
Matching with Partners and Projects ∗

Antonio Nicolò†, Arunava Sen‡, Sonal Yadav§

November 29, 2017

Abstract

We study a model that is a hybrid of the classical one-sided and two sided match-

ing models. Agents are matched in pairs in order to undertake a project and have

preferences over both the partner and the project they are assigned to. Each agent

partitions the set of partners into friends and outsiders, and the set of of possible

projects, into good and bad ones (dichotomous preferences). The overall preference

ordering on partner, project pairs is separable. Friendship is mutual and preferences

over projects among friends are correlated. We propose an algorithm, the minimum

demand priority algorithm that generates stable assignments in this domain, satisfies a

restricted notion of Pareto efficiency called friendship efficiency and is strategy-proof.

Finally we show that stable assignments may not exist if any one of assumptions on

the preferences is relaxed.

JEL classification: C78; D47; D71

Keywords: Matching; Stability; Strategy-proofness; Two-sided matching; One-sided

matching

∗We would like to thank Ahmet Alkan, Yann Bramoullé, Lars Ehlers, Jean-Jacques Herings, Michele Lom-

bardi, Jordi Massó, Debasis Mishra, Herve Moulin, Hans Peters, Juan Sebastián Pereya, Ton Storcken, Fedor

Sandomirskiy, Francesco De Sinopoli, Attila Tasnádi, William Thomson, Alexander Westkamp, Claudio Zoli

and especially Ravindra B. Bapat, Marco LiCalzi and Thayer Morill for their comments and suggestions. We

would also like to thank Siddharth Chatterjee and Aditya Vikram for carefully reading the paper and their

comments. This paper has also benefited from the comments of seminar participants at Algiers, Alicante,

Bath, Budapest, Delhi, Glasgow, Lisbon, Maastricht, Nizhny Novgorod, Saint Petersburg, Venice, Verona

and York. This paper was earlier circulated with the title “Matching with Homophily”.
†Department of Economics, University of Padova, via del Santo 33, 35123 Padova, Italy and School of

Social Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom.
‡Economics and Planning Unit, Indian Statistical Institute, 7 S.J.S Sansanwal Marg, New Delhi-110016,

India.
§Department of Economics, University of Padova, via del Santo 33, 35123 Padova, Italy.

1



1 Introduction

In many situations agents are matched in teams in order to perform a task. Agents have

preferences over the task that they are asked to perform as well as over the partners that they

are assigned to work with. Consequently, forming stable teams is important - it ensures that

agents do not have opportunities to abandon their assignments and do better for themselves.

A centralized authority matches agents in pairs and assigns them a task. We are interested

in mechanisms that satisfy stability and provide incentives to agents to truthfully reveal

their preferences. This problem shares some features with two-sided matching models like

the marriage market since agents have preferences over their potential partners. However it

also has common features with one-sided matching models like the house allocation problem,

because a task has to be assigned to each pair of agents. In this sense our model is a hybrid

version of the two classical models. It is easy to construct examples to show that stable

allocations no longer exist in this setting. The contribution of our paper is then twofold:

we propose a novel model of matching and we identify a suitable domain restriction where

stable allocations exist. In the tradition of matching literature, we propose an algorithm that

identifies stable allocations in this domain, provides incentives to agents to truthfully reveal

their preferences and satisfies a restricted notion of efficiency. Our paper can be thought of

as an attempt to extend the matching literature to team formation focussing on the case of

matching in pairs in a well-defined but restricted preference domain.

Our model has several applications. It is a natural variant of the roommate problem where

agents have preferences over potential roommates and available rooms. Another example

is pair programming. Pair programming is a software development technique where two

programmers work together at one work station. One individual, the driver writes the code

while, the other individual, the observer, reviews each line of the code as it is typed in. The

two programmers switch roles frequently. A website for pair programming is a centralized

mechanism that matches programmers in pairs, and assigns them a job.

Yet another example is the problem of assigning term papers or projects to students.

In several academic institutions, undergraduate or Master’s students are required to take

“Project” courses. Students have to undertake some independent (non-coursework) research

in these courses. Due to the large number of students, they are often assigned in pairs

(and sometimes in larger groups) to particular research topics. Students also benefit from

learning from their peers. Grades in these courses depend in very large measure on a joint

report prepared by a student team. As a result students have preferences over their assigned

partner (often based on whether they “get on” with him/her and on their assessments of

their abilities) and the project.

In our model there are a set of agents and a set of projects, and the number of projects

is large enough so that a project can be assigned to each pair of agents. Each agent has

a preference ordering over partners and projects. We make several assumptions about this

2



preference ordering. Preferences are separable over partners and projects; preferences over

each component are dichotomous i.e. alternatives in each component are partitioned into

good and bad sets.1 The set of possible partners is partitioned into friends (good partners)

and outsiders (bad ones), and the set of projects into good and bad projects. Therefore every

partner, project pair can be placed in one of four indifference classes, depending on whether

the partner and the project are good or bad. Friendship is mutual and transitive, so that

the set of agents can be partitioned into groups of friends. Finally, preferences of friends

are correlated (homophily). Specifically, we assume a strong alignment in the preference for

projects among friends: for any pair of friends, the set of good projects of one of them is

weakly contained in the set of good projects of the other one. However, two friends need not

have the same set of good projects. One agent can be fussier than the other and like only a

subset of the projects liked by the other agent.

We are interested in finding stable allocations in this preference domain. Stability requires

that no set of agents can block an assignment, and in our setting we admit three possible ways

of blocking an assignment. First, two agents can leave their current partners and form a new

team to perform a project which is left unassigned, if this makes both agents strictly better

off. Second, a group of agents can block an assignment via a position swap: agents swap

places amongst themselves to strictly improve. Blocking via an unassigned project or via

position swaps leads to a change in both partner and project for the agents who are involved.

Third, pairs of agents may swap projects amongst themselves and strictly improve; therefore

agents who only swap projects keep their partners. We propose an algorithm, the minimum

demand priority algorithm (MDPA) that generates stable allocations and provides agents

incentives to truthfully reveal their preferences. It also satisfies a restricted notion of Pareto

efficiency called friendship efficiency, meaning that the proposed allocation cannot be Pareto

dominated by any allocation obtained reallocating partners and projects among friends (in

our domain we allow for indifferences so that stability does not guarantee efficiency).

Our mechanism works as follows. We arbitrarily order groups of friends and we allocate

projects to each group, one by one. In the first step we remove one agent from each group of

friends if the size of this group is an odd number leaving the group unchanged otherwise. We

then consider available projects with positive demand, that is projects which are regarded as

good by at least one agent. Within each group, we allocate projects sequentially starting from

those that have the minimum demand. Appropriately designed tie-breaking rules specify the

pair of agents to whom a project is assigned when more than two agents demand it, and

also the way to complete a pair when only one agent considers a project good. Once all

projects with positive demand are assigned, we pair the remaining friends and allocate them

an arbitrary project. We repeat the procedure for each group of friends. Since we have

1The assumption of dichotomous preferences is quite common in the matching literature. See for instance

Bogomolnaia and Moulin (2004), Roth et al. (2005) etc.

3



removed one agent from each group of friends with odd cardinality, there may exist a set of

agents who are still not paired and who are not friends among themselves. We arbitrarily

order these agents and form as many pairs as possible who have a common good project.

For the remaining pairs we assign projects that are good for at least one agent in the pair,

whenever this is possible.

An important feature of the MDPA is that within a group, projects are first allocated to

less fussy agents. As a result, the more fussy agents may be rationed out of good projects and

be allocated bad projects. In other words, the algorithm is designed to penalize fussy agents

relative to the less fussy ones. This aspect of the construction is helpful for both stability

and strategy-proofness. It is hard for fussy disgruntled agents to find a good project to block

with. Less fussy agents also have more ways to block and manipulate in case they receive

bad projects; thus making assignments using the minimum demand principle makes sense

both for stability and strategy-proofness.

It may seem equally logical to first allocate projects to more fussy agents in an effort

to maximize the number of agents who receive good projects in an assignment. This would

involve allocating projects via maximal demands where we sequentially allocate projects with

higher demand before those with lower demand. However we show by means of an example

that allocating projects within a group in this way provides incentives to less fussy agents

to pretend to be more fussy in order to get a good project. We provide other examples that

indicate that the MDPA is a salient procedure.

Finally, we demonstrate that our assumptions regarding homophily and dichotomous

preferences are crucial for the existence of stable assignments. For instance, in the absence

of homophily, stable assignments fail to exist when we keep all the other assumptions. If we

depart from the dichotomous domain, impossibility results occur even if strong restrictions

such as single peakedness are imposed.

1.1 Existing Literature

To the best of our knowledge, the model that we consider is distinct from others in the

literature. However there are existing models that bear some resemblance to ours. We

first briefly discuss some of these models and point out the essential differences. Finally we

survey the sociological network formation literature which provides evidence on the existence

of homophily.

Our model extends the classical roommate problem (see Roth and Sotomayor (1992) for

a discussion) by allowing agents to have preferences over roommates and rooms. This fact

renders the two models completely different - a more detailed account of the differences can

be found in Section 8.2 in Nicolò et al. (2017).

A more closely related model is the “stable activities” (or SA) variant of the roommate

problem studied in Cechlárová and Fleiner (2005). In the SA model different kinds of part-

4



nerships are possible between every pair of agents. A partnership between agents can be

thought of as a common activity such as playing chess, going to the movies together and

so on. Each agent has preferences over partner, activity pairs in which respect it is similar

to our model. However activities can be replicated arbitrarily in the SA model, i.e. several

pairs can be assigned the same activity. In our model, on the other hand, a project can be

assigned to only one pair if it is assigned at all. This makes the two problems completely

different both in terms of formulation and results. For instance, we have a notion of blocking

via project swaps that is meaningless in the SA problem. The main result of the Cechlárová

and Fleiner (2005) paper is that there is an equivalence between the SA problem and the

roommates problem. This is emphatically not the case in our model as we point out in Nicolò

et al. (2017). Importantly, it may not be possible to extend a stable roommate assignment

to a stable assignment of partners and projects in our setting.

Sethuraman and Smilgins (2016) extend the classical two sided marriage problem by

including a set of objects. There are two disjoint sets of agents (men and women) and each

woman (man) has a preference over possible man (woman), object pairs. The cardinality of

the three sets is assumed to be equal. A matching consists of (man, woman, object) triples.

They show by means of examples that stable matchings may not exist when both agents

sharing an object have a “right” over it, i.e., an agent can evict her partner from the object

and find a new partner to strictly improve (identical to our notion of blocking via position

swaps). The paper goes on to assume that only one set of agents (either men or women)

own the objects. The unified agent-object pair can be considered as a single “agent”. A

blocking pair involves a man, a woman and an object that is owned by one of the two. A

matching is M -stable (or W -stable) if there does not exist a blocking coalition when men

(women) own the objects. They show that an M -stable and a W -stable matching exist

in any matching market. The basic model is similar to ours but differs in three aspects.

First in our model, there is no man-woman distinction and pairs have to be formed from

the same set of agents. Second, the number of projects can be greater than the number of

pairs of agents. Consequently, another notion of blocking arises in our model - blocking via

unassigned projects. Finally, the most important distinction between the two papers is their

respective responses to the underlying impossibility result. Sethuraman and Smilgins (2016)

assign property rights to agents on one side of the market reducing it to a bi-partite matching

model. We do not assign property rights over the projects and instead, we impose strong

but plausible (in our opinion) restrictions on preferences and demonstrate the existence of

assignments satisfying several desirable properties.

Combe (2017) also considers a model where two distinct sets of agents have to be matched

in pairs to a common set of objects. The paper follows an approach similar to that of

Sethuraman and Smilgins (2016). It introduces a notion of objects ownership and shows

5



that stable matchings exist when ownership is given to agents in the same set.2

Pycia (2012) proves a very general existence result on coalition stability. However, his

model does not cover ours because of the presence of objects in our model. Since objects do

not have preferences over agents they are assigned to, our notions of blocking do not have

a counterpart in his setting. In particular, if objects are interpreted as agents, deviating

coalitions that involve objects cannot strictly improve. The difference between the models is

manifested in the results as well. According to the main result of Pycia (2012), a coalition

structure is stable if and only if agents’ preferences are “pairwise-aligned” 3 i.e. every pair of

agents rank coalitions that contain both of them, in the same way. It is easy to check that

our preference restrictions do not satisfy pairwise alignment, yet stable assignments (in our

sense) are shown to exist.

