency estimates due to the 

measurement error in the quality variable.  

There is, however, some uncertainty. The mean efficiency has a standard error of 0.004 as 

estimated by the standard deviation of the resampled mean efficiencies. Numerically this is 

small, but is still a noticeable fraction of the 3% impact of the s22 variable found by comparing 

models I and III in table 3. Graphically, the uncertainty is shown as confidence intervals for 

each individual GP in the figure. The range of the individual confidence intervals varies from 

0% to 15%, but on the whole the ranking of the GPs by efficiency would be little affected even 

if some were at their upper limit and others at their lower. While the results show errors that 

are quite small, it must again be emphasised that these confidence intervals are partial since 

they only take account of measurement error in one of the three variables in the DEA model. 

 
7. Determinants of efficiency 
 
It has become common in the DEA literature to perform a second stage analysis of the 

efficiency estimates, by regressing these on explanatory variables that do not enter the DEA 

model. Lovell (1993) recommends that variables that are in the control of the unit itself should 

be included in the DEA model, and that variables that are exogenous to the unit should be used 

as independent variables in the second stage to try to explain efficiency. It might be argued that 

an alternative reason for not including variables in the DEA production model is that some 

variables are not part of the technological constraints that a production model should capture, 

but may nevertheless influence realised efficiency through their role in the objective functions 

of the agents or in the incentives that they face. A third view might be that some variables are 

to stochastic in their nature (have to much measurement error) to be included in a deterministic 

model such as DEA, in which case a regression could be seen as an attempt to correct the DEA 

efficiency estimates. 

We will here not attempt to argue that we can explain the efficiency in a causal sense, since we 

do not specify a behavioural model. Rather we try to use regression methods to estimate the 
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correlation of estimated efficiency with variables that might be part of an explanation, but 

could also be the result of the efficiency level or have of common causes as efficiency. 

As the distribution of estimated efficiencies is censored from above at the value one, a TOBIT 

regression model (J. Tobin, 1958) is specified 
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∑
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where Zm is shorthand for the available independent variables. The results of the regression are 

presented in table 4. 

Table 4: Result of Tobit regression of technical output efficiency from model I. The number of stars *, ** and *** 
corresponds to the significance levels 10%, 5% and 1%. 

Code  Variable name Coeff. Std.Err Sig.
cons  0.008 0.373 **0.021
Physician personal characteristics   
q1 Physicians age -0.012 0.006 *0.063
q2 Physicians gender (0=female, 1=male)  0.016 0.042 0.713
q3 Total number of years in practice 0.007 0.007 0.345
q8 Specialist (0=no/under training, 1=yes) -0.030 0.046 0.512
q9 Number of years in current practice -0.002 0.003 0.516
q13 Physicians evaluation of his work (1=good,… 5=bad)  -0.028 0.016 *0.083
Physician organizational characteristics   
q4 Number of hours direct patient contact -0.023 0.003 ***0.000
q10 Weekly number of consultations 0.008 0.001 ***0.000
q11 Number of hours other tasks 0.004 0.002 *0.097
q12 Practice type GP  (0=fully or partly fixed pay, 1= other financing) 0.044 0.032 0.181
Patients personal characteristics   
q7 Patients residence  0.023 0.030 0.752
b1 Patients gender 0.067 0.103 0.317
b2 Patients year of birth 0.003 0.002 0.143
b3 Patients education  0.001 0.044 0.963
b4 Patients number of consultations on yearly basis 0.010 0.013 0.184
b5 Patients judgment of their own health 0.090 0.054 0.257
b6 Patients suffering from severe disease 

(0=no, 1=yes)  
0.236 0.133 *0.070

 



 16

Few of the personal characteristics of the GPs are significant in the regression. Only the age of 

the GP influences efficiency negatively. Note that the GPs evaluation of his/her work as good, 

where the scale is reversed from the patient evaluation responses, is correlated with a high 

efficiency.  

Of the organisational characteristics, the two variables that enter the DEA model are highly 

significant, and have effect in the same direction as in the production model itself, i.e. that 

increased use of inputs and decreased output reduces the efficiency estimate. This implies that 

these variables are in some sense heteroskedastic, in that there is an increasing spread away 

from the frontier with increased inputs and reduced outputs that come in addition to the 

marginal effect on the frontier. The financing of the GP has, perhaps surprisingly, no 

significant impact on efficiency, although the point estimate indicates slightly higher efficiency 

with incentive-based financing rather than fixed pay. 

The patient mix does not seem to influence efficiency estimates, except for the variable 

reflecting whether the patient was suffering from a severe disease.  They do not appear 

however to be more or less satisfied than others with the waiting time, as seen from table 1. 

Any remaining patient mix effect could be already captured through the correction of the 

quality evaluation variable. 