A special case of the question investigated in Pycia (2012) is the existence of stable

threesome matchings. Alkan (1988) considers societies where there are three sets of agents

(men, women and children) and a matching consists of distinct triples, each formed by a man,

a woman and a child. Agents have preferences over the pairs they are matched with; thus

a blocking coalition is a triple, where each member in the coalition strictly improves. Alkan

(1988) shows that stable matchings fail to exist, even when the preferences are restricted to be

separable. Biró and McDermid (2010) considers a three-sided model with cyclic preferences,

where men care only about women, women only about children and children only about men.

As discussed in the earlier paragraph, our model cannot be interpreted as a special case of

these models.

In a slightly different spirit, Raghavan (2014) considers an allocation problem where

agents have to be assigned in pairs to objects. An object is either assigned to a unique

pair of agents or not assigned at all. However, unlike in the roommate problem and ours,

agents only have preferences over objects and not on potential partners. The paper examines

allocation rules from the perspective of strategy-proofness and efficiency.

Our model is also related distantly to the those on the existence of stable matchings in

two-sided matching models where couples are looking for jobs in the same labour market. A

convenient example is the one where doctors are seeking internships at hospitals and some

of the doctors are couples. (See Klaus and Klijn (2005), Klaus and Klijn (2007), Klaus

et al. (2007) and Khare and Roy (2016)). In these models, the identity of the couples is pre-

determined. Every agent has an individual preference on the hospitals and a joint preference

on the possible hospital duples. Hospitals also have preferences over the students. It is clear

that our model is fundamentally different from these models - in our case, the formation of

couples is endogenous while there is no counterpart of the hospital agent.

We now make a few remarks to motivate our assumption on the preference similarities

2Burkett et al. (2016)analyze two versions of the random serial dictatorship mechanism in a model where

pairs of roommates have to be assigned to rooms and agents care about their roommates and their rooms.
3Certain richness assumptions on preferences are made as well.

6



of agents who are “friends”. Sociological literature provides ample evidence of the existence

of homophily, that is, the tendency of individuals to connect and form close ties with other

individuals who are similar to them. Lazarsfeld et al. (1954) distinguished two types of

homophily: status homophily, in which similarity is based on informal, formal, or ascribed

status, and value homophily, which is based on values, attitudes, and beliefs. These two

forms of homophily depend on each other, because individuals tend to have ties with whom

they share similar experiences, like school, sports, hobbies, or with those who live in the same

neighborhood or with those who belong to the same age group. Hence, we not only tend to

build closer ties with individuals which are similar to us4, but we also become more similar to

our friends over time (Bauman and Ennett, 1996). All this amounts to an observed similarity

between tastes and friendships, with friends sharing the same preferences for music (Selfhout

et al., 2009), food and so on. More relevant for our paper, Ruef et al. (2003) have shown that

homophily and network constraints based on strong ties have the most pronounced effect on

the composition of entrepreneurial founding teams.

The remainder of the paper is organized as follows. In Section 2 we present the model.

Section 3 describes the MDPA algorithm and Section 4 presents its normative properties.

In Section 5 we present alternative procedures that satisfy some but not all the normative

properties of the MDPA algorithms. Section 6 shows that stable assignments may not exist

if either the homophily or the dichotomous domain assumptions is dispensed with. Section

7 concludes. The Appendix provides the proofs of the main theorems.

2 The Model

There is a finite set of agents N = {1, 2, . . . , i, j, . . . , n} and a finite set of alternatives

(projects), A = {a, b, c, d . . .}. We assume that |n| = 2m for some integer m ≥ 2 and that

|A| ≥ m.

An assignment σ is a collection of triples (i, j, a) with the interpretation that agent pair

(i, j) is assigned project a. In order to ensure feasibility, we require each agent to be paired

with one other agent and with one project. In addition, every project is assigned to exactly

one pair or left unassigned. We require all agents to be assigned a partner and a project. We

shall say that the triple (i, j, a) is an element of σ if the pair (i, j) is assigned to the project

a. Abusing notation, we shall also let σ(i) = (j, a) if (i, j, a) is an element of σ. Feasibility

imposes some obvious restrictions on σ which we do not elaborate for convenience. Finally

let uσ denote the set of unassigned projects in the assignment σ i.e. it is the set of projects

a such that there does not exist agents i and j with (i, j, a) ∈ σ.

Let Σ denote the set of all feasible assignments.

4See Cohen (1977), Kandel (1978), Verbrugge (1983), McPherson et al. (2001), Golub and Jackson (2012).

7



2.1 Preferences

Each agent i has a preference ordering5 �i over partner, project pairs (j, a) where j 6= i.

We impose several restrictions on �i which we believe are natural in our model. In Sections

6.1 and 6.2 we show that without some of these restrictions satisfactory assignments do not

exist.

Every agent i has a set of good partners (friends) P i ⊆ N \{i} and good projects Gi ⊆ A.

We allow for the possibility of P i, Gi = ∅. We denote the complement sets of Gi and P i

by A \ Gi and N \ P i respectively. These sets will be referred to as bad projects and bad

partners respectively. The ordering �i satisfies the following properties:

(i) If j, k belong to the same element of the partition {P i, N \ P i} and a, b belong to the

same element of the partition {Gi, A \Gi}, then (j, a) ∼i (k, b).

(ii) If a ∈ Gi, b /∈ Gi, then (k, a) �i (k, b) for all k 6= i.

(iii) If k ∈ P i, l /∈ P i, then (k, a) �i (l, a) for all a ∈ A.

These restrictions imply �i is separable over partners and projects. In addition, prefer-

ences over each component (partners and projects) are dichotomous i.e. alternatives in each

component are partitioned into good and bad sets.

According to these preferences all partner, project pairs can be placed in one of four

indifference classes: (I) both partner and project are good, (II) only the partner is good (III)

only the project is good and (IV) neither partner nor project is good. We shall refer to the

classes (I), (II), (III) and (IV) as (G,G), (G,B), (B,G) and (B,B) respectively. In general,

we adopt the convention that the first component in the ordered pairs refers to the type of

partner and the second to the type of project.

Separability implies (G,G) is the most preferred equivalence class and (B,B), the worst.

Classes (G,B) and (B,G) can be ranked either way. We refer to the case where (G,B) is

ranked above (B,G) as a partner dominant preference. In this case agent i prefers a good

partner, bad project pair over a bad partner, good project pair.

Similarly, a project dominant preference is one where (B,G) is ranked above (G,B) i.e.

agent i prefers a bad partner, good project pair over a good partner, bad project pair.

We assume the following (i) if j ∈ P i then i ∈ P j and (ii) if i ∈ P j and j ∈ P k, then

i ∈ P k. Thus the friendship relationship is mutual (if i is j’s friend, then j is i’s friend) and

transitive (if i is j’s friend and k is i’s friend, then k is i’s friend).

These assumptions induce a partition on the set of agents N where each element in the

partition is a set of agents who are all friends. We shall refer to each element of this partition

5An ordering is a binary relation which is complete, reflexive and transitive.

8



as a friendship component. These components are labelled {F1, F2, . . . , FL}. Note that the

number of components which have an odd number of agents must be even.

Finally we assume homophily in the preferences for agents in the same friendship com-

ponent. Specifically if i, j are friends, then either Gi ⊆ Gj or Gj ⊆ Gi holds. Homophily

induces a strong alignment in the preference for projects among friends. In other words,

there cannot be a pair of projects a, b and a pair of friends i, j such that i likes a but not b,

while j likes b but not a.

We assume that the preference of agent i, �i satisfies all the conditions above. Thus �i
is associated with a set of good partners and projects which we denote by P i(�i) and Gi(�i)
respectively.

2.2 Blocking and Stability

We consider three kinds of blocking in our model: (i) blocking via unassigned projects (ii)

blocking via position swaps and (iii) blocking via a project swap.

Definition 1 The pair of agents k, l blocks assignment σ via an unassigned project at profile

� if there exists (k, i, a), (l, j, b) ∈ σ and c ∈ uσ such that (k, l, c) �k (k, i, a) and (k, l, c) �l
(l, j, b).

A pair of agents blocks in this sense if they can abandon their current partners and choose

an unassigned project in the assignment which strictly improves their welfare from the initial

situation.

Definition 2 The agents i1, . . . , ik block σ by position swaps if there exist agents j1, . . . , jk,

projects a1, . . . , ak and a permutation µ : {1, . . . , k} → {1, . . . , k} such that

1. (is, js, as) ∈ σ, s = 1, . . . , k and

2. (jµ(s), aµ(s)) �is (js, as) for all s = 1, . . . , k.

According to this notion, the agents i1, . . . , ik swap places amongst themselves thereby

acquiring new partners and projects. This change makes each of these agents strictly better

off. This is a strong requirement. A weaker and perhaps more reasonable condition would

require “the abandoned” partners to give consent for the swap. In Definition 2 above this

would require the additional conditions (is, aµ(s)) %jµ(s) (iµ(s), aµ(s)), s ∈ {1, . . . , k}.6 However

we retain the stronger notion since we are able to show the existence of assignments which

are immune to the stronger notion of blocking.

6Morrill (2010) investigates a similar question in the roommate model.

9



F1 F2

1 {a} 3 {b}
2 {a} 4 {b}

Table 1: Examples 1 and 2

Definition 3 The pairs (is, js), s = 1, . . . , k blocks σ if there exist projects a1, . . . , ak and

a permutation µ : {1, . . . , k} → {1, . . . , k} such that

1. (is, js, as) ∈ σ, s = 1, . . . , k and

2. (js, aµ(s)) �is (js, as) and (is, aµ(s)) �js (is, as).

In this notion, pairs of agents can swap their assigned projects amongst themselves and

strictly improve. Note that both agents in a pair are required to strictly improve.

Examples 1, 2 and 3 show that the three notions of blocking are independent.

Example 1 Let N = {1, 2, 3, 4} and A = {a, b, c, d}. The friendship components are F1 =

{1, 2} and F2 = {3, 4}. Table 1 describes the good project sets for the agents.

Let � be the preference profile where �i is partner dominant for all i. Consider the

assignment σ = {(1, 2, b), (3, 4, a)}. It is immune to blocking via an unassigned project since

the unassigned projects c and d are bad for all agents.

It is immune to blocking via position swaps since the preference of each agent is partner

dominant. For instance, consider agents 1 and 3. A position swap between 1 and 3 results

in the assignment {(3, 2, b), (1, 4, a)} which makes both 1 and 3 worse off.

Suppose the pairs (1, 2) and (3, 4) exchange projects. All four agents now strictly improve

to the (G,G) class. Therefore σ can be blocked via a project swap.

Example 2 Let N = {1, 2, 3, 4} and A = {a, b, c}. The friendship components are F1 =

{1, 2} and F2 = {3, 4}. Table 1 continues to specify the set of good projects for the agents.

Let � be the preference profile where �i is partner dominant for all i. Consider the

assignment σ = {(1, 2, c), (3, 4, b)}.
It can be blocked by agents (1, 2) via the unassigned project c which improves their

welfare from the (G,B) to the (G,G) class.

As in Example 1 the assignment cannot be blocked via a position swap because all the

agents have partner dominant preferences. Finally note that 3 and 4 have a good project in

the assignment σ and a project switch will make them worse off.

Example 3 Let N = {1, . . . , 6} and A = {x, y, e, f}. The friendship components are F1 =

{1, 2, 3}, F2 = {4, 5} and F3 = {6}. Table 2 describes the good project sets for the agents.

10



F1 F2 F3

1 {x} 4 {e, f} 6 {x}
2 {x, y} 5 {e, f}
3 {x, y}

Table 2: Example 3

F1 F2

1 {x} 3 {y}
2 {x, y} 4 {x, y}

Table 3: Example 4

Let � be the preference profile where �1 is project dominant and �i is partner dominant

for all i ∈ N \{1}. Consider the assignment σ = {(1, 2, y), (4, 5, e), (3, 6, x)}. The only agents

who can strictly improve to a higher indifference class are 1 and 3.

The only unassigned project is f . Since f is not a good project for 1 and 3. The

assignment σ cannot be blocked via an unassigned project.

There do not exist four agents who can strictly improve from σ. Therefore σ cannot be

blocked via a project swap.

However σ is blocked by agents 1 and 3 by a position swap. The assignment after the

swap is {(3, 2, y), (1, 6, x)}. Agent 1 strictly improves as x is a good project for 1 and �1 is

project dominant. Agent 3 strictly improves because she gets a good partner and still gets

a good project.

We require an assignment to be immune to all three kinds of blocking.

Definition 4 The assignment σ is stable at � if it cannot be blocked by unassigned projects,

position swaps or project swaps.

Consider two preference profiles which are induced by the same good partner and good

project sets for all agents. The following example show that an assignment which is stable

at one preference profile need not be stable at the other.

Example 4 Let N = {1, 2, 3, 4} and A = {x, y, z}. The friendship components are F1 =

{1, 2} and F2 = {3, 4}. The set of acceptable projects are summarized in Table 3.

Let � be the preference profile where �i is partner dominant for all i. The assignment

σ = {(1, 2, y), (3, 4, x)}.

11



Agents 2 and 4 are in the (G,G) equivalence class. Thus agents 1 and 3 are the only

agents who can strictly improve. Since z is the only unassigned project and z is not a good

project for 1 and 3, σ cannot be blocked via an unassigned project. Also �1 and �3 are

partner dominant, so that agents 1 and 3 will not swap positions with each other. This will

make both agents worse off. The assignment cannot be blocked via a project swap because

it is not possible to make all four agents strictly better off. Thus σ is stable at �.

Let �′ be the preference profile where �′i is project dominant for all i with the same

friendship components and the good project sets as specified in Table 3. Suppose 1 and 3

swap positions. Since x and y are good projects for 1 and 3 respectively, σ is blocked via a

position swap. Hence σ is not stable at �′.

Example 4 has an interesting property: there exists an assignment that is stable irre-

spective of whether an agent’s preferences are partner or project dominant. Consider the

assignment σ′ = {(1, 2, x), (3, 4, y)}. All agents are in the (G,G) indifference class and thus

no agent can strictly improve. Thus σ′ is stable at any preference profile which is consistent

with the friendship components and good project sets specified in the example.7

This observation motivates a stronger notion of stability and a general question.

The profiles � and �′ are good set equivalent if P i(�i) = P i(�′i) and Gi(�i) = Gi(�′i)
for all i.

Definition 5 The assignment σ is robustly stable at profile � if it is stable at all profiles

�′ that are good set equivalent to �.

Robust stability is clearly a desirable property if it can be satisfied. An assignment that

satisfies it depends only on the structure of the friendship components and the set of good

projects of agents. We have shown that such assignments exist in Example 4. We show

below that this is no accident: such assignments always exist and our algorithm (described

below) generates one.

3 The Minimum Demand Priority Algorithm

We describe an algorithm to generate an assignment which we refer to as the Minimum

Demand Priority Algorithm (MDPA).

Let �N and �A be fixed orderings of the sets N and A respectively. If agent i �N j,

then agent i has priority over j.

Fix an arbitrary profile �. This profile induces friendship components {F1, . . . , FL} which

are ordered as F1, F2, . . . , FL.

7An example which illustrates this property when the preferences of all agents are project dominant can

be found in Nicolò et al. (2017) (Example 5 in Section 2.2).

12



Step 0: In each component Fq where |Fq| is odd, remove the agent with the lowest priority

in Fq and add this agent to the Residual set R. If |Fq| is even, then no changes are made and

the original component is retained. The adjusted friendship components are {F̃1, . . . , F̃L}.
Each adjusted component has even cardinality.

We shall make assignments in the components F̃1, F̃2, . . . , F̃L in sequence. These will be

labelled Steps 1 to L respectively. Each step comprises of an initial step, several intermediate

steps and a termination step. For component F̃q, the initial step will be denoted by Step q.0,

intermediate steps by Step q.1, q.2, . . . and the termination step by Step q.T . At the start

of the generic step q.s where q ∈ {1, . . . , L} and s ∈ {0, . . . , T}, the algorithm is provided

three inputs: (i) the set of available projects denoted by A(q.s), (ii) the set of unassigned

agents N(q.s) in component F̃q and (iii) the set of waiting agent, project pairs W (q.s). For

every step q.s, |W (q.s)| is either 0 or 1.

Step 1.0: Here A(1.0) = A, N(1.0) = F̃1 and W (1.1) = ∅. The demand for every available

project a ∈ A(1.0) is given by D(a; (1.0)) = # {i ∈ N(1.0) : a ∈ Gi(�i)}. The set of agents

who demand project a is given by S(a; (1.0)) = {i ∈ N(1.0) : a ∈ Gi(�i)}.
Remove all projects with zero demand. Consider the project (projects) with the least

demand. In case there is more than one such project, pick the project which is ranked

highest according to �A. Denote the project with the lowest demand (after tie breaking) by

a. There are two cases to consider.

1. D(a; (1.0)) = 1. Then no assignments are made at Step 1.0 and W (1.1) = {(i, a)}
where S(a; (1.0)) = {i}. Also sets A(1.1) = A(1.0) \ {a}, N(1.1) = N(1.0) \ {i} and

proceed to Step 1.1.

2. D(a; (1.0)) ≥ 2. Assign a to the pair of agents with the highest and second highest

priority in S(a; (1.0)). Now sets A(1.1) = A(1.0) \ {a}, N(1.1) = N(1.0) \ {i, j} where

i, j are the agents who have just been assigned a in this step and W (1.1) = ∅. Proceed

to Step 1.1.

Step 1.1: Step 1.1 repeats Step 1.0 with the sets A(1.1), N(1.1) and W (1.1) (determined at

the end of Step 1.0) but with an important difference.

As in Step 1.0, consider the project with the least non zero demand with appropriate tie

breaking. Suppose this project is b. Once again there are three possibilities.

1. D(b; (1.1)) = 1 and W (1.1) 6= ∅. Let (i, a) ∈ W and S(b; (1.1)) = {j}. Then the pair

(i, j) is assigned b. Also sets A(1.2) = [A(1.1) ∪ {a}] \ {b}, N(1.2) = N(1.1) \ {j},
W (1.2) = ∅ and proceed to Step 1.2.

13



2. D(b; (1.1)) = 1 and W (1.1) = ∅. Then no assignments are made at Step 1.1 and

W (1.2) = {(j, b)} where S(b; (1.0)) = {j}. Also sets A(1.2) = A(1.1) \ {b}, N(1.2) =

N(1.1) \ {j} and proceed to Step 1.2.

3. D(b; (1.1)) ≥ 2. Assign b to the pair of agents with the highest and second highest

priority in S(b; (1.1)). Now sets A(1.2) = A(1.1) \ {b}, N(1.2) = N(1.1) \ {i, j} where

i, j are the agents who have just been assigned a in this step and W (1.2) = W (1.1).

Proceed to Step 1.2.

By construction at any stage, W (1.s) is either null or consists of one element.

Step 1.2 repeats Step 1.1 with the appropriate sets. Proceeding in this way, there exists

a step 1.T where D(a; (1.T ) = 0 for every a ∈ A(1.T ). This is called the termination step.

Here three cases can arise.

I. N(1.T ) = ∅ and W (1.T ) = ∅. This means that all agents in F̃1 have been assigned a

partner and a project.

II. |N(1.T )| is even. Note that W (1.T ) = ∅. Arrange the agents in N(1.T ) using �N .

Form pairs of consecutive agents proceeding in sequence. Assign projects to pairs in

sequence using �A from A(1.T ).

III. |N(1.T )| is odd. Then W (1.T ) 6= ∅. Let W (1.T ) = {(i, a)}. Arrange the agents in

N(1.T ) using �N . Suppose j is the highest priority agent in this set. Form the triple

(i, j, a). Observe that |N(1.T ) \ {j}| is even. For the remaining agents, partners and

projects are assigned as in (II) above.

This completes the assignment for all agents in the component F̃1. Let the set of projects

assigned to pairs in F̃1 be ∆(F̃1). We repeat the procedure for F̃2 = with A(2.0) = A\∆(F̃1),

N(2.0) = F̃2 and W (2.0) = ∅. This completes the assignment for the agents in component

F̃2. Proceeding in this manner, at the end of Step L we have assigned partners and projects

to all agents in F̃1 ∪ F̃2 . . . ∪ F̃L.

Step L + 1: In this step, projects are assigned to agents in the set R. The set of available

projects is A(R) = A(F̃L) \∆(F̃L). Without loss of generality (and by suitable relabelling of

agents), let R = {1, 2, . . . , 2r} for r ≥ 0. We make assignments for the agents in R in Steps

L+ 1.1 through L+ 1.r∗. At each of these steps L+ 1.k, a set of agents Rk is obtained. The

procedure terminates in Step L+ 1.r∗ where ∪r∗k=1Rk = R.

Step (L + 1.1): In this step, we match agent 1 with the agent with the lowest index t > 1

in R such that G1(�1) ∩ Gt(�t) ∩ A(R) is non empty. This pair is assigned a project a

14



in G1(�1) ∩ Gt(�t) ∩ A(R) (ties are once again broken according to �A). In this case,

R1 = {i, t}. If no such agent t exists, then agent 1 is unmatched at this step and R1 = {1}.
The set of projects assigned in this step is denoted by ∆R(1) where ∆R(1) = ∅ if R1 = {1}

and {a} if R1 = {1, t} and a is assigned to (1, t).

The set of agents remaining for the next step is R \R1. The set of projects available for

the next step is A(R) \∆R(1).

Step (L + 1.2): We repeat Step (L + 1.1) with agent 1 being replaced by the agent with

the smallest index in R \ R1 and the set of projects A(R) replaced by A(R) \∆R(1). This

generates possibly another assignment. At the end of this step, we obtain R2 and the set of

available projects A(R) \ ∪2
k=1∆R(k).

Proceeding in this manner, there will exist a Step (L+ 1.r∗) where ∪r∗j=1Rj = R. The set

of projects available for assignment in Step (L+ 1.r∗) is A(R) \ ∪r∗k=1∆R(k).

There are two possibilities.

1. All agents in R have been assigned a partner and a project. In this case the algorithm

terminates.

2. Suppose 1 does not hold. Let R̄ be the set of agents who have not been assigned a

partner and a project. Note that R̄ must be even in cardinality. Proceed to Step L+2.

Step L+ 2: In this step, A(R) \ ∪r∗k=1∆R(k) is the set of available projects. Partition R̄ into

{R̄1, R̄2} where R̄1 consists of agents who have no good projects among the set of available

projects and R̄2 are the remaining agents.

Order the agents in R̄1 and R̄2 according to �N . Assign the highest priority agent in R̄1

with the highest priority agent in R̄2 and an available project in the good set of the agent in

R̄2, the agent with the second highest priority in R̄1 with the agent with the second highest

priority in R̄2 and so on.

1. If
∣∣R̄1
∣∣ =

∣∣R̄2
∣∣, then the procedure will terminate with all agents in R being assigned

a project and partner.

2. If
∣∣R̄1
∣∣ > ∣∣R̄2

∣∣, then an even number of agents in R̄1 will be left unassigned. They are

now paired consecutively and are assigned a project from the available set according

to �A.

3. If
∣∣R̄1
∣∣ < ∣∣R̄2

∣∣, then an even number of agents in R̄2 are left unassigned. They are

paired consecutively and assigned a project from the good set of the higher priority

agent (ties are broken according to �A).

This completes the description of the algorithm. We illustrate it with an example.