 

8. Alternate treatment of quality evaluation 
 

Quality of care is, at least to a large extent, under the control of the GP, and is definitely part of 

the production technology in the sense that there is a trade-off between quantity and quality or 

alternatively that the provision of high quality requires resource usage. This excludes the two 

first reasons discussed in the previous section for not including quality evaluation variables in 

the first stage DEA model. However, in the third rationale for including variables in a second 

stage analysis, it was argued that some variables are too stochastic in their nature to use in a 

deterministic method such as DEA. We have in this article demonstrated that it is possible to 

account for the stochastic nature of the quality evaluation variables within a DEA framework, 

but for the sake of comparison we have also investigated a two-stage analysis for model III. In 

this case the quality evaluation variables are not included in the DEA model, but analysed in a 

second stage regression. 
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Table 5 presents the results of an OLS regression attempting to correct or explain the biased 

efficiency scores of the model III. TOBIT is not required in this case, since there is only one 

censored unit in the DEA results from this model. The model specification is determined by 

stepwise exclusion of insignificant variables at the 5% level, which results in a model with five 

significant explanatory variables. That the number of significant variables is higher than in the 

DEA specification tests of section 5 is probably because the tests developed found usable in 

DEA models have much less power than those used in regression analysis.  

More surprisingly, the evaluation of waiting time is not among these significant variables, 

which clearly demonstrates that the effect on average model III efficiency, which is measured 

without concern for quality, is different from the effect of increasing quality for GPs on the 

best practice frontier as in model I. It is worth noting that model I implicitly takes into account 

all the quality variables, but that only s22 was found to be significant. This means that for a 

given number of hours as input, in model I there is a trade-off on the frontier between the 

number consultations and s22, while in the regression below there is a trade-off for the average 

linear relationship between the number of consultations and e.g. s1, but not for s22. As for the 

case of q10 and q4 in the previous section, this emphasises that frontier effects and average 

effects are not to be confounded. 

Table 5: Stepwise inclusion of quality evaluation variables s1-s25 in regression model on Technical output 
efficiency E2 from DEA model III (without quality in DEA model). The number of stars *, ** and *** 
corresponds to the significance levels 10%, 5% and 1%. 

code variable B Std. Err Sig. 

const  -0.206 0.375 0.586
S1 ...spent sufficient time during the consultation -0.351 0.109 ***0.002
S3 ...was easy to tell the GP about the patient’s situation.  -0.377 0.150 **0.016
S11 …offered preventive action  0.488 0.130 ***0.000
S14 …also handled emotional problems related to the health conditions 0.409 0.129 ***0.003
S19 …was able to see you at a time suitable for you  0.111 0.052 **0.037
Model Fit  R R2 R2adj

Quality evaluation variables corrected for selection bias (shown above) 0.389 0.322 0.149

Quality evaluation variables not corrected for selection bias 0.394 0.328 0.149

 

It is perhaps not surprising that evaluation of the time spent during the consultation should be 

negatively related to the efficiency, since more input usage reduces efficiency. Spending time 

also facilitates the patient’s ability to explain her/his situation. 
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Three of the quality variables in table 5 have in fact a positive impact on efficiency, showing 

that on average there is a positive correlation between quantity and quality along these 

dimensions. In the DEA model, as in all production models, there is a trade-off on the frontier 

between any pair output variables, by assumption. This does not preclude a positive correlation 

of quality and quantity for the inefficient units, but in DEA this must stem from the behaviour 

of the GPs rather than from the technical constraints on health service production. 

Other explanations are possible, among them errors in variables or specification. If  the 

evaluation of the preventive action taken by the GP reflects that consultations could be shorter, 

then implicitly the number of consultations is not a homogenous variable. Similarly, if a 

positive relationship between quantity and quality reflects the inherent ability of the GP, and a 

good GP is both fast and apt at handling emotional problems, then ability is an omitted 

variable.   

 

9. Conclusion 
 

On the substantive questions of the shape of the production frontier and the level of efficiency 

for Norwegian GPs when taking account of the quality of their services, this article does not 

claim to give strong answers. For this the sample is too small and the availability of quality 

measures too restrictive. It does however, show that providing patient with quality of care can 

be costly, and that among the available variables only the evaluation of waiting time is 

significantly costly on the frontier. Again it must be emphasised that this does not show the 

relative social value of the different quality aspects. 

On the methodological side, this work shows that it is possible to tackle the major problem of 

errors in variables in a non-parametric setting if there is information on the error structure of a 

variable. In this case the survey nature of the patient quality evaluation questions was used to 

correct for selection bias or case mix in the quality variable, and a resampling method was used 

to evaluate the extent of error in the efficiency estimates resulting from the fact that only a 

sample of patients were available for each GP. 