15



F1 F2 F3 F4

4 {x, y, z, w, q} 12 {a, b, c, d} 23 {f} 24 {e}
2 {x, y, z, w} 13 {a, b, c}
6 {x, y, z, w} 14 {a, b, c}

3 {x, y, z} 15 {a, b}
7 {x, y} 16 {a, b}
8 {x, y} 17 {a, b}
1 {x} 18 {a}
5 {x} 19 {a}
9 {x} 20 {a}
10 {x} 21 {a}

11 {x, y, z, w, q, e} 22 {a}

Table 4: Example 5

Example 5 Let N = {1, 2, . . . , 24} and A = {a, b, . . . , z}. Consider a preference profile

which induces the components: F1 = {1, . . . , 11}, F2 = {12, . . . , 22}, F3 = {23} and F4 =

{24}. Table 4 summarizes the good project sets for all agents. The priority order of agents

is 1 �N 2 �N 3 . . . 24 and the priority order of projects is z �A y . . . �A a.

In Step 0, the adjustment of the components results in R = {11, 22, 23, 24}. The adjusted

components are F̃1 = F1 \ {11}, F̃2 = F2 \ {22}. The MDPA assigns projects to F̃1, F̃2, R in

sequence.

Step 1: We assign projects to agent pairs in F̃1. Table 5 illustrates the demand for the

available projects, the waiting set and the assignment made at every substep of step 1.

In Step 1.0, q is the least demanded project (with D(q; 1.0) = 1). So no assignment is

made in Step 1.0. Also W (1.1) = {(4, q)}, A(1.1) = A(1.0) \ {q} and N(1.1) = N(1.0) \ {4}.
In Step 1.1, the project with the least demand is w (with D(w; (1.1)) = 2. Now the MDPA

assigns w to the pair (2, 6). The set of agents and projects for the next step are updated

by removing agents 2, 6 and project w. Also W (1.2) = W (1.1) = {(4, q)}. In Step 1.2,

the project with least demand is z with demand 1 and W (1.2) = {4, q)}. So the triple

(4, 3, z) is formed in this step. The set of available projects in Step 1.3 is [A(1.2)∪{q}]\{z}.
Also W (1.3) = ∅. In Step 1.3, project y is the least demanded with D(y; (1.3)) = 2. So

the MDPA forms (7, 8, y). Since W (1.3) = ∅, we have W (1.4) = ∅. In Step 1.5, the least

demanded project is x with D(x; (1.4)) = 4. We have S(x; 1.4) = {1, 5, 9, 10}. Since 1 and 5

are the agents with the highest and second highest priority in S(x; (1.4)) according to �N ,

the MDPA forms (1, 5, x). Finally Step 1.5 is the termination step for the component F̃1 as

the demand for each available project in this step is zero. Note W (1.5) = ∅ and agents 9, 10

are unassigned. The pair (9, 10) is assigned the highest ranked available project according

16



Step 1.q x y z w q W (1.q) Assignment

1.0 10 6 4 3 1 {(4, q)} No assignment

1.1 9 5 3 2 NA {(4, q)} (2, 6, w)

1.2 7 3 1 NA NA {(4, q)} (4, 3, z)

1.3 6 2 NA NA NA ∅ (7, 8, y)

1.4 4 NA NA NA NA ∅ (1, 5, x)

1.5 NA NA NA NA NA ∅ (9, 10, v)

Table 5: Step 1 in Example 5

Step 2.q a b c d W (2.q) Assignment

2.0 10 6 3 1 {(12, d)} No assignment

2.1 9 5 2 NA {(12, d)} (13, 14, c)

2.2 7 3 NA NA {(12, d)} (15, 16, b)

2.3 5 NA NA NA {(12, d)} (17, 18, a)

2.4 NA NA NA NA {(12, d)} (12, 19, d), (20, 21, u)

Table 6: Step 2 in Example 5

to �A. So (9, 10, v) ∈ σ.

Step 2: We make assignments to agent pairs in F̃2. Table 6 provides the demand for the

available projects, the waiting set and the assignment made in every substep of Step 2.

In Step 2.0, the project with the least demand is d, with D(d; (2.0)) = 1. Thus no

assignment is made and W (2.1) = {(12, d)}. Note that in any Step 2.q, q ∈ {1, 2, 3},
the least demanded project, say a has demand D(a; (2.q)) ≥ 2: this project is assigned to

the highest and the second highest priority agents in S(a; (2.q)). So W (2.q) = {(12, d)}.
For instance, the triple (15, 16, b) is formed by the MDPA in Step 2.2. The termination

step for component F̃2 is Step 2.4: (12, d) ∈ W (2.4) and 19, 20, 21 are unassigned. Since

19 �N 20 �N 21, we have (12, 19, d) and (20, 21, u).

Step 3: Partner, project assignments are made for the agents in R = {11, 22, 23, 24}. Note

that G11 ∩ A(R) = {q, e}, G22 ∩ A(R) = ∅, G23 ∩ A(R) = {f} and G24 ∩ A(R) = {e}. Also

11 �N 22 �N 23 �N 24. In Step 3.1, (11, 24, e) is formed by the MDPA. This is because 11

is the highest priority agent in this step and has a common good available project with agent

24. Note that G11 ∩Gj ∩A(R) = ∅ for j ∈ {22, 23}. So R1 = {11, 24} and ∆R(1) = {e}. In

Step 3.2, the set of remaining agents is R \ R1 = {22, 23}. The set of available projects is

A(R) \∆R(1). Agent 22 is the higher priority agent in R \R1. Since G22 ∩G23 ∩A(R) = ∅,
no assignment is made in this step. Also R2 = {22} and ∆R(2) = ∅. In Step 3.3, we again

17



have R3 = {23} and ∆R(3) = ∅. Step 3.4 is the termination substep for R, where agents

22, 23 are unassigned. The MDPA proceeds to Step 4.

Step 4: We have R̄1 = {22} and R̄2 = {23}. The MDPA forms (22, 23, f). The algorithm

terminates at Step 4.

4 Properties of the MDPA

In this section we show that the MDPA satisfies several important properties.

4.1 Stability

We have already defined and discussed the notion of stability. We show below the MDPA

generates a robustly stable assignment.

Theorem 1 The MDPA algorithm generates a robustly stable assignment at every �. Con-

sequently a robustly stable assignment exists at every profile.

The proof of Theorem 1 is provided in the Appendix.

4.2 Strategy-Proofness

In this section we investigate the strategic properties of the MDPA. We assume that friend-

ship is commonly observable. Since friendship is mutual and transitive, no agent can indi-

vidually manipulate and misreport her set of good partners or friends. We assume that the

set of good projects for an agent is private information and can be misreported by an agent

if she believes this could be advantageous. However the assumption of homophily introduces

some complications in the standard model as it imposes a restriction on preference profiles.

Therefore individual announcements of good sets may lead to profile announcements that

are inconsistent with homophily. Below, we propose a model that satisfactorily deals with

this issue.

For any friendship component Fq, there is a commonly known linear order �Oq over the

set of all projects with the following interpretation: for any x, y ∈ A, if x �Oq y then all

agents in Fq who like x also like y. The private information of an agent is a threshold project

x. All projects y such that x �Oq y are good. We believe this is a natural assumption that

also ensures that any announced profile of threshold projects is consistent with homophily.

We make a minor modification to the MDPA for convenience. We assume that while

making assignments in any component the order �Oq is used to break ties when there are

several projects with identical minimum demand. This amounts to a version of the MDPA

18



F1 F2

1 {x, y, z} 3 {z}
2 {x, y, z} 4 {z}

Table 7: Example 6

where a different order on A is used for each component and for the set R; robust stability

is not affected by this modification.

We now describe a general mechanism in this setting. Each agent i ∈ Fq, q ∈ {1, . . . , L}
announces a preference ordering �i that contains two pieces of information: (i)a set of good

projects, Gi(�i) and (ii) whether her preferences are partner or project dominant. It is

assumed that the set Gi(�i) is consistent with �Oq i.e. if x ∈ Gi(�i) and x �Oq y, then

y ∈ Gi(�i). Let Γi denote the set of all possible announcements of agent i. Recall that Σ is

the set of all feasible assignments.

An assignment rule is a map σ, σ : ×i∈NΓi → Σ.

Definition 6 An assignment rule σ is strategy-proof if there does not exist �,�′i∈ Γi and

�−i∈ ×j 6=iΓi such that σ(�′i,�−i) �i σ(�i,�−i).

The notion of strategy-proofness is standard: an agent cannot strictly improve by mis-

reporting her preferences for any possible announcements of the preferences of other agents.

Our main result in this section is the following.

Theorem 2 The MDPA algorithm is strategy-proof.

The proof of Theorem 2 can be found in the Appendix.

4.3 Efficiency

An obvious question is whether the MDPA generates an assignment that is Pareto efficient

i.e. is it possible to strictly improve the well being of at least one agent without making

anyone worse off? It is not, as the following example demonstrates.

Example 6 Let N = {1, 2, 3, 4} and A = {x, y, z}. The friendship components are F1 =

{1, 2} and F2 = {3, 4}. Table 7 describes the good project sets for the agents. Let the priority

order of agents be 1 �N 2 �N 3 �N 4 and z �A y �A x. The components are assigned in

the sequence F1 followed by F2. Note that R = ∅. The MDPA generates (1, 2, z), (3, 4, x).

But the Pareto efficient assignment is either {(1, 2, x), (3, 4, z)} or {(1, 2, y), (3, 4, z)}.

19



There is however a weaker sense in which the MDPA is efficient which we describe below.

Consider a component Fq with |Fq| even, a set of projects A′ and a preference profile �
for agents in Fq.

A component assignment rule is a rule that pairs agents in Fq and assigns a unique and

distinct project to each pair from A′. 8

The happiness index attained by a component assignment rule is the number of agents

who are assigned a good project.

A component assignment rule π satisfies component efficiency or friendship efficiency if

there does not exist a component assignment rule whose happiness index exceeds that of π.

Note that when we compare one component assignment rule to another, we are assigning

projects from A′ to the agents in Fq.

The MDPA specifies a component assignment rule, which assigns projects to the agents

in a component via minimum demand. The MDPA satisfies component efficiency, in the

sense that there does not exist another component assignment rule whose happiness index

exceeds that of the MDPA.

We state this result formally below.

Theorem 3 Consider an even component Fq, a set of projects A′ and a preference profile �.

The MDPA satisfies friendship efficiency i.e. there does not exist a component assignment

rule whose happiness index exceeds that of the assignment generated by the MDPA.

The proof of Theorem 3 is contained in the Appendix. Below we illustrate the argument

involved in the proof with reference to Example 5 that we have considered earlier.

Consider component F̃2 = {12, 13, . . . , 21}. The set of projects available for assignment to

F̃2 is A\{w, z, y, x, v}. The happiness level of the MDPA for this component is 7: agents 19,

20 and 21 are not assigned good projects. Observe that agents 15 to 21 (7 agents) like only

two projects a and b. These two projects can be assigned to at most four agents. Therefore

at least three agents must remain with bad projects for any component assignment rule.

The MDPA could be modified to marginally improve efficiency; however these modifica-

tions would not guarantee Pareto efficiency. We leave the question about the existence of

robustly stable, strategy-proof and Pareto efficient mechanisms for future research.9

8Note that the component assignment can depend on the preferences of the agents in Fq. However, we

hold these preferences fixed for the analysis in this section of the paper.
9For any friendship component at the termination step, we may end up assigning projects to agents

for whom all available projects are bad. The assigned projects can be good for some agents belonging to

subsequent friendship components. Therefore, postponing this assignment of projects to the very end of the

mechanism removes a source of inefficiency.

20



5 Other Component Assignment Procedures

We have seen that the MDPA makes assignments within a friendship component by se-

quentially allocating projects with lower demand before those with higher demand. This

procedure satisfies strategy-proofness and friendship efficiency. We have remarked earlier

that the procedure favours the less fussy agents to the more fussy agents. Below we provide

several natural procedures for allocation within components that violate either friendship

efficiency or strategy-proofness. Although we do not have a formal characterization result,

we believe that the MDPA is a salient procedure for allocation within components.

5.1 A minimum demand endogeneous priority procedure

Let F̃q be a component with an even number of agents. An ordering of agents in the

component is constructed based on their good sets; in particular i is ranked higher than j if

Gj ⊆ Gi. In case Gi = Gj, ties are broken using a fixed order.

Agents ranked 1 and 2 in this order are now paired with each other. They are assigned

a project that is in the good set of both the agents and is a minimally demanded project

amongst agents in the component. If there is more than one such project, then ties are broken

according to a fixed order on projects. Agents ranked 3 and 4 are then paired together with

a project using the same principle i.e. with a project that is a good project for both agents

amongst the set of minimally demanded available projects. Similarly agents ranked 5, 6, 7, 8,

etc. are paired together. If there does not exist a project that is good for both agents, assign

a project that is good for at least one. Otherwise assign a project arbitrarily from the set of

available projects.

In Example 5, for the component F̃2, the mechanism generates the assignment (12, 13, c),

(14, 15, b), (16, 17, a), (18, 19, x) and (20, 21, y). The number of unhappy agents for this

procedure is 4, while it is three for the MDPA. Therefore this mechanism is not friendship

efficient. The superiority of the MDPA over this mechanism is due to the presence of waiting

pairs in the MDPA.

This procedure is also not strategy-proof. For instance, assume that agent 18 has higher

priority than 17 in the fixed ordering over agents (used to break ties when agents have the

same good sets). Then agent 18 by misreporting {a, b} as her set of good projects will be

assigned a in this mechanism.

5.2 A maximum demand fixed priority mechanism

This mechanism can be thought of as a dual to the MDPA. Let S and A′ denote the set

of agents in F̃q and the set of available projects for the component. Let S1, . . . , ST and

21



A1, . . . , AT denote the partitions of S and A′ constructed in the proof of Theorem 3. Specif-

ically A1 is the set of projects which are good for all agents in S; S1 is the set of agents

whose available good project set is exactly A1; A2 is the set of projects which are good for

all agents in S \S1; S2 is the set of agents whose available good project set is exactly A1∪A2

etc. Thus S1 is the set of most fussy agents in the sense that they like only projects in A1,

S2 is the set of the next most fussy agents who like only projects in A1 ∪ A2 etc. In the

MDPA, assignment begins with the set (AT , ST ). If some agents cannot be assigned a good

project, they are then added to agents in ST−1 and they jointly demand AT−1. If there are

surplus projects in AT , they are discarded. The algorithm then progressively assigns projects

in (AT−1, ST−1) to (A1, S1) where unassigned agents in each stage are transferred to the next

stage while the surplus projects at every stage are discarded.

In the algorithm under consideration, assignment begins with projects in A1 and agents

in S1. If |S1| > 2|A1|, then these surplus agents are made to wait while the remaining

2|A1| agents are paired and assigned projects using fixed priority and tie breaking rules.10

If |S1| ≤ 2|A1|, then |S1|
2

pairs are formed and assigned projects according to a fixed tie

breaking rule. Note that if |S1| is odd, then there is a remaining agent who can be assigned

a project from A1, but no partner from |S1|. In this case the remaining agent is assigned a

partner from S2. Two adjustments are made for Step 2:(i) If there is an agent who has been

pulled out from S2 to be matched with an agent in S1, this agent is removed from S2.
11 and

(ii) the projects available for assignment in Step 2 is A2 ∪R1, where R1 denotes the surplus

projects in Step 1 after the assignments have been made in Step 1.12 Then these projects

(projects in A2 and the surplus projects from A1) are assigned to remaining agents in S2 in

the same manner as before if S2 is non empty. In case S2 is empty, proceed to S3 and add

these projects to A3. Again projects are assigned to agents in S3 as in the first Step.

Thus for any Step 2 ≤ q ≤ T , we assign the available projects in Aq ∪ Rq−1 to the

remaining agents in Sq. This process continues untill the stage (AT , ST ) is reached. There

are three possibilities.

1. ST is empty (i.e. no agents are remaining in ST when Step T is reached) and all agents

in Fq have been assigned a partner and a project. Then the procedure terminates here.

2. ST is empty but there are some waiting agents.13 The waiting agents are divided into

disjoint pairs and each pair is assigned a project from the available set.

10Note that these surplus agents will not be assigned a good project in the procedure as all their good

projects are contained in the set S1.
11There is exactly one such agent, who is removed from S2 to be matched with the remaining “odd” agent

in S1.
12Note that R1 = ∅ if |S1| ≥ 2|A1|.
13Note that these are agents who were surlpus in some Step 1 ≤ q ≤ T . Also there will be an even number

of waiting agents.

22



F1

4 {x, y}
3 {x, y}
2 {x, y}
1 {x, y}
6 {x}
5 {x}

Table 8: Example 7

3. ST is non empty. Assign projects to agents in ST in the same manner as before. Note if

|ST | is odd, then there will exist an odd number of waiting agents. Thus the remaining

agent in ST (who cannot find a partner within ST ) is assigned a partner from the

waiting set of agents and a project from either AT ∪ RT−1 (if |AT ∪ RT−1| ≥ |ST |) or

an arbitrary project from the set of available projects. The waiting agents are divided

into disjoint pairs and each pair is assigned a project from the available set.

This algorithm is not strategy-proof, as shown by the next example.

Example 7 Let N = {1, 2, 3, 4, 5, 6} and A = {x, y, z, q}. All agents belong to the same

component. Table 8 provides the sets of good projects of all the agents.

The partitions of A and N are: A1 = {x}, S1 = {5, 6} and A2 = {y}, S2 = {1, 2, 3, 4}.
The mechanism generates the assignment (5, 6, x), (1, 2, y) and (3, 4, z). Let 1 �N 2 �N 3 �N
4 �N 5 �N 6 be the fixed priority over the agents. Agent 3 can manipulate by announcing

{x} as her set of good projects. Then the mechanism will form (3, 5, x) and agent 3 will be

strictly better off.

5.3 A fixed priority algorithm

Let F̃q be a component with an even number of agents. Define a priority over the agents in

F̃q. Label agents in F̃q as {1, 2, . . . , 2p−1, 2p} according to the priority i.e. agent 1 has higher

priority than 2 who has higher priority than 3 and so on. The agents 1 and 2 are paired

together and assigned a project in the following manner. If there exists a project which is

good for both agents and is available, this project is assigned to (1, 2). In case there does

not exist any available project which is good for both agents, assign a good project for the

higher priority agent in the pair (if possible) or assign a good project for the lower priority

agent in the pair. Otherwise assign an arbitrary project to the pair (1, 2). Proceed to the

next two agents, 3 and 4 and assign a project to the pair (3, 4) using the same principle as

23



F1

1 {x, y, z}
2 {x}
3 {x}

4 {x, y, z}
5 {x, y}
6 {x, y}

Table 9: Example 8

above. We continue to form pairs of consecutive agents and assigning them a project from

the set of available projects.

This mechanism is strategy-proof. However it is not friendship efficient.

Example 8 Let N = {1, 2, 3, 4, 5, 6} and A = {x, y, z, e, f, g}. All agents belong to the same

friendship component F1. The set of acceptable projects are: G1 = {x, y, z}, G2 = G3 = {x},
G4 = {x, y, z} and G5 = G6 = {x, y}.

Suppose the priority over the agents �N is 1 �N 2 �N 3 �N 4 �N 5 �N 6. The FPA

algorithm forms one of the following assignments,

1. {(1, 2, x), (3, 4, y), (5, 6, a)} where a ∈ {z, e, f, g}.

2. {(1, 2, x), (3, 4, z), (5, 6, b)} where b ∈ {y, e, f, g}.

We claim that none of these assignments satisfy friendship efficiency. In both assignments,

there is at least one unhappy agent i.e. agent 3. Consider the MDPA assignment (1, 4, z),

(5, 6, y) and (2, 3, x) where the number of unhappy agents is zero.

6 Alternative Domains

In this section we show that stable assignments may not exist if either the homophily or the

dichotomous preferences assumptions are dispensed with.

6.1 Dichotomous Domains without homophily

We retain all the assumptions on preferences in Section 2.1 except homophily. In Example

9, we show the non-existence of stable assignments for a partner dominant preference profile.

Similarly Example 10 shows that non-existence of stable assignments for a project dominant

preference profile.

24



F1 F2

1 {a, b} 4 {g}
2 {c, d}
3 {e, f}

Table 10: Example 9

F1 F2

1 {a, b} 4 {g, h}
2 {c, d} 5 {x, y}
3 {e, f} 6 {z, u}

Table 11: Proposition 3

Example 9 Let N = {1, 2, 3, 4} and A = {a, b, c, d, e, f, g}. The friendship components are

F1 = {1, 2, 3} and F2 = {4}. The good sets of agents are described in Table 10. Note that

homophily is violated in F1.

Let � be the preference profile where all agent preferences are partner dominant and the

good partner, project sets are specified above.

In any assignment, one of the agents in F1 must be matched with agent 4, while the

remaining agents are matched with each other. Assume w.l.o.g that (1, 2) and (3, 4) are

matched with each other. Since �3 is partner dominant, agent 3 would like to break with

agent 4 and be paired with either 1 or 2, even with a bad project. Since the good sets of

agents 1 and 2 are disjoint, at least one of them must be receiving a bad project. Moreover

this agent must also have a project in her good set which is unassigned. Agent 3 can then

pair with this agent and this unassigned project to block the assignment. Hence a stable

assignment does not exist.

Example 10 Let N = {1, 2, 3, 4, 5, 6} and A = {a, b, c, d, e, f, g, h, x, y, z, u}. The friendship

components are F1 = {1, 2, 3} and F2 = {4, 5, 6}. Table 11 specifies the set of good projects

for all agents. Homophily is violated for both components. Let � be the preference profile

where each agent’s preference is project dominant and the good partner, project sets are

specified above.

Since there are an odd number of agents in each component, at least one agent in F1

is matched to an agent in F2 in any assignment . Assume w.l.o.g that 3 and 6 are paired

together. Since the good projects of agents 3 and 6 are disjoint, at least one of them is not

getting a good project. Suppose it is agent 3.

In order for agent 3 not to form a blocking coalition with either agents 1 or 2 via an

unassigned project either (i) or (ii) below must hold: (i) all good projects of 1 and 2 are

25



assigned or (ii) agents 1 and 2 are both getting good projects. However there are four

projects that are either good for agent 1 or good for agent 2, while the total number of

assigned projects is three. Therefore (i) cannot hold.

Suppose (ii) holds. Then agents 1 and 2 must be paired with agents 4 and 5 in F2.

Moreover both agents 1 and 2 must be getting a good project. Therefore agents 4 and 5

are not getting good projects i.e. they are getting bad partners and bad projects. They will

then block by pairing with each other with an unassigned project.

Thus a stable assignment does not exist.

6.2 Non Dichotomous Preferences

In this subsection, we illustrate the importance of the dichotomous domain assumption in

our model. We assume that preferences over partner, project pairs continue to be separable

i.e. “marginal” preferences over both components can be defined unambiguously. These

component preferences are non-dichotomous but are well-behaved in the sense that they are

single-peaked. Nevertheless stable assignments may fail to exist according to Proposition 4.

Let >o and >p be strict orderings over A and N respectively. Agent i has an anti-

symmetric preference ordering over projects, �proji which is defined as follows: she has a

unique best project denoted by τ(i) and for all a, b ∈ A,

b >o a >o τ(i)

τ(i) >o b >o a
⇒ b �proji a

Similarly agent i has an anti-symmetric preference order over partners denoted by �parti

which are defined as follows: she has a unique best partner denoted by π(i) and for all

j, k ∈ N \ {i},

j >p k >p π(i)

π(i) >p j >p k
⇒ j �parti k

These component preferences are combined lexicographically to define preferences over

partner, project pairs. Agent i’s preferences �i are project dominant if

(j, a) �i (k, b) if either [a �proji b] or [a = b and j �parti k]

Similarly agent i’s preferences �i are partner dominant if

(j, a) �i (k, b) if either [j �parti k] or [j = k and a �proji b]

26



Let D1(N,A) and D2(N,A) denote the set of all such project dominant and partner

dominant preferences respectively.

Note that these preferences are multi-dimensional single peaked as defined by Barberà

et al. (1993).

Proposition 4 There exist N and A for which stable assignments do not exist when pref-

erences of all agents belong to D1(N,A). Similarly there exists N and A for which stable

assignments do not exist when preferences of all agents belong to D2(N,A).