This suggests several avenues for further research. Firstly, is it possible to develop methods to 

correct the other variables in the DEA model for case mix? There may e.g. be a tendency that 

GPs with many old patients can have fewer consultations. Secondly, could one use other 



 19

sources of information on the extent of error in variables to estimate the sampling error? In this 

dataset there is a tendency for responses to some questions to be lumpy, with many GPs having 

a round number of consultations per week. Possibly a smoothing mechanism could be used to 

estimate the error in such a distribution, again increasing the validity of results that one can 

obtain from nonparametric production analysis.
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Appendix: Variables in the data 
 

Table A.1: Variables in Group A, for each of 1435 patients. 

ANOVA test 
of difference 

between 
physicians

V
ar

ia
bl

e 

The patient’s evaluation of the physicians… 

M
ea

n 
va

lu
e 

  

F Sign. 

A1 …use of time during the consultation 4.121 4.493 ***0.000

A2 …interest in the personal situation of the patient 4.283 3.759 ***0.000

A3 …was easy to tell the about the patients situation 4.231 3.114 ***0.000

A4 …way of let the patient participate on the decisions made 4.152 3.033 ***0.000

A5 …listened 4.359 3.791 ***0.000

A6 …was well informed about the patients condition 4.536 2.115 ***0.000

A7 …ability in healing the patients symptoms quickly 4.221 1.591 ***0.005

A8 …way of helping the patient feeling sufficiently well to continue everyday life 4.191 1.347 *0.053

A9 …thoroughness 4.220 3.646 ***0.000

A10 …performance of the physical checks 4.113 2.888 ***0.000

A11 …offer of preventive action 3.849 1.705 ***0.002

A12 …explanations of the purpose of tests and treatment  4.155 2.601 ***0.000

A13 …explanations to the patient on questions related to tests and treatment 4.163 2.912 ***0.000

A14 …handling of the patients emotional problems related to the health conditions 3.919 2.359 ***0.000

A15 …help to make the patient understand the importance of compliance 4.114 2.054 ***0.000

A16 …knowledge regarding matters the patient had told him in previous occasions 4.007 2.410 ***0.000

A17 …way of preparing the patient on what to expect if referred on to specialist or 
h it l

3.955 2.380 ***0.000

A18 …staff and its helpfulness 4.222 5.642 ***0.000

A19 …ability to see you at a time suitable for you 4.104 5.053 ***0.000

A20 …s office availability on the phone 3.378 10.34
5

***0.000

A21 …availability on the phone 3.320 3.516 ***0.000

A22 …s waiting time in his practice 3.435 5.596 ***0.000

A23 ... ability to perform quick help in emergencies 4.245 2.607 ***0.000

A24 …and if he is recommendable to the patients friends 4.518 3.597 ***0.000

A25 …and if the patient is considering to change physician into another one 4.595 1.457 **0.020
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Table A.2: Variables in Group B, for each of 1435 patients. 

ANOVA test 
of difference 

between 
physicians

V
ar

ia
bl

e 

The patient characteristics 

M
ea

n 
va

lu
e 

  

F Sign. 

B1D Gender (0=female, 1=male) 0.302 2.804 ***0.000

B2 Year of birth 47.497 4.150 ***0.000

B3 Highest completed education 1.576 4.048 ***0.000

B4 Number of physicians visits last 12 months 5.574 1.715 ***0.001

B5 Evaluation of own health status 2.945 2.048 ***0.000

B6D Presence of serious disease (0=no, 1=yes) 0.376 1.101 0.292

 

Table A.3: Variables in Group Q, for each of 52 physicians. 

V
ar

ia
bl

e  

The physician characteristics 

M
ea

n 
va

lu
e 

 

St
.D

ev
 

Q1 Year of birth 52.38 6.06 

Q2 Gender (1=male, 2=female) 1.31 0.47 

Q3 Number of years in Primary care  15.50 5.96 

Q4 Number of hours with direct patient contact 31.65 62.43 

Q5 Number of physicians in current practice 3.20 2.04 

Q6 Number of other employees in current practice 6.39 8.48 

Q6/5 Ratio of other employees pr physician  2.08 0.27 

Q 7 The degree of urbanisation of patients (1=city, 2=large town, 3=small town, 
4=rural) 2.08 1.00 

Q8 The physician a specialist (1=yes, 2=in training, 3=no) 1.12 0.32 

Q9 Number of years in current Primary care 11.56 6.91 

Q10  Weekly number of consultations  86.94 962.45 

Q11 Weekly number of hours other tasks 7.89 44.22 

Q12 
Financing of practice (1=fixed subsidy independent of number of consultations, 
2= fixed salary, 3= fixed subsidy and partly coverage pr consultation, 4 = only 
partly coverage pr consultation, 5= capitation, 6= other means of financing) 

2.51 1.91 

Q13 Satisfaction with own work (1=best, …, 5=worst) 1.94 0.86 

 

 