The proof of Proposition 4 is constructive and is provided in the Appendix.

7 Conclusion

In this paper, we have investigated a class of matching models where agents have to be

matched in pairs with a project. We provide a domain restriction on partner, project pairs

that guarantees the existence of a robustly stable assignment. We provide an algorithm, the

MDPA algorithm which generates a robustly stable assignment at every preference profile.

It satisfies efficiency within every friendship component. In addition it is strategy-proof.

In future, we hope to extend our work to teams of general size. Our current results on

pairs do not extend in a straightforward manner to the more general case. We also hope to

investigate other notions of capturing homophily in project and team assignment models.

8 Appendix

8.1 Proofs

We provide the proofs of the major results in the paper.

Proof of Theorem 1:

Let � be an arbitrary profile and σ be the assignment generated by the MDPA algorithm

at �. We will show that σ cannot be blocked via an unassigned project, by a position swap

or by a project swap at any �′ which is good set equivalent to �.

An important initial observation is that the algorithm relies only on the P i(�i),Gi(�i)
sets for all agents. Therefore if two profiles �,�′ induce the same good sets for all agents,

the algorithm generates the same assignment.

Blocking via unassigned projects: Suppose σ is blocked via an unassigned project, i.e. there

exist (k, i, a), (l, j, b) ∈ σ and b ∈ uσ such that (k, l, b) �′k (k, i, a) and (k, l, b) �′l (l, j, c)

where �′ is good set equivalent to �.

27



We consider the following exhaustive possibilities.

(i) The agents k, l ∈ Fq for some q.

There are two subcases to consider.

(a) Agents k, l are paired together in σi.e. (k, l, a) ∈ σ. Since k and l strictly improve, we

have a /∈ Gk(�′k), a /∈ Gl(�′l) and b ∈ Gk(�′k)∩Gl(�′l).14 In the algorithm, it must have been

the case that (k, l, a) was formed in Step q.T (the termination step for the component F̃q)

Also the demand for each available project in this step must have been zero. Since b ∈ uσ, b

is available in Step q.T and D(b; (q.T )) = 2 in Step q.T . This results in a contradiction.

(b) Agents k, l are not paired together in σi.e. (k, i, a), (l, j, c) ∈ σ where i 6= l and j 6= k.

In the algorithm, there is atmost one residual agent from each friendship component. This

implies that at leastone of the agents among k and l is paired with a friend. Assume w.l.o.g

k, i ∈ Fq. Since k is strictly improving, we have a /∈ Gk(�′k) and b ∈ Gk(�′k). In the

algorithm, it must have been the case that agent k is assigned a partner and a project in

the termination step for F̃q where the demand for each available project was zero. However

b was available in this step by assumption. This is a contradiction.

(ii) Agents k, l /∈ Fq for any q.

Suppose k ∈ Fq and l ∈ Fp. There are three possibilities to consider.

(a) �′k and �′l are both partner dominant. Since k and l are strictly improving, we must have

i /∈ Fq and j /∈ Fp. Thus k, i, l, j all belong to the residual set R. Also we have a /∈ Gk(�′k),
b ∈ Gk(�′k), c /∈ Gl(�′l) and b ∈ Gl(�′l). Since k and l are being assigned bad projects in

σ, we can conclude that (k, i, a) and (l, j, c) are being formed in Step L+ 2. Suppose agent

k �N l. Since b is unassigned, there will exist a substep of Step L + 1, say L + 1.r (with

r ≤ r∗) where k and l could have been paired together with project b which is good for both

agents. Therefore we have a contradiction.

(b) �′k and �′l are both project dominant.

Suppose one of the pairs (k, i), (l, j) belongs to the same friendship component. W.l.o.g let

k, i ∈ Fq for some q. Since agent k strictly improves, we have a /∈ Gk(�′k) and b ∈ Gk(�′k).
We then have a contradiction exactly as in (i)(b).

Finally suppose neither k, i nor l, j belong to the same component. Thus k, i, l, j belong

to the residual set. This reduces to (ii)(a) which we have already dealt with.

(c) One of �′k and �′l is partner dominant while the other is project dominant. Suppose

�′k is partner dominant. Since agent k strictly improves, we conclude that i and k cannot

belong to the same friendship component. Also a /∈ Gk(�′k) and b ∈ Gk(�′k).
14This fact is independent of whether �′k is partner or project dominant.

28



There are two further possibilities. Suppose l, j do not belong to the same component.

Then agents k, i, l, j are residual agents. Once again, we are back to (ii)(a). The remaining

case is l, j ∈ Fp for some p. Since l strictly improves, we have c /∈ Gl(�′l) and b ∈ Gl(�′l).
Note that this case is equivalent to (i)(b), where agent k is replaced by l and i is replaced

by j.

Therefore σ cannot be blocked via an unassigned project.

Blocking via a position switch: Suppose σ can be blocked by a position swap and assume

w.l.o.g (by suitable relabelling) that (1, 2, a1), (3, 4, a2), . . . , (2k − 1, 2k, ak) ∈ σ where the

odd numbered agents are permuted by µ and strictly improve i.e. µ(1) = 3, µ(3) = 5, µ(s) =

s+ 2 (where s is odd ), µ(2k − 1) = 1 and(
s+ 3, a s+3

2

)
�s
(
s+ 1, a s+1

2

)
where s ∈ {1, 3, . . . , 2k − 1}.

This is a cycle of length k. We can also assume w.l.o.g there does not exist a subcycle of

σ where agents who are permuted strictly improve. Let S = {1, 3, . . . , 2k − 1}.
Assume (s, s + 1) ∈ Fq (where s ∈ S) for some q.15 We claim that it cannot be the case

that either (s+ 2, s+ 3) ∈ Fp where q < p or (s+ 2, s+ 3) ∈ R. Suppose (i, j) and (i′, j′) are

two pairs in distinct friendship components and are assigned together in the MDPA. Suppose

i takes the place of i′ in the position swap. Then it cannot be the case that i strictly improves

if the (i′, j′) belong to a friendship component where project assignment is made after that

of the (i, j) component. Similarly i cannot improve if (i′, j′) belong to the residual set.

We now verify the claim. Let (s + 2, s + 3) ∈ Fp and q < p. Since
(
s + 3, a s+3

2

)
�s(

s + 1, a s+1
2

)
, it cannot be the case that �s is partner dominant. Therefore a s+1

2
/∈ Gs and

a s+3
2
∈ G3. According to the MDPA, a s+3

2
is available when assignments are made in F̃q (in

particular to agent s). Therefore s could not have got a bad project in σ. This results in a

contradiction. By an identical argument, (s+ 2, s+ 3) /∈ R.

Suppose there exists s (where s ∈ S) such that (s, s + 1) ∈ Fqs for some qs. By the

argument in the earlier paragraph, (s+ 2, s+ 3) ∈ Fqs+2 where qs+2 ≤ qs. Proceeding in this

way, we obtain a sequence of qs+r, r ∈ {0, 2, . . . , 2k} such that qs+2k = qs and qs+r ≤ qs+r+2

for all r ∈ {0, . . . , 2k}. Clearly we must have qs = qs+r for all r i.e. all agents in {1, 2, . . . , 2k}
belong to the same component Fqs .

We shall refer to this possibility as Case A. The only remaining possibility is (s, s+1) ∈ R
for all s, which we shall refer to as Case B. We will show that both Cases A and B lead to

contradictions.

Case A: By assumption, (4, a1) �1 (2, a1), (6, a3) �3 (4, a2), . . . , (2, a1) �2k−1 (k, ak). Since

all agents belong to the same component, the preference relations above imply a1 /∈ G1, a2 ∈
G1; a2 /∈ G3, a3 ∈ G3; . . . ; ak /∈ G2k−1, a1 ∈ G2k−1. Since a2 ∈ G1 and a2 /∈ G3, homophily

15We adopt the convention that 2k − 1 + 2 ≡ 1.

29



implies G1 ⊃ G3.16 By a similar argument, G3 ⊃ G5 etc. So G1 ⊃ G3 . . . G2k−1 ⊃ G1 which

is impossible.

Case B: All the agents are in R i.e. they belong to different friendship components.

Since all agents in the set S strictly improve by the swap, the assignments for these agents

in σ are made in Step L+2.17 Recall in Step L+2, R̄1 is the set of agents who have no good

projects available and R̄2 are those that have. Since the agents in S are strictly improving,

they must belong to R̄2. Moreover their partners in σ also belong to R̄2; otherwise some of

the agents in S would not be able to strictly improve.

Now consider (1, 2, a1), (3, 4, a2) ∈ σ. We have argued that a1 /∈ G1, a2 ∈ G1 and a2 /∈ G3.

By the MDPA, 4 �N 3 and a2 ∈ G4. But then a2 ∈ G1 ∩G4 which is a contradiction to the

assumption that 1 and 4 were not assigned a good project in Step L+ 1.

Blocking via a project swap: Suppose σ can be blocked by project swaps and assume w.l.o.g

(by suitable relabelling) that (1, 2, a1), (3, 4, a2), . . . , (2k − 1, 2k, ak) ∈ σ where all agents

strictly improve by a swap of projects. Let

Assume µ(a1) = a2, µ(a2) = a3, . . . , µ(ak) = a1. Furthermore these swaps are strictly

improving for all agents i.e.(
s+ 1, a s−1

2

)
�s
(
s+ 1, a s+1

2

)
and

(
s, a s−1

2
) �s+1

(
s, a s+1

2
)

where s ∈ {1, 3, . . . , 2k − 1} and a0 ≡ ak.

By using the same arguments as in case of the position swaps, we can conclude the

following: if (s, s+ 1) belong to some friendship component Fq then (s− 2, s− 1) cannot be

members of a friendship component which is assigned projects after Fq. Nor can (s−1, s−2)

belong to R. Once again using identical arguments to those used earlier, only one of two

possibilties can arise: Case A′ where all agents in {1, 2, . . . , 2k} belong to the same component

Fq and Case B′ where all agents in {1, 2, . . . , 2k} belong to distinct components.

CaseA′: Consider the agents in {1, 3, . . . , 2k−1}. By assumption, (2, ak) �1 (2, a1), (4, a1) �3

(4, a2), (6, a2) �5 (6, a3), . . . , (2k, ak−1) �2k−1 (2k, ak). Thus a1 /∈ G1 and a1 ∈ G3. Ho-

mophily implies G1 ⊂ G3.18 Similarly a2 /∈ G3 and a2 ∈ G5 implies G3 ⊂ G5 by homophily.

Proceeding in the same way, G1 ⊂ G3 ⊂ G5 . . . G2k−1. Hence G1 ⊂ G2k−1. However

ak /∈ G2k−1 and ak ∈ G1, we also have G2k−1 ⊂ G1. We have a contradiction.

Case B′: Since both agents in the pair (s, s+1), s ∈ {1, 3, . . . , 2k−1} are strictly improving,

it must be the case that all the pairs are formed and assigned projects in Step L+2. However

after swapping projects, both agents in every pair get a good project. Let s be the highest

16Note that this is a strict superset.
17In Step L + 1, any pair assigned a project has the property that the project is good for both agents in

the pair.
18Note that this is a strict subset.

30



priority agent in {1, 2, . . . , 2k}. All projects in {a1, . . . , ak} are available when agent s is

being considered for a partner, project assignment in Step L + 1.q for some q. Since agent

s+ 1 and all projects in {a1, . . . , ak} are available in Step L+ 1.q, the MDPA must assign a

good project to s in Step L+ 1.q. This contradicts the assumption that s strictly improves.

This completes the proof of the result.

Proof of Theorem 2: Let i be an agent such that i ∈ Fq. Let �i be a preference ordering

for agent i and � be a preference profile. We will show that there does not exist �′i such

that σ(�′i,�−i) �i σ(�). Note that the outcome in the MDPA does not depend on whether

�i is partner or project dominant. We therefore only need to show that i cannot benefit by

misreporting Gi(�i). In view of the assumptions made on the good sets, this is equivalent

to checking that i cannot benefit by changing her threshold project.

Suppose (k, i, a) ∈ σ(�). There are two separate cases to consider: Case 1 where i is a

residual agent and Case 2 where i is matched with a friend. We consider each case in turn.

Case 1: Note that a misreport by agent i will not change his residual status as the MDPA

algorithm always picks the minimum agent in Fq according to �N . Suppose there exists a

misreport �′i such that i strictly improves. In both cases, i is not matched with a friend;

therefore a /∈ Gi(�i) while the misreport yields a project b ∈ Gi(�i).
Since a /∈ Gi(�i), it must be the case that i is assigned in Step L + 2 for the profile �.

Suppose b is assigned in Step L + 1 and (i, k′, b) ∈ σ(�′i,�−i). Assume k′ �N i. It must

be the case that the pair (k′, i) was considered in σ(�) in some substep of L+ 1; otherwise

the pair would not be considered in (�′i,�−i). Since (k′, i, b) ∈ σ(�′i,�−i) is formed in Step

L + 1, we have b ∈ Gk(�k). Also b ∈ Gi(�i) as agent i strictly improves by misreporting.

So b ∈ Gi(�i) ∩ Gk′(�k) and i would have received a good project in σ(�) which is a

contradiction. Assume that i has a higher priority than k′. Then the pair (i, k′) would have

been considered in some substep in L+ 1 and i would have received a good project in σ(�).

We therefore conclude that (k′, i, b) could not have been formed in Step L + 1 in (�′i,�−i)
i.e. b is assigned to (k′, i) in some substep of L+ 2.

It is clear that the set of unassigned agents and available projects in Step L + 2 is

the same in � and (�′i,�−i). Moreover the sets R̄1 and R̄2 are the same in both cases.

Since b is available in this step, i ∈ R̄2. If k′ ∈ R̄1, then (i, k′, b) ∈ σ(�) which is a

contradiction. Finally if k′ ∈ R̄2, i and k must be consecutive in priority in R̄2 which implies

that (i, k′, b) ∈ σ(�). This is a contradiction.

Case 2: In this case, k, i ∈ Fq. Agent i will continue to be matched to another agent in Fq
for any misreport. Assume without loss of generality that the set of available projects in Fq
is {a1, a2, . . . , aT} and aT �Oq aT−1 �Oq . . . �Oq a1.

Consider an arbitrary good set profile {Gj(�j)}, j ∈ F̃q. As described earlier, it is

determined by a profile of threshold projects, {aj}, j ∈ Fq. This profile generates a demand

31



vector D(at), t = 1, . . . , T . By assumption, the good project profile is homophily consistent

and D(a1) ≥ D(a2) ≥ . . . ≥ D(aT ). The profile also specifies the sets of agents who demand

each project S(a1), S(a2), . . . S(aT ).

According to the MDPA and as a consequence of homophily (and the tie breaking as-

sumption), projects are considered in the sequence aT , aT−1, . . . , a2, a1. Abusing notation

slightly, let Dr(at) denote the demand for project at when ar is considered by the algorithm

i.e. ar has the least demand and is chosen after tie breaking. Thus DT (at) = D(at) in

the demand vector in the first step when project aT is being considered. When ar is being

considered, all projects at, t > r have already been considered. Note that these projects

have not necessarily been allocated to some pair; however for the purpose of the algorithm

we can regard Dr(at) = 0 whenever t > r. Let Sr(at), t ≤ r denote the set of agents who

have positive demand for project at.

Suppose i’s threshold project in the profile {Gj(�j)}, j ∈ Fq is ak, i.e. she has positive

demand only for projects at where t ≥ k. We begin with an important observation. Agent i

can manipulate only if she does not receive a good project when being truthful. This implies

that Dt(at) ≥ 3 for all t ≤ k. Moreover there are at least two agents in each set St(at) who

are ahead of i in the order �N . Let at be a project with t ≤ k. If i has been allocated a

project or is waiting when at is being considered, she must be receiving or will receive an

acceptable project. Therefore it must be the case that i ∈ St(at). If Dt(at) = 1, agent i will

be a waiting pair and by construction of the algorithm, must receive an acceptable project.

If Dt(at) = 2, i gets at. Hence Dt(at) ≥ 3 so that project at must be allocated when it is

considered. There must therefore be two agents who are ahead of i in the numerical order

in the set St(at) who are allocated at.

Agent i can misreport in only one of two ways: (i) by announcing a threshold am where

T ≥ m > k, i.e by expanding the set of good projects and (ii) by announcing a threshold am
where 1 ≤ m < k, i.e. by contracting the set of good projects.

We consider case (i) first. Let D̂r(at), t ≤ r denote the demand of projects when project

ar is being considered, i.e. these are the demands in the various stages of MDPA, when

MDPA is run on the profile where i misreports. Similarly Ŝr(at) denotes the set of agents

who demand at at the misreported profile. We will track the project received by i in this

profile and show that it cannot belong to the set {a1, a2, . . . , ak}.
Consider projects ar where r > m. For such projects, D̂r(ar) = Dr(ar) and Ŝr(ar) =

Sr(ar). Hence these projects if allocated, are allocated to the same agents in the truthful

and misreported profiles. In addition, any agent, project pair who is waiting in one of the

profiles is also waiting in the other.

We now turn to the case where am is being considered in the misreported profile. By

assumption, i ∈ Ŝ(am). Let D̂m
−i(am) = D̂m(am) − 1 and Ŝm−i(am) = Ŝm(am) \ {i}. Note

that Dm(am) = D̂m
−i(am) and Sm(am) = Ŝm−i(am) by virtue of the argument in the previous

paragraph.

32



There are several cases to consider at this point. If D̂m
−i(am) = 0, (am, i) is the waiting

pair at this step. If there already exists a waiting pair, then i is allocated am which is, by

assumption, a bad project. Otherwise (am, i) is a waiting pair and will be assigned a project

later. Note that D̂m−1
−i (am−1) = Dm−1(am−1) and Ŝm−1−i (am−1) = Sm−1(am−1).

Suppose D̂m
−i(am) = 1 or D̂m

−i(am) ≥ 2 and i is one of the two highest priority agents in

the set Ŝm(am). Then i is allocated am which is a bad project. Otherwise, since Sm(am) =

Ŝm−i(am), am will be allocated to the same two agents who were assigned am in the truthful

profile. Once again, D̂m−1
−i (am−1) = Dm−1(am−1) and Ŝm−1−i (am−1) = Sm−1(am−1).

We can therefore conclude the following: if i is assigned a project at this step, it must

be to a bad one; otherwise D̂m−1
−i (am−1) = Dm−1(am−1) and Ŝm−1−i (am−1) = Sm−1(am−1).

Suppose i is not assigned a project at Step q.am.19 Consider Step q.am−1. Suppose

i /∈ S(am−1)i.e. m − 1 > k and am−1 is not a good project for i. If D̂m−1
−i (am−1) = 0, i

remains waiting with am. If D̂m−1
−i (am−1) = 1, i is allocated am−1 with the other demander

for am−1. Since am−1 is not a good project for i, misreporting is not beneficial. Similarly

D̂m−1
−i (am−1) ≥ 2 and i is one of the two highest priority agents in Ŝm−1(am−1); i is assigned

am−1. The only remaining case is when i is not among the two highest agents Ŝm−1(am−1)

according to the numerical order. In this case, Ŝm−1−i (am−1) = Sm−1(am−1) implies that the

same pair of agents are allocated am−1 in the misreported profile as in the truthful profile.

Summarizing, we have reached the same conclusion in stage am−1 as in stage am. Suppose

am−1 is not acceptable project for i. If i is allocated a project in stage am−1, it must be

to an unacceptable project. If i has not been allocated a project, it must be true that

D̂m−2
−i (am−2) = Dm−2(am−2) and Ŝm−2−i (am−2) = Sm−2(am−2).

In fact, the same argument can be replicated for all stages am−t, t = 0, . . . ,m − k till

one reaches ak where the project being considered by the algorithm in the misreported

profile is an acceptable project of i. In particular, we can conclude that either i is allocated

an unacceptable project or the algorithm reaches stage ak with D̂k
−i(ak) = Dk(ak) and

Ŝk−i(ak) = Sk(ak).

At Step q.ak, we have already argued that Dk(ak) ≥ 3 and there are two agents other than

i in Sk(ak) who are ahead of i in the priority order �N . Therefore D̂k
−i(ak) ≥ 2. Moreover

Ŝk−i(ak) = Sk(ak) implies that the same pair of agents who were assigned ak in the truthful

profile are also allocated ak in the misreported profile. The same argument can be applied

repeatedly to show that if i has not been assigned at Step q.ak+1, she cannot be assigned

any of the projects a1, . . . ak−1, ak. The algorithm then assigns a bad project to i. This can

happen in one of two ways. If i is waiting with a project al, k < l ≤ T , after a1 has been

allocated, then i will be allocated al. Otherwise i will receive an unacceptable project after

allocation of acceptable projects in Fq has been completed. In any case, manipulation does

19Step q.am denotes the step in which project am is the least demanded project which is chosen after tie

breaking.

33



not succeed.

Finally consider case (ii) where i misreports by contracting her good set. Following the

earlier argument, it is clear that assignment proceeds in exactly the same manner in the

misreported profile as in the truthful profile until Step q.ak is reached. This implies that

the same agents who were assigned projects a1, . . . ak are not assigned in Steps q.ak+1 and

earlier. Hence at each Step q.at, t = k, k − 1, . . . , 1, D̂−i(at) ≥ 2 and Ŝ−i(at) contains two

agents with higher priority than i. Therefore these agents are assigned a1, . . . , ak and i does

not receive a good project. This completes the proof.

Proof of Theorem 3: Consider a component F̃q and a preference profile �. Let A′ be the

set of projects available for assignment to F̃q in the MDPA. For convenience, we will denote

F̃q by S. Also with a minor abuse of notation, we will write Gi(�i) ∩ A′ simply as Gi(�i).
Construct pairs of sets (S1, A1), . . . , (ST , AT ) as follows:

(1.a) A1 = {a ∈ A′ : a ∈ Gi(�i) for all i ∈ S}.

(1.b) S1 = {i ∈ S : Gi(�i) = A1}.

(2.a) A2 = {a ∈ A′ \ A1 : a ∈ Gi(�i) for all i ∈ S \ S1}.

(2.b) S2 = {i ∈ S \ S1 : Gi(�i) = A1 ∪ A2}.

...

...

(t.a) At = {i ∈ A \ (A1 ∪ . . . ∪ At−1) : a ∈ Gi(�i) for all i ∈ S \ (S1 . . . ∪ St−1).

(t.b) St = {i ∈ S \ (S1 ∪ . . . ∪ St−1) : Gi(�i) = A1 ∪ . . . ∪ At−1}.

...

The set A1 consists of the available projects that are in the good sets of all agents in S.

The set S1 consists of those agents whose good project set is exactly the set A1. Either S1 = S

or there exist some agents who have good projects not belonging to A1. Let A2 be the set of

projects which are in the good sets of all agents in S \S1. Similarly S2 are the agents whose

good projects is exactly the set A1∪A2. Note that A1∩A2 = ∅ and S1∩S2 = ∅. Proceeding

in this manner, we obtain sets (A1, S1), . . . , (AT , ST ) where A1, . . . , AT and S1, . . . , ST are

partitions of A′ and S respectively. Notice that this procedure is well defined due to the

assumption of homophily. The set ST is the set of least fussy agents i.e. agents with the

largest good sets (amongst available projects) while the set AT consists of projects that are

in the good set only of the agents in ST . By homophily, agents in ST like all the projects in

34



∪Tt=1At. In general, for any i ∈ St, Gi(�i) = ∪tr=1Ar. Also the projects in ∪Tr=t+1Ar are not

good projects for any agent i ∈ St.
The sets (A1, S1), . . . , (AT , ST ) can be used to calculate the happiness index of the MDPA.

The algorithm begins by considering projects with the least demand amongst the available

projects i.e. by assigning projects in AT to agents in ST . If 2 |AT | ≥ |ST |, all agents in ST are

assigned projects in AT using tie breaking. In this case, all agents in ST get a good project.

This includes the case where one of the agents in ST is a waiting pair with one of the projects

in AT . Note that in the MDPA the waiting agent is guaranteed a good project; therefore

in the computation of the happiness index we can assume without loss of generality that all

agents in ST are assigned a good project. On the other hand if 2 |AT | < |ST |, all projects in

AT are assigned to agents in ST and the number of happy agents is |ST |. In conclusion, the

number of happy agents in Step T is min{2 |AT | , |ST |}. Let UT denote the unhappy agents

in this step. The number of unhappy agents in this step is |UT | = max{|ST | − 2 |AT | , 0}.
In Step T − 1, projects in AT−1 are allocated to agents in S̃T−1 where S̃T−1 = ST−1 ∪UT .

Replicating the earlier arguments, the number of unhappy agents at the end of this step is

max{|S̃T−1| − 2 |AT−1| , 0}. Moreover the number of unhappy agents in F̃q from the MDPA

is |U1| = max{|S̃1| − 2 |A1| , 0}. We will complete the proof by showing that no component

allocation procedure can lead to a strictly smaller number of unhappy people.

Suppose the MDPA generates some unhappy agents. Let t∗ be the highest value of t,

t ∈ {1, . . . , T} such that there exists an unhappy agent in St: in other words, agents in

∪Tt=t∗+1St are all assigned good projects. Using the arguments in the previous paragraph, it

follows that

2 |At| ≤ |S̃t| for all t∗ ≤ t ≤ 1 with 2 |At∗| < |S̃t∗| (1)

Hence the number of happy agents in stage t, t ∈ {1, . . . , t∗} is min{2 |At| , |S̃t|}. Since∑t∗

t=1 S̃t =
∑t∗

t=1 St, the total number of unhappy agents generated by the MDPA is
∑t∗

t=1[|St|−
2 |At|].

Consider an arbitrary component allocation rule and further consider the allocation of

projects to agents in ∪t∗t=1St. By construction, the good projects of agents in ∪t∗t=1St must

belong to the set ∪t∗t=1At. By Equation 1, 2
∣∣∪t∗t=1At

∣∣ < ∣∣∪t∗t=1St
∣∣. Therefore the set of unhappy

agents amongst the set of agents ∪t∗t=1St must at least be
∑t∗

t=1[|St| − 2 |At|] which is also

a lower bound for the total number of unhappy agents in F̃q. But we have already argued

that the MDPA achieves this bound for the number of unhappy agents. This completes the

proof.

Proof of Proposition 4: We first consider the case when the preferences of all agents belong to

D1(N,A). It will suffice to construct an example for this purpose. Let N = {1, 2, 3, 4, 5, 6}
and A = {a, b, c, d, e, f}. Let a >o b >o c >o d >o e >o f and 1 >p 2 >p 3 >p 4 >p 5 >p 6.

35



�proj1 �proj2 �proj3 �proj4 �proj5 �proj6

a b c d e f

b a b e f e

c c a f d d

d d d c c c

e e e b b b

f f f a a a

Table 12: �proji

Table 12 specifies �proji for all agents i. Agents 2 and 3 are left-oriented i.e. any project

which lies to the left of the best project of the agent is preferred to a project which lies to

the right of the peak (according to >o). Similarly agents 4 and 5 are right-oriented.

The preferences on partners for the agents are not important and therefore not specified.

Finally �i is project dominant for all ii.e. they belong to D1(N,A). We show below that

a stable assignment does not exist at profile �.

Since there are six projects and six agents, exactly three projects must be assigned.

Consider an arbitrary stable assignment.

We first show that at least one of the projects in {τ(1), τ(2)} and one of the projects in

{τ(5), τ(6)} must be assigned.

Suppose neither τ(1) nor τ(2) are assigned. Then neither agents 1 nor 2 are getting their

first and second ranked projects. Hence they can form a blocking coalition by choosing one

of the unassigned projects τ(1) or τ(2). Note that this would give each agent either their

first or second ranked project. By a similar argument, one of the projects in {τ(5), τ(6)}
must be assigned.

Suppose the third project assigned is the unassigned project in {τ(1), τ(2)} i.e. the

assigned projects are τ(1), τ(2), and either τ(5) or τ(6). Then at least one of the agents

i ∈ {4, 5, 6} is assigned to either τ(1) or τ(2). Observe also that agent 3 is not getting her

best project since τ(3) ∈ uσ. Now (i, 3, τ(3)) is a blocking coalition. This is true because

single-peakedness implies agent i strictly prefers τ(3) to τ(1) or τ(2).

By a symmetric argument, it cannot be the case that the assigned projects are τ(5), τ(6)

and either τ(1) or τ(2).

The only remaining possibility is that assigned projects are one of {τ(1), τ(2)}, one of

{τ(5), τ(6)} and one of {τ(3), τ(4)}. Assume w.l.o.g τ(4) is the assigned project.

Observe that either agent 1 or 2 is not getting her best project. Suppose 1 is the agent

who is not getting her best project. There are four possibilities.

(i) Agent 1 is getting τ(2) and agent 3 is not i.e. agent 3 is getting a project in {τ(4), τ(5), τ(6)}.

36



�part1 �part2 �part3 �part4

2 3 4 1

3 1 2 2

4 4 1 3

Table 13: �parti

Since 3 is left-oriented, 1 and 3 block via the unassigned project τ(1).

(ii) Agent 3 is getting τ(2) but agent 1 is not i.e. agent 1 is receiving a project from the

set {τ(4), τ(5), τ(6)}. Then agents 1 and 3 block via the unassigned project τ(3).

(iii) Neither agent 1 nor agent 3 is getting τ(2). Here agents 1 and 3 block via one of the

unassigned projects τ(1) or τ(3).

(iv) Agents 1 and 3 are assigned τ(2). Hence agent 2 is assigned a project from the set

{τ(3), τ(4), τ(5), τ(6)}. Since agent 2 is left-oriented, agents 1 and 2 block the assign-

ment via the unassigned project τ(1).

The final case is when τ(1) is being assigned. Agents 2 and 3 are assigned a project in

{τ(1), τ(4), τ(5)}. Then agents 2 and 3 block via the project τ(2).

The case where τ(3) is the third assigned project can be dealt by a symmetric argument.

This completes the proof of the claim.

The next example demonstrates non-existence of stable assignments when the preferences

for all agents belong to D2(N,A).20 Let N = {1, 2, 3, 4} and A = {a, b, c}. Let 1 >p 2 >p

3 >p 4 and a >o b >o c. Table 13 specifies �parti for all agents i. The preferences on projects

are not important and thus not specified. Also �i is partner dominant for all ii.e. they

belong to D2(N,A). We show below that a stable assignment does not exist at profile �.

Consider the assignment where agents (1, 2) and (3, 4) are matched with each other. Let

(1, 2, x), (3, 4, y) ∈ σ where x, y ∈ A. Agent 2 strictly prefers (3, y) over (1, x) for all x, y ∈ A.

Similarly agent 4 strictly prefers (1, x) over (3, y) for all x, y ∈ A. Thus agents 2 and 4 will

block σ via a position switch.

Next consider the assignment where agents (1, 4) and (2, 3) are matched with each other.

Agents 1 and 3 will block the assignment via a position switch. This is because agent 1

strictly prefers any assignment where 2 is her partner over any assignment where 4 is her

partner. Similarly agent 3 strictly prefers any assignment where 4 is her partner over any

assignment where 2 is her partner.

20Non-existence in this case is closely related to the non-existence of stable assignments in the roommate

problem.

37



Finally consider the assignment where agents (1, 3) and (2, 4) are matched with each

other. Agents 3 and 4 block the assignment via a position switch. Agent 3 strictly improves

as she prefers any assignment where 2 is her partner over any assignment where 1 is her

partner. Also agent 4 prefers any assignment where 1 is her partner over any assignment

where 2 is her partner. Therefore there does not exist a stable assignment.

References

Alkan, A. (1988): “Nonexistence of stable threesome matchings,” Mathematical social sci-

ences, 16, 207–209.

Barberà, S., F. Gul, and E. Stacchetti (1993): “Generalized median voter schemes

and committees,” Journal of Economic Theory, 61, 262–289.

Bauman, K. E. and S. T. Ennett (1996): “On the importance of peer influence for

adolescent drug use: Commonly neglected considerations,” Addiction, 91, 185–198.

Biró, P. and E. McDermid (2010): “Three-sided stable matchings with cyclic prefer-

ences,” Algorithmica, 58, 5–18.

Bogomolnaia, A. and H. Moulin (2004): “Random matching under dichotomous pref-

erences,” Econometrica, 72, 257–279.

Burkett, J., F. X. Flanagan, and A. L. Griffith (2016): “Allocating Group Hous-

ing,” .

Cechlárová, K. and T. Fleiner (2005): “On a generalization of the stable roommates

problem,” ACM Transactions on Algorithms (TALG), 1, 143–156.

Cohen, J. M. (1977): “Sources of peer group homogeneity,” Sociology of Education, 227–

241.

Combe, J. (2017): “Matching with Ownership,” Available at SSRN:

https://ssrn.com/abstract=3071879.

Golub, B. and M. O. Jackson (2012): “How homophily affects the speed of learning and

best-response dynamics,” The Quarterly Journal of Economics, 127, 1287–1338.

Kandel, D. B. (1978): “Homophily, selection, and socialization in adolescent friendships,”

American journal of Sociology, 84, 427–436.

Khare, S. and S. Roy (2016): “Stability in Matching with Groups having Non-Responsive

Preferences,” .

38



Klaus, B. and F. Klijn (2005): “Stable matchings and preferences of couples,” Journal

of Economic Theory, 121, 75–106.

——— (2007): “Paths to stability for matching markets with couples,” Games and Economic

Behavior, 58, 154–171.

Klaus, B., F. Klijn, and J. Massó (2007): “Some things couples always wanted to

know about stable matchings (but were afraid to ask),” Review of Economic Design, 11,

175–184.

Lazarsfeld, P. F., R. K. Merton, et al. (1954): “Friendship as a social process:

A substantive and methodological analysis,” Freedom and control in modern society, 18,

18–66.

McPherson, M., L. Smith-Lovin, and J. M. Cook (2001): “Birds of a feather: Ho-

mophily in social networks,” Annual review of sociology, 27, 415–444.

Morrill, T. (2010): “The roommates problem revisited,” Journal of Economic Theory,

145, 1739–1756.

Nicolò, A., A. Sen, and S. Yadav (2017): “Matching with Partners and Projects,”

Available at https://sites.google.com/site/anicolo68/.

Pycia, M. (2012): “Stability and preference alignment in matching and coalition formation,”

Econometrica, 80, 323–362.

Raghavan (2014): “Efficient Pairwise Allocation via Priority Trading,” mimeo, Indian Sta-

tistical Institute.

Roth, A. E., T. Sönmez, and M. U. Ünver (2005): “Pairwise kidney exchange,”Journal

of Economic theory, 125, 151–188.

Roth, A. E. and M. A. O. Sotomayor (1992): Two-Sided Matching: A Study in Game-

Theoretic Modeling and Analysis, 18, Cambridge University Press.

Ruef, M., H. E. Aldrich, and N. M. Carter (2003): “The structure of founding teams:

Homophily, strong ties, and isolation among US entrepreneurs,” American sociological

review, 195–222.

Selfhout, M., S. Branje, T. ter Bogt, and W. Meeus (2009): “The role of music

preferences in early adolescents friendship formation and stability.” Journal of adolescence,

32, 95–107.

39



Sethuraman, J. and A. Smilgins (2016): “Two-sided matching with objects,” Mimeo,

University of Copenhagen.

Verbrugge, L. M. (1983): “A research note on adult friendship contact: a dyadic per-

spective,” Social Forces, 78–83.

40


	Introduction
	Existing Literature

	The Model
	Preferences
	Blocking and Stability

	The Minimum Demand Priority Algorithm
	Properties of the MDPA
	Stability
	Strategy-Proofness
	Efficiency

	Other Component Assignment Procedures
	A minimum demand endogeneous priority procedure
	A maximum demand fixed priority mechanism
	A fixed priority algorithm

	Alternative Domains
	Dichotomous Domains without homophily
	Non Dichotomous Preferences

	Conclusion
	Appendix
	Proofs


